1
|
Zhang S, Li Y, Zhuang X, Hu Y, Xu K, Zhang G, Pi Y, Tang Y, Hu J, Zang R, Qiu Z, Zhou H, Yu F, Shakouri M, Pang H. Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418344. [PMID: 39846334 DOI: 10.1002/adma.202418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Indexed: 01/24/2025]
Abstract
As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported. Mesoporous polydopamine (mesoPDA)-F127 nanospheres with unique surface chemistry, e.g., nanoconfined spaces, catechol functional groups, pyrrolic N doping, and hydrophilic PEO blocks, are found to be a suitable molecular platform. Sliced cross-sectional TEM, HAADF-STEM, and corresponding EDS elemental mapping, as well as nitrogen adsorption characterizations, are utilized to visualize the in situ growth process of ZIF-8 nanoparticles. These careful analyses provides direct evidence that the highly dispersed ZIF-8 is exclusively located inside the internal mesochannels. After moderate carbonization of the mesoPDA-F127/ZIF-8 nanocomposites, a prototype for a mesoporous carbon-isolated ZIF-8 nanostructure is achieved, which can regulate Zn2+ plating electrochemistry toward stable aqueous Zn batteries. This is the first report of the complete impregnation and even dispersion of nanoscale MOFs within the interior channels of mesoporous carbons.
Collapse
Affiliation(s)
- Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yuan Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Yaxun Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Jinliang Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Rui Zang
- College of Automotive Engineering, Nanjing Vocational Institute of Transport Technology, Nanjing, 211188, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Feng Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
2
|
Wang M, Liu J, Mao X, Deng R, Zhu J. Neutral Interface Directed 3D Confined Self-Assembly of Block Copolymer: Anisotropic Patterned Particles with Ordered Structures. Chemistry 2025; 31:e202403787. [PMID: 39574397 DOI: 10.1002/chem.202403787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 02/04/2025]
Abstract
Three-dimensional confined self-assembly (3D-CSA) of block copolymers (BCPs) is a distinctive and robust strategy that can yield colloidal polymer particles boasting ordered internal structures and diverse morphologies. The unique advantage of neutral interface lies in its ability to create anisotropic particles with surface patterns. The resulting unique polymer particles exhibit deformability under swelling, coupled with excellent spreadability and optical properties. These particles can also be used for fabrication of anisotropic nanoobjects or mesoporous particles via disassembly or serving as templates. This review comprehensively outlines the research advancements in neutral interface-guided 3D-CSA systems, including surfactant engineering, internal structure control, properties and future possibilities of anisotropic patterned particles.
Collapse
Affiliation(s)
- Mian Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingye Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xi Mao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renhua Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Xu Z, Xiao T, Li Y, Pan Y, Li C, Liu P, Xu Q, Tian F, Wu L, Xu F, Mai Y. Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416204. [PMID: 39570097 DOI: 10.1002/adma.202416204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 11/22/2024]
Abstract
The surface curvature of catalysts has a decisive impact on their catalytic performance. However, the influence of a negative-Gaussian-curvature surface on the catalytic performance of porous catalysts has remained unexplored due to the lack of suitable samples. Bicontinuous-structured porous structures can serve as ideal models, but they are known as "Plumber's nightmare" due to their highly difficult preparation. Here, using metal-organic frameworks as the precursor and polymer cubosomes as the template, a bicontinuous mesoporous Fe single-atom catalyst (named bmFeSAC) with a Schwarz P surface is synthesized. The bmFeSAC catalyst has a large specific surface area of 916 m2 g-1 and uniformly distributed Fe-N4 active sites with a 1.80 wt.% Fe content. The continuous channels enabled high utilization efficiency of the Fe-N4 catalytic sites, while the negative-Gaussian-curvature surface enabled low reaction energy barrier. As an electrocatalyst of the oxygen reduction reaction, bmFeSAC delivered a high half-wave potential of 0.931 V versus. RHE in alkaline electrolyte, reaching the leading level among those of the reported state-of-the-art electrocatalysts. Furthermore, the bmFeSAC-based Zn-air batteries exhibited excellent performance, demonstrating the potential application of bmFeSAC. This study revealed that a bicontinuous-structured porous structure can improve catalytic activity by increasing the utilization ratio of catalytic sites and, more importantly, by regulating the electronic structure of catalyst surfaces through the negative-Gaussian-curvature.
