1
|
Duan Y, Zhao H, Ji J, Shen Z, Wang Y, Du Y. Highly Selective Photocatalytic CO 2 Reduction to C 2H 6 via Nanocluster-Single Atom-Vacancy on Ceria: Synergistic Mechanism and Orbital Effects. NANO LETTERS 2025; 25:6227-6234. [PMID: 40192009 DOI: 10.1021/acs.nanolett.5c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The photocatalytic reduction of CO2 to high-value C2 products involves sluggish multiple proton-electron couplings, resulting in low efficiency and selectivity. This study demonstrates that palladium (Pd) single-atom (PdSA)- and Pd nanocluster (PdNCs)-loaded CeO2 with abundant oxygen vacancies (Ov) synergistically enhance photocatalytic CO2-to-ethane (C2H6) conversion effectively and selectively. The PdSA+NCs/CeO2 photocatalyst achieves 80.4% electron selectivity for C2H6 production with an electron consumption rate of 206.3 μmol gcat-1 h-1 in pure water, representing a 172.4-fold enhancement over pristine CeO2. PdNCs interact with neighboring PdSA and Ov to form a Fermi level with the continuous characteristics of discrete energy levels, improving the charge distribution in local spatial electric fields. This enhancement favors electron migration from the π to σ orbital of COCO*, promoting C-C coupling. Our findings provide new insights to rationally design synergistic interactions between SA, NCs, and Ov to achieve high selectivity toward C2 products.
Collapse
Affiliation(s)
- Yingnan Duan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hexiang Zhao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Jixiang Ji
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhurui Shen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yi Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing 102205, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Cao Y, Tang Y, Ai J, Peng J. Wireless detection of dual prostate cancer biomarkers using ferrocenecarboxylic acid-functionalized mesoporous carbon nanospheres without electrode modifications. Biosens Bioelectron 2025; 281:117477. [PMID: 40245611 DOI: 10.1016/j.bios.2025.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
To enhance the accuracy of early prostate cancer diagnosis, we developed an electrochemical sensor based on synthesized mesoporous carbon nanospheres functionalized with ferrocenecarboxylic acid and encapsulated hemoglobin (HMCNs-FCA-Hb). This sensor enables the simultaneous detection of prostate-specific antigen (PSA) and sarcosine (SAR) as dual biomarkers. Unlike traditional electrochemical detection methods that frequently necessitate multiple electrode modifications, our sensor operates without the need for such modifications, thereby significantly simplifying the detection process. Under alkaline conditions, HMCNs-FCA-Hb can release ferrocenecarboxylic acid to generate an electrical signal for PSA detection. The linear range for PSA detection is from 0.001 to 30 ng/mL, with a detection limit of 0.11 pg mL-1 (S/N = 3). Additionally, HMCNs-FCA-Hb with excellent peroxidase-like activity allows for indirect detection of SAR with the linear range of 0.01-25 μM and a detection limit of 0.003 μM (S/N = 3). Specifically, we have integrated a micro electrochemical workstation and mobile smart devices to achieve portable and wireless detection of PSA and SAR in clinical serum samples with satisfactory results. The results can be visually and promptly displayed, highlighting the sensor's potential for clinical application in the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Yongbin Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
3
|
Xie Z, Yu XY, Zhang Z, Wang X, Xie T. Asymmetric Co-Ru Heterostructure Catalyst for Surface-Plasmon-Enhanced Photothermocatalytic CO Hydrogenation to Fuels. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19617-19628. [PMID: 40128191 DOI: 10.1021/acsami.4c21909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Photothermal Fischer-Tropsch synthesis (FTS) aims to convert carbon monoxide (CO) into value-added long-chain hydrocarbons (C5+) under milder conditions, but the efficient C-C coupling of C1 intermediates remains challenging. Herein, a carbon-supported plasmonic CoRu5@C catalyst has been successfully constructed for promoting C-C coupling. Experimental results demonstrate that under ambient pressure and photothermal conditions at 250 °C, CoRu5@C exhibits a C5+ selectivity of 98.9% and FTS activity of 321.4 mmol gcat-1 h-1. Structural characterizations and finite element method simulations indicate that Ru-induced lattice strain in the Co-Ru heterogeneous catalyst boosts energetic charge carrier migration, promoting CO adsorption and activation. A series of in situ experiments reveal that electron-rich Co sites in the Co-Ru heterogeneous catalyst diminish C1 intermediate repulsion, boosting C-C coupling efficiency in the FTS process. This research not only provides an innovative approach to overcoming the challenges in CO hydrogenation selectivity and the synthesis of high-value fuels but also offers significant contributions to the development of sustainable energy technologies.
Collapse
Affiliation(s)
- Zhaoda Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Xi-Yang Yu
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zelin Zhang
- College of Chemical Engineering and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050000, P. R. China
| | - Xinyuan Wang
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Tao Xie
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
4
|
Xu M, Zhang Q, Wei S, Liu S, Zhou M, Zhao Y, Li B, Xie Y. Engineering Heteronuclear Dual-Metal Active Sites in Ordered Macroporous Architectures for Enhanced C 2H 4 Production from CO 2 Photoreduction. Angew Chem Int Ed Engl 2025:e202506072. [PMID: 40152224 DOI: 10.1002/anie.202506072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 03/29/2025]
Abstract
Photocatalytic C2H4 synthesis from CO2 and H2O by utilizing solar energy represents a promising sustainable process, yet its efficiency remains significantly limited. Herein, we proposed a dual-engineered strategy integrating 3D ordered macroporous (3DOM) architectures with heteronuclear dual-metal active sites to synergistically promote the photocatalytic C2H4 production. As an example, the Cu/3DOM-In2O3 photocatalyst was synthesized by in situ incorporating Cu single atoms (Cu SAs) into 3DOM In2O3 through a template-assisted pyrolysis process. The strong interaction between Cu SAs and In2O3 resulted in the formation of charge-polarized Cu─In active sites along with abundant oxygen vacancies (OVs). 3DOM architectures serving as special nanoreactors displayed significant advantages in promoting CO2 enrichment and confining key intermediates, thereby increasing *CO coverage. Meanwhile, the charge-polarized Cu─In active sites effectively mitigated electrostatic repulsion and promoted the formation of *CO + *CHO intermediates, resulting in a thermodynamically spontaneous C─C coupling step. Therefore, the Cu/3DOM-In2O3 photocatalyst exhibited robust CO2 reduction to C2H4, achieving high C2H4 evolution rates under various CO2 concentrations, including pure CO2, 10% CO2 in Ar (simulated flue gas), and 0.04% CO2 in Ar (simulated air). This work offers a novel strategy for the construction of photocatalysts with tailored microstructures and specific active sites to promote the conversion of CO2 and H2O into multicarbon products.