Collapse
Affiliation(s)
- Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pan Liu
- School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Liu M, Asgari M, Bergmann K, Shenassa K, King G, Leontowich AFG, Fairen-Jimenez D, Hudson ZM. Coassembling Mesoporous Zeolitic Imidazolate Frameworks by Directed Reticular Chemistry. J Am Chem Soc 2024; 146:31295-31306. [PMID: 39481103 DOI: 10.1021/jacs.4c12385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Conventional microporous zeolitic imidazolate frameworks (ZIFs) face limitations in mass transfer and pore accessibility when dealing with large guest molecules. Here, we describe a technique for the synthesis of mesoporous ZIFs (MesoZIFs) using a strategy we term directed reticular chemistry. MesoZIF-8 was prepared through solvent evaporation-induced coassembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO), ZIF-8 building blocks, and acetic acid (AcOH), followed by amine-facilitated crystallization of ZIF-8 in the interstices of PS-b-PEO micelles. AcOH prevents the fast coordination of ZIF-8 building blocks, avoiding phase separation during coassembly. The employed amine plays a crucial role in neutralizing the crystallization environment and further deprotonating the 2-methlyimizale linker to coordinate with zinc ions. Ink bottle-shaped mesopores with tunable mesopore sizes were created by adjusting the molecular weight of PS-b-PEO. Compared to microporous ZIF-8, MesoZIF-8 exhibited enhanced performance in Knoevenagel condensation reactions involving large reactants and hydrogen storage capacity. With this study, we establish an efficient approach for synthesizing MesoZIFs with highly accessible mesopores to enhance ZIF performance in targeted applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mehrdad Asgari
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Katrina Bergmann
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kayla Shenassa
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Graham King
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | | | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Liu X, Chen J, Xia F, Yang J, Feng C, Gu J. Biphasic interface templated synthesis of wrinkled MOFs for the construction of cascade sensing platform based on the encapsulated gold nanoclusters and enzymes. J Colloid Interface Sci 2024; 680:528-536. [PMID: 39522247 DOI: 10.1016/j.jcis.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The design and construction of MOFs with flower-like structure could afford sufficient space for the immobilization of guests with large size and interconnected transport channels for their mass diffusion although it remains a challenge. Herein, wrinkled Ce-based hierarchically porous UiO-66 (Ce-WUiO-66) with good crystallinity was successfully synthesized for the first time using bicontinuous emulsion composed of 1-heptanol, water and F127 (PEO106PPO70PEO106) surfactant as a template. F127 played a key role in the formation of emulsions as a stabilizer, and meanwhile its PEO segments interacted with MOF precursors to guide the evolvement of crystallized pore walls. Through controlling the ratios of heptanol to water and the salinity, the distances of the pleat openings and the morphology of the resultant Ce-WUiO-66 were facilely regulated. In virtue of its highly open radial structure, Ce-WUiO-66 could serve as an ideal platform for loading multiple substances to build a cascade sensing system. As a proof of concept, we designed an amino acid (AA) cascade probe by co-immobilizing gold nanoclusters (AuNCs) and LAA oxidase into Ce-WUiO-66. The aggregation-induced-emission enhancement resulted from the encapsulation of AuNCs into Ce-WUiO-66 significantly improved the detection sensitivity and the detection limit of corresponding substrates reached as low as 10-8 M. The proposed biphasic interface assembly strategy is hopefully to provide a new route for the rational design of MOFs with various open pore structure and broaden their potential applications with multiple large-size substances involved besides the currently exemplified cascade sensing platform.