Collapse
Affiliation(s)
- Mao Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qianyu Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shupeng Wei
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Min Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yanying Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Benxia Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Sharifzadeh Z, Razavi SAA, Morsali A. Functionalization of Defective Zr-MOFs for Water Decontamination: Mechanistic Insight into the Competitive Roles of -NH 2 and -SH Sites in the Removal of Hg(II) Ions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17726-17740. [PMID: 38377577 DOI: 10.1021/acsami.3c15863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Functional metal-organic frameworks (MOFs), especially those based on sulfur and nitrogen atoms, were frequently applied for the removal of Hg(II) ions. However, a systematic study on the cooperative or competitive roles of -SH and -NH2 functions in the presence of secondary mechanisms (proton transfer and redox) is still rare. In this work, the UiO-66 framework (Zr6(OH)4O4(BDC)6, BDC2- = benzene-1,4-dicarboxylate) was decorated with functional monocarboxylate linkers including glycine (Gly), mercaptopropionic acid (Mer), and cysteine (Cys). Due to the molecular similarity of these functional linkers, the coordination affinity between the amine and thiol sites with Hg(II) ions can be compared, and the effect of proton transfer and redox mechanisms on the possible thiol···Hg(II) and amine···Hg(II) interactions can be investigated. The results show that the Cys@UiO-66 framework can adsorb 1288 mg g-1 of Hg(II), while Mer@UiO-66 and Gly@UiO-66 can adsorb 593 and 313 mg g-1 at pH = 7 and 500 ppm, respectively. This is due to the facts that both the amine and the thiol functions of the Cys@UiO-66 framework show synergism in Hg(II) removal, and the secondary mechanisms reduce the affinity of thiol in Mer@UiO-66 and amine in Gly@UiO-66 frameworks in the removal process of Hg(II) ions. Free -SH sites in Mer@UiO-66 undergo a redox convert to -SO3H groups, and free protonated -NH2 sites in Gly@UiO-66 do not fully deprotonate during Hg(II) removal. Yet, in the case of Cys@UiO-66, free protonated -NH2 sites are fully deprotonated, and free SH sites did not convert to -SO3H groups during Hg(II) removal. These observations show that the redox and proton transfer mechanisms can negatively affect the adsorption capacity of functional MOFs containing free -SH and -NH2 groups. So, not only the functionalization but also control over secondary mechanisms in the removal process are necessary parameters to improve the affinity between functional MOFs and Hg(II) ions.
Collapse
Affiliation(s)
- Zahra Sharifzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
6
|
Zhang H, Su Q. Recent Advances of Indium-Based Sulfides in Photocatalytic CO 2 Reduction. ACS OMEGA 2025; 10:8793-8815. [PMID: 40092754 PMCID: PMC11904684 DOI: 10.1021/acsomega.4c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Urgent and significant, the mitigation of greenhouse effects and the preservation of the Earth's ecological environment are paramount concerns. Photocatalytic carbon dioxide (CO2) reduction technology holds immense promise as it directly harnesses renewable solar energy to convert CO2 into hydrocarbon fuels and valuable chemical products. Indium (In)-based sulfides have garnered significant attention in the realm of fundamental research on CO2 photocatalytic conversion. The photocatalytic performance exhibited by In-based materials is attributed to the appropriate bandgap (E g), unique electronic states, tunable atomic structure, and superior optoelectronic properties. Notably, In-based metal sulfides also show excellent potential for addressing challenges related to photocorrosion and carrier recombination. This paper highlighted the key structural features and commonly employed synthesis techniques of In-based metal sulfides. Furthermore, it summarized effective modification strategies aimed at optimizing the photocatalytic performance of these materials. A particular focus was placed on exploring the intricate structure-activity relationships, encompassing the influence of heterostructure construction, element doping, defect engineering, and co-catalyst modification on enhancing photocatalytic efficiency. Finally, the article identified the current challenges and outlined the promising future directions for In-based photocatalysts, hoping to provide valuable references for researchers.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qian Su
- Department of Chemistry and
Chemical & Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
7
|
Wang M, Shu M, Long M, Shan W, Wang H. Efficient Conversion of CO 2 to Ethanol by Utilizing the Topological Surface States of Rare-Earth Cuprates. NANO LETTERS 2025; 25:2732-2740. [PMID: 39908396 DOI: 10.1021/acs.nanolett.4c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The design of high-performance catalysts for the CO2 reduction reaction (CO2RR) remains a significant challenge in advancing CO2 conversion and storage technologies. In this study, we explored the novel application of topological materials for CO2RR, with a focus on the production of high-value C2+ products. Among 14 lanthanum cuprates, Pr2CuO4 was identified as a promising candidate due to its robust topological surface states (TSS) and potential selectivity for C2+ products. Electrocatalytic experiments demonstrated excellent and stable selectivity, achieving over 67% ethanol production with a current density of up to 220 mA cm-2. Detailed analysis revealed strong interactions between the C p orbital of key intermediates and the Cu dx2-y2 and dz2 orbitals, which are identified as the primary contributors to TSS. These interactions significantly enhanced charge transfer along the desired reaction pathway, indicating that the interplay between the orbitals of key intermediates and TSS-contributing orbitals could be pivotal for developing new paradigms in catalyst design by leveraging topological effects.
Collapse
Affiliation(s)
- Mingda Wang
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Minxing Shu
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Mi Long
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
- School of Information Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Wenzhe Shan
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
- School of Information Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
- College of Chemistry and Chemical Engineering and Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
8
|
Li Y, Chen Y, Wang Q, Ye Y, Zeng J, Liu Z. Realizing C-C Coupling via Accumulation of C1 Intermediates within Dual-Vacancy-Induced Dipole-Limited Domain Field to Propel Photoreduction of CO 2-to-C2 Fuel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414994. [PMID: 39745121 DOI: 10.1002/adma.202414994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Photocatalytic conversion of CO2 and H2O into high-value-added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO2-to-C2H6 is successfully achieved by introducing adjacent C, N dual-vacancy sites within the heptazine rings of ultrathin g-C3N4, which results in the opening of two neighboring heptazine rings and forms a distinctive dipole-limited domain field (DLDF) structure. In situ X-ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO* and CHO*, within the DLDF. Ab initio molecular dynamics further substantiates the role of DLDF in promoting C-C coupling between CO* and CHO*, through the analysis of interaction trajectories and energy changes of their central atoms, ultimately achieving a high yield of C2H6 up to 57.86 µmol g-1 h-1. It is for the first time to propose the concept of DLDF for significant advancement in photoreduction of CO2-to-C2 fuel with the evident breakthrough to address the challenge of coupling carbon-containing intermediates between active sites, offering new insights for the design of C-C coupling sites in single-component photocatalysts.
Collapse
Affiliation(s)
- Yang Li
- Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China
| | - Yujie Chen
- Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China
| | - Qiu Wang
- Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, P. R. China
| | - Yinyue Ye
- Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China
| | - Jianshan Zeng
- Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China
| | - Zhi Liu
- Faculty of Chemistry and Chemical Engineering, Shantou University, Shantou, 515063, P. R. China
| |
Collapse
|
9
|
Lu XY, Wang P, Qiu ZF, Sun WY. Cr-MOF composited with facet-engineered bimetallic alloys for inducing photocatalytic conversion of CO 2 to C 2H 4. Chem Commun (Camb) 2025; 61:2087-2090. [PMID: 39791375 DOI: 10.1039/d4cc04659e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The design of efficient photocatalysts is crucial for photocatalytic CO2 reduction. This study developed photocatalysts based on MIL-101(Cr) composited with a facet-engineered Pt/Pd nanoalloy (PPNA). Photocatalytic performance evaluations show that MIL-101(Cr) loaded with PPNA exposing {111} facets, namely M-A(111), exhibits a CO2 to C2H4 conversion rate of 9.5 μmol g-1 h-1 in addition to the CO and CH4, whereas M-A(100) with PPNA exposing {100} facets gives CO2 conversion rates of 33.2 for CO and 9.3 μmol g-1 h-1 for CH4 without C2H4. In situ FT-IR revealed that M-A(111) can readily form C2 intermediates during the reaction. This work offers a strategy for the design of photocatalysts for CO2 reduction to C2H4.
Collapse
Affiliation(s)
- Xiang-Yu Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Zhao-Feng Qiu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Wang Z, Ye H, Li Y, Sheng B, Wang P, Ou P, Li XY, Yu T, Huang Z, Li J, Yu Y, Wang X, Huang Z, Zhou B. Surface-hydrogenated CrMnO x coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene. Nat Commun 2025; 16:1002. [PMID: 39856060 PMCID: PMC11760371 DOI: 10.1038/s41467-025-56277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnOx is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H. Moreover, the surface-hydrogenated GaN@CMO-H can significantly lower the reaction energy barrier of the C2H5OH-to-C2H4 conversion by switching the rate-determining reaction step compared to both GaN and GaN@CMO. Consequently, the surface-hydrogenated GaN@CMO-H illustrates a considerable ethylene production activity of 1.78 mol·gcat-1·h-1 with a high turnover number of 94,769 mole ethylene per mole CrMnOx. This work illustrates a new route for sustainable ethylene production with the only use of bioethanol and sunlight beyond fossil fuels.
Collapse
Affiliation(s)
- Zhouzhou Wang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Haotian Ye
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 100871, China
| | - Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Sheng
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 100871, China
| | - Ping Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 100871, China
| | - Pengfei Ou
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
- Department of Chemistry, Northwestern University, Evanston, 60208, USA.
| | - Xiao-Yan Li
- Department of Chemistry, Northwestern University, Evanston, 60208, USA
| | - Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijian Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Yu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China.
| | - Xinqiang Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 100871, China.
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong, 226010, China.
- Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China.
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Jin R, Li R, Ma ML, Chen DY, Zhang JY, Xie ZH, Ding LF, Xie Y, Li JR. Beyond Tradition: A MOF-On-MOF Cascade Z-Scheme Heterostructure for Augmented CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409759. [PMID: 39821344 DOI: 10.1002/smll.202409759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Metal-organic frameworks (MOFs) are rigorously investigated as promising candidates for CO2 capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO2 reduction (CO2RR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures. Herein, a conventional MOF-on-MOF nanocomposite is readily optimized from a type II heterojunction to a state-of-the-art cascade Z-scheme configuration via the encapsulation of Pt nanoparticles (Pt NPs), establishing synergistic MOF-MOF and metal-MOF heterojunctions with reinforced built-in electric field. A cascade electron flow is thus propelled, vigorously separating the photogenerated charge carriers and profoundly extending their lifetimes. Collectively, the photocatalytic activity of the cascade Z-scheme is drastically promoted, exhibiting a nearly quintuple enhancement in the CO production rate over the original type II heterostructure. Moreover, the anti-sintering capacity of the developed nanocomposite is unveiled, elucidating its simultaneously improved activity and stability. These findings present unprecedented regulation over the configuration of a MOF-on-MOF heterojunction, substantially enriching the fundamental understanding and rational design strategies of composite materials.