Collapse
Affiliation(s)
- Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Feng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Liu Z, Li W, Sheng W, Liu S, Li R, Huang C, Xiong Y, Han L, Zhen W, Li Y, Jia X. Polyphenol-Based Bicontinuous Porous Spheres Via Amine-Mediated Polymerization-Induced Fusion Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403777. [PMID: 39039987 DOI: 10.1002/smll.202403777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Bicontinuous porous materials, which possess 3D interconnected network and pore channels facilitating the mass diffusion to the interior of materials, have demonstrated their promising potentials in a large variety of research fields. However, facile construction of such complex and delicate structures is still challenging. Here, an amine-mediated polymerization-induced fusion assembly strategy is reported for synthesizing polyphenol-based bicontinuous porous spheres with various pore structures. Specifically, the fusion of pore-generating template observed by TEM promotes the development of bicontinuous porous networks that are confirmed by 3D reconstruction. Furthermore, the resultant bicontinuous porous carbon particles after pyrolysis, with a diameter of ≈600 nm, a high accessible surface area of 359 m2 g-1, and a large pore size of 40-150 nm manifest enhanced performance toward the catalytic degradation of sulfamethazine in water decontamination. The present study expands the toolbox of interfacial tension-solvent-dependent porous spheres while providing new insight into their structure-property relationships.
Collapse
Affiliation(s)
- Zhiqing Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui middle road 18, Lanzhou, 730000, P. R. China
| | - Shiyu Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Youpeng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| |
Collapse
|
7
|
Azhdari S, Linders J, Coban D, Stank TJ, Dargel C, Gojzewski H, Hellweg T, Gröschel AH, Wurm FR. Fully Degradable Polyphosphoester Cubosomes for Sustainable Agrochemical Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406831. [PMID: 39072806 DOI: 10.1002/adma.202406831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Microplastic pollution and the urgent need for sustainable agriculture have raised interest in developing degradable carriers for controlled agrochemical release. Porous polymeric particles are particularly promising due to their unique release profiles compared to solid or core-shell carriers. However, creating degradable, mesoporous (2-50 nm) microparticles is challenging, and their potential for agrochemical delivery is largely unexplored. A straightforward self-assembly method is demonstrated for fully degradable porous polymer cubosomes (PCs), showcasing their ability to load and release agrochemicals. Using fully degradable block copolymers (BCPs), poly(ethyl ethylene phosphate)-b-polylactide (PEEP-b-PLA), PCs are synthesized in water with high inner order and open pores averaging 19 ± 3 nm in diameter. During the self-assembly process in the presence of the hydrophobic fungicide tebuconazole, polymersomes transform into PCs by enriching the hydrophobic polymer domain and altering the BCP packing parameter. After self-assemby, highly porous and fungicide-loaded PCs are obtained. Fungicide-loaded PCs show high antimycotic activity against Botrytis cinerea (grey mold), adhere to Vitis vinifera Riesling leaves even after simulated rain, and release the fungicide continuously over several days with different release-kinetics compared to solid particles. PCs hydrolyze completely into lactic acid and phosphate derivatives, highlighting their potential as microplastic-free agrochemical delivery systems for sustainable agriculture.
Collapse
Affiliation(s)
- Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149, Münster, Germany
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, Netherlands
| | - Jürgen Linders
- Physical Chemistry University Duisburg-Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Deniz Coban
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149, Münster, Germany
| | - Tim Julian Stank
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Carina Dargel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149, Münster, Germany
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, Netherlands
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149, Münster, Germany
- Polymer Materials for Energy Storage (PES), Macromolecular Chemistry and Bavarian Center for Battery Technology, University of Bayreuth, Weiherstraße 26, 95448, Bayreuth, Germany
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, Netherlands
| |
Collapse
|
8
|