Collapse
Affiliation(s)
- Ruipeng Jin
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rui Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ming-Li Ma
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Da-Yu Chen
- Beijing Jingneng Clean Energy Co., Ltd., Beijing, 100028, P. R. China
| | - Jian-Yu Zhang
- Beijing Jingneng Clean Energy Co., Ltd., Beijing, 100028, P. R. China
| | - Zheng-He Xie
- Beijing Energy Holding Co., Ltd., Beijing, 100022, P. R. China
| | - Li-Feng Ding
- Beijing Energy Holding Co., Ltd., Beijing, 100022, P. R. China
| | - Yabo Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
12
|
Zhu C, Liu Q, Yan H, Zhang W, Chen R. Sulfur-Doped Bi 2O 2CO 3 Nanosheet for Enhanced Visible-Light-Driven Photocatalytic CO 2 Reduction to CO with Ultra-High Selectivity. CHEMSUSCHEM 2025; 18:e202401054. [PMID: 39078022 DOI: 10.1002/cssc.202401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 07/31/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) has emerged as a compelling strategy for the conversion of renewable energy. However, the expeditious recombination of photogenerated charge carriers and the inadequate light absorption capabilities are currently predominant challenges. Herein, we developed a facile hydrothermal approach to synthesize a sulfur doped Bi2O2CO3 nanosheet with a tunable energy band structure designed to enhance visible light absorption. Our findings indicate that the incorporation of sulfur into the catalytic sites induces an electron sink effect, significantly improving the separation efficiency of photogenerated charge carriers. Consequently, this sulfur-doped Bi2O2CO3 catalyst exhibits a remarkable carbon monoxide (CO) yield of 16.64 μmol gcat -1 h-1 with nearly 100 % selectivity under illumination ranging from 420 to 780 nm. Through in-situ characterization techniques and theoretical calculations, it was revealed that sulfur-coordinated bismuth sites greatly enhance CO2 adsorption and decrease the energy barrier for critical intermediates formation (*COOH), thus selectively driving the reaction towards CO production. This work not only advances our understanding of mechanisms underlying photocatalytic reduction of CO2 on sulfur-doped bismuth-based catalysts but also sets a precedent for developing sophisticated photocatalytic systems for enhanced photoreduction reactions.
Collapse
Affiliation(s)
- Chengxin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China
| | - Qiong Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China
| | - Huan Yan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan, 430205, PR China
| | - Wei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China
| |
Collapse
|
13
|
Li X, Yang R, Zou L, Zheng S, Chen M, Wen J, Zhang H, Wu C, Zhang Y, Zhou Y. Reassessing the Role of Thermal Convection in Simultaneous Water Production and Pollutant Degradation in Interfacial Photothermal-Photocatalytic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416283. [PMID: 39600038 DOI: 10.1002/adma.202416283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Indexed: 11/29/2024]
Abstract
The interfacial photothermal-photocatalytic systems can generate clean water while purifying wastewater containing organic pollutants, but the impact of thermal convection on synergistic effects remains unexplored. This paper aims to regulate the thermal convection at the interface to significantly enhance the synergistic effect of interfacial photothermal-photocatalytic systems. A novel heterogeneous structure comprising iron-based metal-organic frameworks and multi-walled carbon nanotubes with a gelatin-polyvinyl alcohol (PVA) double network hydrogel (MWCNTs@NM88B/PVA/gelatin hydrogel, denoted as MMH) is developed and employed in the construction of the solar-driven interfacial evaporation (SIE) system. The system shows high activity for solar water evaporation and simultaneous photocatalytic degradation of organic pollutants. MMH demonstrates an evaporation rate of 2.84 kg m-2 h-1, achieving an efficiency of 95.3% under 1 sun. COMSOL simulations reveal that the implementation of a three-phase interface configuration with SIE technology significantly boosts thermal convection, effectively diminishing the barrier to gas release from the reaction system and consequently enhancing the efficiency of the interfacial photothermal-photocatalytic process. Furthermore, the potential mechanism of photocatalytic decomposition of organic pollutants in MMH/H2O2/visible light reaction system is proposed by combining the experiments of KPFM, in situ XPS, and ESR spectra. Therefore, this work offers a fresh perspective on evaluating the impact of thermal convection on water evaporation and pollutant degradation in interface photothermal-photocatalytic systems.
Collapse
Affiliation(s)
- Xiaoke Li
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Rui Yang
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Lie Zou
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Size Zheng
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Jin Wen
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - He Zhang
- College of Materials and Chemistry & Chemical Engineering (College of Lithium Resources and Lithium Battery Industry), Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Cheng Wu
- School of Marine Engineering Equipment, Zhejiang Ocean University, Zhoushan, 316022, P. R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| |
Collapse
|
14
|
Loumissi T, Ishii R, Hara K, Oyumi T, Abe I, Li C, Zhang H, Hirayama R, Niki K, Itoi T, Izumi Y. Exchange of CO 2 with CO as Reactant Switches Selectivity in Photoreduction on Co-ZrO 2 from C 1-3 Paraffin to Small Olefins. Angew Chem Int Ed Engl 2024; 63:e202412090. [PMID: 39292412 PMCID: PMC11627130 DOI: 10.1002/anie.202412090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Photocatalytic reduction of CO2 into C2,3 hydrocarbons completes a C-neutral cycle. The reaction pathways of photocatalytic generation of C2,3 paraffin and C2H4 from CO2 are mostly unclear. Herein, a Co0-ZrO2 photocatalyst converted CO2 into C1-3 paraffin, while selectively converting CO into C2H4 and C3H6 (6.0±0.6 μmol h-1 gcat -1, 70 mol %) only under UV/Visible light. The photocatalytic cycle was conducted under 13CO and H2, with subsequent evacuation and flushing with CO. This iterative process led to an increase in the population of C2H4 and C3H6 up to 61-87 mol %, attributed to the accumulation of CH2 species at the interface between Co0 nanoparticles and the ZrO2 surface. CO2 adsorbed onto the O vacancies of the ZrO2 surface, with resulting COH species undergoing hydrogenation on the Co0 surface to yield C1-3 paraffin using either H2 or H2O (g, l) as the reductant. In contrast, CO adsorbed on the Co0 surface, converted to HCOH species, and then split into CH and OH species at the Co and O vacancy sites on ZrO2, respectively. This comprehensive study elucidates intricate photocatalytic pathways governing the transformation of CO2 into paraffin and CO to olefins.
Collapse
Affiliation(s)
- Tarik Loumissi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rento Ishii
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Keisuke Hara
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Tomoki Oyumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Ikki Abe
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Chongxu Li
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Hongwei Zhang
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rumiko Hirayama
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Kaori Niki
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Takaomi Itoi
- Department of Mechanical EngineeringGraduate School of EngineeringChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Yasuo Izumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| |
Collapse
|
15
|
Pan R, Wang Q, Zhao Y, Feng Z, Xu Y, Wang Z, Li Y, Zhang X, Zhang H, Liu J, Gu XK, Zhang J, Weng Y, Zhang J. Bioinspired catalytic pocket promotes CO 2-to-ethanol photoconversion on colloidal quantum wells. SCIENCE ADVANCES 2024; 10:eadq2791. [PMID: 39565844 PMCID: PMC11578185 DOI: 10.1126/sciadv.adq2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram-1 hour-1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
Collapse
Affiliation(s)
- Rongrong Pan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zhendong Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuan Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yapeng Li
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiuming Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Haoqing Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yuxiang Weng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
16
|
Wang Y, Wei JX, Tang HL, Shao LH, Dong LZ, Chu XY, Jiang YX, Zhang GL, Zhang FM, Lan YQ. Artificial photosynthetic system for diluted CO 2 reduction in gas-solid phase. Nat Commun 2024; 15:8818. [PMID: 39394216 PMCID: PMC11470023 DOI: 10.1038/s41467-024-53066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Rational design of robust photocatalytic systems to direct capture and in-situ convert diluted CO2 from flue gas is a promising but challenging way to achieve carbon neutrality. Here, we report a new type of host-guest photocatalysts by integrating CO2-enriching ionic liquids and photoactive metal-organic frameworks PCN-250-Fe2M (M = Fe, Co, Ni, Zn, Mn) for artificial photosynthetic diluted CO2 reduction in gas-solid phase. As a result, [Emim]BF4(39.3 wt%)@PCN-250-Fe2Co exhibits a record high CO2-to-CO reduction rate of 313.34 μmol g-1 h-1 under pure CO2 atmosphere and 153.42 μmol g-1 h-1 under diluted CO2 (15%) with about 100% selectivity. In scaled-up experiments with 1.0 g catalyst and natural sunlight irradiation, the concentration of pure and diluted CO2 (15%) could be significantly decreased to below 85% and 10%, respectively, indicating its industrial application potential. Further experiments and theoretical calculations reveal that ionic liquids not only benefit CO2 enrichment, but also form synergistic effect with Co2+ sites in PCN-250-Fe2Co, resulting in a significant reduction in Gibbs energy barrier during the rate-determining step of CO2-to-CO conversion.
Collapse
Affiliation(s)
- Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Jian-Xin Wei
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Hong-Liang Tang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Lu-Hua Shao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiao-Yu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Yan-Xia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Gui-Ling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, 150080, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
18
|
Cui Y, Labidi A, Liang X, Huang X, Wang J, Li X, Dong Q, Zhang X, Othman SI, Allam AA, Bahnemann DW, Wang C. Pivotal Impact Factors in Photocatalytic Reduction of CO 2 to Value-Added C 1 and C 2 Products. CHEMSUSCHEM 2024; 17:e202400551. [PMID: 38618906 DOI: 10.1002/cssc.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.
Collapse
Affiliation(s)
- Yongqian Cui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xinxin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xin Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Ximing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Qibing Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xiaolong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Detlef W Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| |
Collapse
|
19
|
Li B, Lv M, Zhang Y, Gong X, Lou Z, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Huang B, Zheng Z. Single-Particle Imaging Photoinduced Charge Transfer of Ferroelectric Polarized Heterostructures for Photocatalysis. ACS NANO 2024; 18:25522-25534. [PMID: 39228064 DOI: 10.1021/acsnano.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Piezoelectric-assisted photocatalysis has a huge potential in solving the energy shortage and environmental pollution problems, and imaging their detailed charge-transfer process can provide in-depth understanding for the development of high-active piezo-photocatalysts; however, it is still challenging. Herein, topotactic heterostructures of TiO2@BaTiO3 (TO@BTO-S) were constructed by the epitaxial growth of ferroelectric BaTiO3 mesocrystals on TiO2-{001} facets, resulting in a ferroelectric photocatalyst with a polarization orientation on the surface. Notably, the photoinduced charge transfer in ferroelectric TiO2@BaTiO3 was accurately monitored and directly visualized at the single-particle level by the advanced photoluminescence (PL) imaging microscopy systems. The longer PL lifetime of TO@BTO-S demonstrated the efficient charge separation caused by a built-in electric field, which is constructed by the polarization orientation of BaTiO3 mesocrystals. Therefore, the TO@BTO-S heterostructure exhibits efficient piezoelectric-assisted photocatalytic pure water splitting, which is 290 times higher than photocatalysis. This work revealed time/spatial-resolved photoinduced charge transfer in piezoelectric assistance photocatalysts at the single-particle level and demonstrated the great role of polarization orientation in promoting charge transfer for photocatalysis.