Xia F, Yang J, Chen J, Liu X, Ma Z, Gu J. Coordination-Driven Templated Synthesis of Hierarchically Porous Zeolitic Imidazolate Frameworks for Cascade Enzyme Cycle Amplification Coupled Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042822 DOI: 10.1021/acsami.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although hierarchically porous zeolitic imidazolate frameworks (HPZIFs) not only inherit the intrinsic architectural and chemical stabilities of their microporous counterparts but also afford open space for the efficient mass diffusion of the macromolecules involved, their rational design and construction are still challenging. Herein, HPZIFs with tailorable pore sizes ranging from 18 to 54 nm were successfully fabricated by using a newly developed soft-template-directed strategy. Our success rooted in the fact that the screened PS81-PVP44-PEO113 triblock copolymer could effectively coordinate with the metal precursor for the directed crystallization of ZIFs along surfactant assemblies. The advantages of continuous large pores and open structures in such HPZIFs were fully taken into account to serve as a bioreactor for the efficient immunoassay. The expanded large pores provided not only a significantly vast surface area to enhance the density of capture antibodies but also enough space for accommodating multiple conjugated biomolecules in one pore channel. In combination with a cascade enzyme cycle amplification strategy, a model biomarker of prostate-specific antigen (PSA) at the femtomolar level was checked with a limit of detection of 92 fM using the developed immunosensor. Specific screening on patients with prostate cancer or even benign prostatic hyperplasia was exemplified through accurately quantifying small changes of PSA concentration in clinical serum samples, prefiguring the great potential of the developed HPZIF-8 immunosensor platform for the early monitoring and diagnostics of diseases.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhefan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Zhang H, Zhang M, Liu R, He T, Xiang L, Wu X, Piao Z, Jia Y, Zhang C, Li H, Xu F, Zhou G, Mai Y. Fe 3O 4-doped mesoporous carbon cathode with a plumber's nightmare structure for high-performance Li-S batteries. Nat Commun 2024; 15:5451. [PMID: 38937487 PMCID: PMC11211388 DOI: 10.1038/s41467-024-49826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
Shuttling of lithium polysulfides and slow redox kinetics seriously limit the rate and cycling performance of lithium-sulfur batteries. In this study, Fe3O4-dopped carbon cubosomes with a plumber's nightmare structure (SP-Fe3O4-C) are prepared as sulfur hosts to construct cathodes with high rate capability and long cycling life for Li-S batteries. Their three-dimensional continuous mesochannels and carbon frameworks, along with the uniformly distributed Fe3O4 particles, enable smooth mass/electron transport, strong polysulfides capture capability, and fast catalytic conversion of the sulfur species. Impressively, the SP-Fe3O4-C cathode exhibits top-level comprehensive performance, with high specific capacity (1303.4 mAh g-1 at 0.2 C), high rate capability (691.8 mAh gFe3O41 at 5 C), and long cycling life (over 1200 cycles). This study demonstrates a unique structure for high-performance Li-S batteries and opens a distinctive avenue for developing multifunctional electrode materials for next-generation energy storage devices.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Ruiyi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tengfeng He
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yeyang Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chongyin Zhang
- Shanghai Aerospace Equipments Manufacturer Co., Ltd., 100 Huaning Road, Shanghai, 200245, China
| | - Hong Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
10
|
Chen H, Schumacher M, Ianiro A, Stank TJ, Janoszka N, Chen C, Azhdari S, Hellweg T, Gröschel AH. Photocleavable Polymer Cubosomes: Synthesis, Self-Assembly, and Photorelease. J Am Chem Soc 2024; 146:14776-14784. [PMID: 38668645 DOI: 10.1021/jacs.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Polymer cubosomes (PCs) are a recent class of self-assembled block copolymer (BCP) microparticles with an accessible periodic channel system. Most reported PCs consist of a polystyrene scaffold, which provides mechanical stability for templating but has a limited intrinsic functionality. Here, we report the synthesis of photocleavable BCPs with compositions suitable for PC formation. We analyze the self-assembly mechanism and study the model release of dyes during irradiation, where the transition of the BCPs from amphiphilic to bishydrophilic causes the rapid disassembly of the PCs. A combination of modeling and experiment shows that the evolution of PCs proceeds first via liquid-liquid phase separation into polymer-rich droplets, followed by microphase separation within this droplet confinement, and finally, membrane reorganization into high internal order. This insight may encourage exploration of alternative preparation strategies to better control the size and homogeneity of PCs.