Collapse
Affiliation(s)
- Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yujia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xueqin Gong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Zheng ZW, Zhou JJ, Liu H, Zhang XY, Zhao J, Zheng DS, Huang K, Qin DB. Cu(II)-Organic Framework for Carboxylative Cyclization of Propargylic Amines with CO 2. Inorg Chem 2024; 63:16878-16887. [PMID: 39190825 DOI: 10.1021/acs.inorgchem.4c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Effective CO2 transformations hold essential significance for carbon neutrality and sustainable energy development. Carboxylative cyclization of propargylic amines with CO2 serves as an atom-economic reaction to afford oxazolidinones, showing broad applications in organic synthesis and pharmaceutical fields. However, most catalysts involved noble metals, exhibited low efficiency, or required large amounts of base. Hence, it is imperative to explore alternative noble-metal-free catalysts in order to achieve efficient conversion while minimizing the use of additives. Herein, a novel nanopore-based Cu(II)-organic framework (1) based on a new imidazole carboxylic ligand was successfully constructed and exhibited excellent stability. Catalytic investigations revealed that the combination of 1 with 1,4-diaza[2.2.2]bicyclooctane (DABCO) efficiently catalyzed the carboxylative cyclization of propargylic amines with CO2, achieving turnover numbers of 142 based on the catalyst and 7.1 based on DABCO. 1 as a heterogeneous catalyst maintained high catalytic performance even after being reused at least 5 cycles, with its structure remaining stable. The strong activation of Cu(II) cluster nodes of catalyst 1 toward -NH- groups within organic substrates, as demonstrated by mechanism experiments, along with excellent CO2 adsorption performance and the presence of regular 1D channels, synergistically facilitates the reaction rate. This research presents the first instance of a Cu(II)-organic framework achieving this cyclization reaction, offering wide prospects for novel catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Sheng Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
21
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Liu H, Yu B, Yang P, Yang Y, Deng Z, Zhang X, Wang K, Wang H. Axial O Atom-Modulated Fe(III)-N 4 Sites for Enhanced Cascade Catalytic 1O 2-Induced Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307254. [PMID: 38946659 PMCID: PMC11434021 DOI: 10.1002/advs.202307254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The rational construction of efficient hypoxia-tolerant nanocatalysts capable of generating singlet oxygen (1O2) without external stimuli is of great importance for tumor therapy. Herein, uniformly dispersed and favorable biosafety profile graphitic carbon nitride quantum dots immobilized with Fe-N4 moieties modulated by axial O atom (denoted as O-Fe-N4) are developed for converting H2O2 into 1O2 via Russell reaction, without introducing external energy. Notably, O-Fe-N4 performs two interconnected catalytic properties: glutathione oxidase-mimic activity to provide substrate for subsequent 1O2 generation, avoiding the blunting anticancer efficacy by glutathione. The O-Fe-N4 catalyst demonstrates a specific activity of 79.58 U mg-1 at pH 6.2, outperforming the most reported Fe-N4 catalysts. Density functional theory calculations demonstrate that the axial O atom can effectively modulate the relative position and electron affinity between Fe and N, lowering the activation energy, strengthening the selectivity, and thus facilitating the Russell-type reaction. The gratifying enzymatic activity stemming from the well-defined Fe-N/O structure can inhibit tumor proliferation by efficiently downregulating glutathione peroxidase 4 activity and inducing lipid peroxidation. Altogether, the O-Fe-N4 catalyst not only represents an efficient platform for self-cascaded catalysis to address the limitations of 1O2-involved cancer treatment but also provides a paradigm to enhance the performance of the Fe-N4 catalyst.
Collapse
Affiliation(s)
- Hongji Liu
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031P. R. China
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Biao Yu
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031P. R. China
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230022China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive TractAnhui Medical UniversityHefeiAnhui230022China
| | - Pengqi Yang
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhiming Deng
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Xin Zhang
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031P. R. China
| | - Kai Wang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023P. R. China
| | - Hui Wang
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031P. R. China
| |
Collapse
|
23
|
Gao W, Li H, Hu J, Yang Y, Xiong Y, Ye J, Zou Z, Zhou Y. Recent advances of metal active sites in photocatalytic CO 2 reduction. Chem Sci 2024:d4sc01978d. [PMID: 39156936 PMCID: PMC11326468 DOI: 10.1039/d4sc01978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Photocatalytic CO2 reduction captures solar energy to convert CO2 into hydrocarbon fuels, thus shifting the dependence on rapidly depleting fossil fuels. Among the various proposed photocatalysts, systems containing metal active sites (MASs) possess obvious advantages, such as effective photogenerated carrier separation, suitable adsorption and activation of intermediates, and achievable C-C coupling to generate multi-carbon (C2+) products. The present review aims to summarize the typical photocatalytic materials with MAS, highlighting the critical role of different formulations of MAS in CO2 photoreduction, especially for C2+ product generation. State-of-the-art progress in the characterization and theoretical calculations for MAS-containing photocatalysts is also emphasized. Finally, the challenges and prospects of catalytic systems involving MAS for solar-driven CO2 conversion are outlined, providing inspiration for the future design of materials for efficient photocatalytic energy conversion.
Collapse
Affiliation(s)
- Wa Gao
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Haonan Li
- School of Physical Science and Technology, Tiangong University Tianjin 300387 P. R. China
| | - Jianqiang Hu
- Jiangxi Normal Univ., Inst. Adv. Mat. IAM, Coll. Chem. & Chem. Engn. Nanchang 330022 P. R. China
| | - Yong Yang
- Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology Nanjing 210094 P. R. China
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230036 Anhui P. R. China
| | - Jinhua Ye
- National Institute for Materials Science (NIMS), International Center Materials Nanoarchitecture MANA 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| | - Zhigang Zou
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| | - Yong Zhou
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
- School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210093 P. R. China
- School of Science and Engineering, The Chinese University of Hongkong (Shenzhen) Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
24
|
Zhang Y, Sun WY. Rational design of organic ligands for metal-organic frameworks as electrocatalysts for CO 2 reduction. Chem Commun (Camb) 2024; 60:8824-8839. [PMID: 39051620 DOI: 10.1039/d4cc02635g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) reduction to valuable chemical compounds is a sustainable technology with enormous potential to facilitate carbon neutrality by transforming intermittent energy sources into stable fuels. Among various electrocatalysts, metal-organic frameworks (MOFs) have garnered increasing attention for the electrochemical CO2 reduction reaction (CO2RR) owing to their structural diversity, large surface area, high porosity and tunable chemical properties. Ligands play a vital role in MOFs, which can regulate the electronic structure and chemical environment of metal centers of MOFs, thereby influencing the activity and selectivity of products. This feature article discusses the strategies for the rational design of ligands and their impact on the CO2RR performance of MOFs to establish a structure-performance relationship. Finally, critical challenges and potential opportunities for MOFs with different ligand types in the CO2RR are mentioned with the aim to inspire the targeted design of advanced MOF catalysts in the future to achieve efficient electrocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Ya Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
25
|
Shi H, Liang Y, Hou J, Wang H, Jia Z, Wu J, Song F, Yang H, Guo X. Boosting Solar-Driven CO 2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N 2 Motif. Angew Chem Int Ed Engl 2024; 63:e202404884. [PMID: 38760322 DOI: 10.1002/anie.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 μmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Liang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenghao Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Song
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
26
|
Bai J, Wu M, He Q, Wang H, Liao Y, Chen L, Chen S. Emerging Doped Metal-Organic Frameworks: Recent Progress in Synthesis, Applications, and First-Principles Calculations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306616. [PMID: 38342672 DOI: 10.1002/smll.202306616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/14/2024] [Indexed: 02/13/2024]
Abstract
Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.
Collapse
Affiliation(s)
- Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, United States
| |
Collapse
|
27
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
28
|
Zhang J, She P, Xu Q, Tian F, Rao H, Qin JS, Bonin J, Robert M. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst. CHEMSUSCHEM 2024; 17:e202301892. [PMID: 38324459 DOI: 10.1002/cssc.202301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fengkun Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| |
Collapse
|
29
|
Li Q, Zhang Y, Guo X, Zhang G, Yang Y, Du M, Lv T, Zhou H, Fan Y, Chen Y, Wang Y, Pang H. Layered (AlO) 2OH·VO 3 composite superstructures for ultralong lifespan aqueous zinc-ion batteries. J Colloid Interface Sci 2024; 663:697-706. [PMID: 38432168 DOI: 10.1016/j.jcis.2024.02.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The unique superstructures electrode materials are of dominant significance for improving the performance of aqueous zinc-ion batteries (AZIBs). In this work, using nano MIL-96 (Al) as the precursor, a series of the layered (AlO)2OH·VO3 composite superstructures with different morphologies and V-oxide contents were prepared by combining calcination and hydrothermal synthesis. Among which, the HBC650·V4 superstructure is composed of the amorphous Al2O3/C, V-oxide, and the fluffy structure of (AlO)2OH, thus the superstructure can enhance the stability, increase the active center, and shorten Zn2+ diffusion, respectively. It is commendable that, the HBC650·V4 superstructure exhibits a high specific capacity of 180.1 mAh·g-1 after 300 cycles at 0.5 A·g-1. Furthermore, the capacity retention can be as high as 99.6 % after 5000 cycles at a high current density of 5.0 A·g-1, showing superior long cycling stability. Importantly, the in-situ XRD patterns and ex-situ analysis revealed the structural changes and reaction mechanisms of the HBC650·V4 superstructure during Zn2+ insertion/extraction. Therefore, the HBC650·V4 superstructure prepared using Al-MOF exhibits the advanced AZIBs performance. The preparation of nano-MOF into multifunctional superstructures through innovative strategies will be development trend in this field, which opens a new way to design AZIBs cathode materials.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanfei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yifei Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Tingting Lv
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yexi Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yumeng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yixuan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
30
|
Wang X, Fan G, Guo S, Gao R, Guo Y, Han C, Gao Y, Zhang J, Gu X, Wu L. Regulated Dual Defects of Bridging Organic and Terminal Inorganic Ligands in Iron-based Metal-Organic Framework Nodes for Efficient Photocatalytic Ammonia Synthesis. Angew Chem Int Ed Engl 2024; 63:e202404258. [PMID: 38454791 DOI: 10.1002/anie.202404258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.
Collapse
Affiliation(s)
- Xiaosong Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Shoujun Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Rong Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chenhui Han
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yuliang Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Limin Wu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
31
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
32
|
Liu Z, Xie Y, Liu L, Cai X, Yin HQ, Zuo M, Liu Y, Feng S, Huang W, Wu D. π-Sticked Metal‒Organic Monolayers for Single-Metal-Site Dependent CO 2 Photoreduction and Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309194. [PMID: 38039490 DOI: 10.1002/smll.202309194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Hierarchical self-assembly of 2D metal‒organic layers (MOLs) for the construction of advanced functional materials have witnessed considerable interest, due to the increasing atomic utilizations and well-defined atom‒property relationship. However, the construction of atomically precise MOLs with mono-/few-layered thickness through hierarchical self-assembly process remains a challenge, mostly because the elaborate long-range order is difficult to control via conventional noncovalent interaction. Herein, a quadruple π-sticked metal‒organic layer (πMOL) is reported with checkerboard-like lattice in ≈1.0 nanometre thickness, on which the catalytic selectivity can be manipulated for highly efficient CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER) over a single metal site. In saturated CO2 aqueous acetonitrile, Fe-πMOL achieves a highly effective CO2RR with the yield of ≈3.98 mmol g‒1 h‒1 and 91.7% selectivity. In contrast, the isostructural Co-πMOL as well as mixed metallic FeCo-πMOL exhibits a high activity toward HER under similar conditions. DFT calculations reveal that single metal site exhibits the significant difference in CO2 adsorption energy and activation barrier, which triggers highly selective CO2RR for Fe site and HER for Co site, respectively. This work highlights the potential of supramolecular π…π interaction for constructing monolayer MOL materials to uniformly distribute the single metal sites for artificial photosynthesis.
Collapse
Affiliation(s)
- Zhe Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yangbin Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Xuankun Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Hua-Qing Yin
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Mengkai Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Sheng Feng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| |
Collapse
|
33
|
Zhong K, Sun P, Xu H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310677. [PMID: 38686700 DOI: 10.1002/smll.202310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.