Collapse
Affiliation(s)
- Hui Chen
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Marcel Schumacher
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Alessandro Ianiro
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Biophysics Group, Adolphe Merkle Institute, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Tim Julian Stank
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - Nicole Janoszka
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Chen Chen
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Bielefeld 33615, Germany
| | - André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, Münster 48149, Germany
- Polymer Materials for Energy Storage (PES), Bavarian Center for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, Bayreuth 95448, Germany
| |
Collapse
|
11
|
Masaoka M, Ishida H, Watanabe T, Ono T. Engineering Interconnected Open-Porous Particles via Microfluidics Using Bijel Droplets as Structural Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8074-8082. [PMID: 38578046 DOI: 10.1021/acs.langmuir.3c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Designing porous structures is key in materials science, particularly for separation, catalysis, and cell culture systems. Bicontinuous interfacially jammed emulsion gels represent a unique class of soft matter formed by kinetically arresting the separation of the spinodal decomposition phase, which is stabilized by colloidal particles with neutral wetting. This study introduces a microfluidic technique to create highly interconnected open-porous particles using bijel droplets stabilized with hexadecyltrimethylammonium bromide (CTAB)-modified silica particles. Monodisperse droplets comprising a hydrophobic monomer, water, ethanol, silica particles, and CTAB were initially formed in the microfluidic device. The diffusion of ethanol from these droplets into the continuous cyclohexane phase triggered spinodal decomposition within the droplets. The phase-separated structure within the droplets was stabilized by the CTAB-modified silica particles, and subsequent photopolymerization yielded microparticles with highly interconnected, open pores. Moreover, the influence of the ratio of the CTAB and silica particles, fluid composition, and microchannel direction on the final structure of the microparticles was explored. Our findings indicated that the phase-separated structure of the particles transitioned from oil-in-water to water-in-oil as the CTAB/silica ratio was increased. At intermediate CTAB/silica ratios, microparticles with bicontinuous structures were formed. Regardless of the fluid composition, the pore size of the particles increased with time after phase separation. However, this coarsening was arrested 15 s after droplet formation in the CTAB-modified silica particles, accompanied by a change in the particle shape from spherical to ellipsoidal. In situ observations of the bijel droplet formation revealed that the particle shape deformation is caused by the rolling of elastic bijel droplets at the bottom of the microchannel. As such, the channel setup was altered from horizontal to vertical to prevent the deformation of bijel droplets, resulting in spherical particles with open pores.
Collapse
Affiliation(s)
- Mina Masaoka
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroaki Ishida
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takaichi Watanabe
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tsutomu Ono
- Department of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Yang J, Gong M, Xia F, Tong Y, Gu J. Hofmeister Effect Promoted the Introduction of Tunable Large Mesopores in MOFs at Low Temperature for Femtomolar ALP Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305786. [PMID: 38037308 PMCID: PMC10811466 DOI: 10.1002/advs.202305786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Indexed: 12/02/2023]
Abstract
In addressing the demand for hierarchically mesoporous metal-organic frameworks (HMMOFs) with adjustable large mesopores, a method based on the synergistic effects of low-temperature microemulsions and Hofmeister ions is developed. Low temperature dramatically enhanced the solubility of hydrophobic solvent in the microemulsion core, enlarging the mesopores in HMMOFs replica. Meanwhile, Hofmeister salt-in ions continuously controlled mesopore expansion by modulating the permeability of swelling agent into the microemulsion core. The large mesopores up to 33 nm provided sufficient space for the alkaline phosphatase (ALP) enrichment, and retained the remaining channel to facilitate the free mass diffusion. Leveraging these advantages, a colorimetric sensor is successfully developed using large-mesopore HMMOFs for femtomolar ALP detection based on the enrichment and cycling amplification principles. The sensor exhibited a linear detection range of 100 to 7500 fm and a limit of detection of 42 fm, presenting over 4000 times higher sensitivity than classic para-nitrophenyl phosphate colorimetric methods. Such high sensitivity highlights the importance of adjustable mesoporous structures of HMMOFs in advanced sensing applications, and prefigures their potential for detecting large biomolecules in diagnostics and biomedical research.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yao Tong
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
13
|
Pan Y, Xin Y, Li Y, Xu Z, Tang C, Liu X, Yin Y, Zhang J, Xu F, Li C, Mai Y. Nitrogen-Doped Carbon Cubosomes as an Efficient Electrocatalyst with High Accessibility of Internal Active Sites. ACS NANO 2023. [PMID: 38009536 DOI: 10.1021/acsnano.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Porous carbon particles (PCPs) present considerable potential for applications across a wide range of fields, particularly within the realms of energy and catalysis. The control of their overall morphologies and pore structures has remained a big challenge. Here, using metal-organic frameworks (MOFs) as the precursor and polymer cubosomes (PCs) as the template, nitrogen-doped carbon cubosomes (SP-NCs) with a single primitive bicontinuous architecture are prepared. SP-NCs inherit the high porosity of MOFs, generating a high specific surface area of 825 m2 g-1 and uniformly distributed active sites with a 5.9 at % nitrogen content. Thanks to the presence of three-dimensional continuous mesochannels that enable much higher accessibility of internal active sites over those of their porous counterparts' lack of continuous channels, SP-NCs exhibit superior electrocatalytic performance for oxygen reduction reaction with a half-wave potential of 0.87 V, situating them in the leading level of the reported carbon electrocatalysts. Serving as an air cathode catalyst of the Zn-air battery, SP-NCs exhibit excellent performance, outperforming the commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yupeng Xin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
14
|
Xiang L, Xu Q, Zhang H, Geng S, Cui R, Xiao T, Chen P, Wu L, Yu W, Peng H, Mai Y, Sun H. Ultrahigh-Rate Na/Cl 2 Batteries Through Improved Electron and Ion Transport by Heteroatom-Doped Bicontinuous-Structured Carbon. Angew Chem Int Ed Engl 2023; 62:e202312001. [PMID: 37806963 DOI: 10.1002/anie.202312001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/10/2023]
Abstract
Rechargeable sodium/chlorine (Na/Cl2 ) batteries are emerging candidates for sustainable energy storage owing to their superior energy densities and the high abundance of Na and Cl elements. However, their practical applications have been plagued by the poor rate performance (e.g., a maximum discharge current density of 150 mA g-1 ), as the widely used carbon nanosphere cathodes show both sluggish electron-ion transport and reaction kinetics. Here, by mimicking the sufficient mass and energy transport in a sponge, we report a bicontinuous-structured carbon cubosome with heteroatomic doping, which allows efficient Na+ and electron transport and promotes Cl2 adsorption and conversion, thus unlocking ultrahigh-rate Na/Cl2 batteries, e.g., a maximum discharge current density of 16,000 mA g-1 that is more than two orders of magnitude higher than previous reports. The optimized solid-liquid-gas (carbon-electrolyte-Cl2 ) triple interfaces further contribute to a maximum reversible capacity and cycle life of 2,000 mAh g-1 and 250 cycles, respectively. This study establishes a universal approach for improving the sluggish kinetics of conversion-type battery reactions, and provides a new paradigm to resolve the long-standing dilemma between high energy and power densities in energy storage devices.
Collapse
Affiliation(s)
- Luoxing Xiang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Cui
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyu Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Liang Wu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Yu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Yiyong Mai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Gröschel AH, Gröschel T, Azhdari S, Schumacher M, Chen H. Prismatic Block Copolymer Hexosomes. ACS NANO 2023; 17:16069-16079. [PMID: 37566704 DOI: 10.1021/acsnano.3c04827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cubosomes and hexosomes are recent solution morphologies with an ordered porous structure and are observed for lipids and amphiphilic block copolymers (BCPs) with high hydrophobic fractions. Whereas lipid hexosomes typically exhibit a prismatic shape, BCP hexosomes have so far only been observed as closed microspheres where inner channels are not connected to the surrounding medium. Here, we describe the formation of flat, prismatic BCP hexosomes with pronounced faceting and a highly ordered lattice of hexagonally packed channels. We assemble polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP or SV) into the hexosome framework using polystyrene-block-poly(4-vinylpyridine)-block-poly(tert-butyl methacrylate) (PS-b-P4VP-b-PT or SVT) as a macromolecular surfactant in low-χ solvents. During solvent exchange, SV-rich domains form through liquid-liquid phase separation, followed by solidification and confined assembly within these domains. Since the final solvent (acetone) has a very low χ parameter toward PS and P4VP (equaling low interfacial tension), solidification of the hexosome occurs under confinement conditions that we term "supersoft". The low interfacial tension allows the stabilization of the hexagonal-prismatic shape, which originates from the hexagonal lattice of channels. Increasing the interfacial tension with polar cosolvents at some point dominates the particle shape, resulting in deformation of prismatic BCP hexosomes into spinning-top structures. The use of low-χ solvents for confined assembly of BCPs may allow the formation of unusual particle shapes simply by tuning the polymer-solvent interaction.
Collapse
Affiliation(s)
- André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany
- Polymer Materials for Energy Storage (PES), Bavarian Centre for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95448 Bayreuth, Germany
| | - Tina Gröschel
- Evonik Industries AG, High-Performance Polymers, Paul-Baumann-Straße 1, 45772 Marl, Germany
| | - Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Marcel Schumacher
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Hui Chen
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany
| |
Collapse
|