Collapse
Affiliation(s)
- Kang Zhong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
34
|
Liu WR, Yu S, Liu Z, Jiang P, Wang K, Du HY, Hu ZY, Sun MH, Wang YL, Li Y, Chen LH, Su BL. Hierarchical Hollow TiO 2@Bi 2WO 6 with Light-Driven Excited Bi (3-x)+ Sites for Efficient Photothermal Catalytic CO 2 Reduction. Inorg Chem 2024; 63:6714-6722. [PMID: 38557020 DOI: 10.1021/acs.inorgchem.3c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 μmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Wen-Rui Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Peng Jiang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kun Wang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - He-You Du
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
35
|
Zhang H, Liu S, Zheng A, Wang P, Zheng Z, Wang Z, Cheng H, Dai Y, Huang B, Liu Y. Enhanced Charge Transfer Process and Photocatalytic Activity over a Phosphonate-based MOF via Amorphization Strategy. Angew Chem Int Ed Engl 2024; 63:e202400965. [PMID: 38363034 DOI: 10.1002/anie.202400965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/17/2024]
Abstract
Recently, amorphous materials have gained great attention as an emerging kind of functional material, and their characteristics such as isotropy, absence of grain boundaries, and abundant defects are very likely to outrun the disadvantages of crystalline counterparts, such as low conductivity, and ultimately lead to improved charge transfer efficiency. Herein, we investigated the effect of amorphization on the charge transfer process and photocatalytic performance with a phosphonate-based metal-organic framework (FePPA) as the research object. Comprehensive experimental results suggest that compared to crystalline FePPA, amorphous FePPA has more distorted metal nodes, which affects the electron distribution and consequently improves the photogenerated charge separation efficiency. Meanwhile, the distorted metal nodes in amorphous FePPA also greatly promote the adsorption and activation of O2. Hence, amorphous FePPA exhibits a better performance of photocatalytic C(sp3)-H bond activation for selective oxidation of toluene to benzaldehyde. This work illustrates the advantages of amorphous MOFs in the charge transfer process, which is conducive to the further development of high performance MOFs-based photocatalysts.
Collapse
Affiliation(s)
- Honggang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shaozhi Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Aili Zheng
- School of Pharmacy, Weifang Medical University, Weifang, 261053, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
36
|
Qiu ZF, Wang P, Zhang XY, Chen JQ, Zhang KY, Lu XY, Zhao Y, Sun WY. Supramolecular assemblies of Cu(II) with a tetraphenylethene-imidazole ligand for tuning photocatalytic CO 2 reduction. Chem Commun (Camb) 2024; 60:2204-2207. [PMID: 38304957 DOI: 10.1039/d3cc05514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cu(II) supramolecular assemblies [Cu2(tipe)2(H2O)2](NO3)4·2.5H2O (CuN4) and [Cu2Cl4(tipe)(CH3CN)]·H2O (CuN2Cl2) (tipe = 1,1,2,2-tetrakis(4-(imidazole-1-yl)phenyl)ethene) were synthesized and utilized for photocatalytic CO2 reduction. CuN4 exhibits CO production of up to 891 μmol gcat-1 with a selectivity of 79.9%, while CuN2Cl2 gives low CO production of 206 μmol gcat-1 but with a high selectivity of >99.9% in 5 h. The experimental and DFT calculation results indicate that the coordination environment and non-covalent interactions within the assemblies have a great impact on the photocatalytic CO2 reduction behavior. This work provides useful insights on Cu(II) assembly catalyzed CO2 photoreduction.
Collapse
Affiliation(s)
- Zhao-Feng Qiu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Xiao-Yu Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Jia-Qi Chen
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Kai-Yang Zhang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Xiang-Yu Lu
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
37
|
Li L, Xu D, Xu X, Tian Z, Zhou X, Yang S, Zhang Z. Modulation of active center distance of hybrid perovskite for boosting photocatalytic reduction of carbon dioxide to ethylene. Proc Natl Acad Sci U S A 2024; 121:e2318970121. [PMID: 38315838 PMCID: PMC10873559 DOI: 10.1073/pnas.2318970121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C-C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C-C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 μmol g-1 h-1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.
Collapse
Affiliation(s)
- Linjuan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Zheng Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co. Ltd., Shanghai200240, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), East China Normal University, Shanghai200062, China
| |
Collapse
|
38
|
Sun K, Huang Y, Wang Q, Zhao W, Zheng X, Jiang J, Jiang HL. Manipulating the Spin State of Co Sites in Metal-Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2024; 146:3241-3249. [PMID: 38277223 DOI: 10.1021/jacs.3c11446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Photocatalytic CO2 reduction holds great potential for alleviating global energy and environmental issues, where the electronic structure of the catalytic center plays a crucial role. However, the spin state, a key descriptor of electronic properties, is largely overlooked. Herein, we present a simple strategy to regulate the spin states of catalytic Co centers by changing their coordination environment by exchanging the Co species into a stable Zn-based metal-organic framework (MOF) to afford Co-OAc, Co-Br, and Co-CN for CO2 photoreduction. Experimental and DFT calculation results suggest that the distinct spin states of the Co sites give rise to different charge separation abilities and energy barriers for CO2 adsorption/activation in photocatalysis. Consequently, the optimized Co-OAc with the highest spin-state Co sites presents an excellent photocatalytic CO2 activity of 2325.7 μmol·g-1·h-1 and selectivity of 99.1% to CO, which are among the best in all reported MOF photocatalysts, in the absence of a noble metal and additional photosensitizer. This work underlines the potential of MOFs as an ideal platform for spin-state manipulation toward improved photocatalysis.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Huang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingyu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wendi Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
39
|
Wang S, Nie X, Lin J, Ding F, Song C, Guo X. Computational Design of Single-atom Modified Ti-MOFs for Photocatalytic CO 2 Reduction to C 1 Chemicals. CHEMSUSCHEM 2023:e202301619. [PMID: 38123530 DOI: 10.1002/cssc.202301619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
In this work, density functional theory (DFT) calculations were conducted to investigate a series of transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Ru, Rh, Pd, Ag, Hf, Ta, Os, Ir, and Pt) as single-atom components introduced into Ti-BPDC (BPDC=2,2'-bipyridine-5,5'-dicarboxylic acid) as catalysts (M/Ti-BPDC) for the photocatalytic reduction of CO2 . The results show that Fe/Ti-BPDC is the most active candidate for CO2 reduction to HCOOH due to its small limiting potential (-0.40 V). Ag, Cr, Mn, Ru, Zr, Nb, Rh, and Cu modified Ti-BPDC are also active to HCOOH since their limiting potentials are moderate although the reaction mechanisms are different across these materials. Most of the studied catalysts show poor activity and selectivity to CO product because the stability of *COOH/*OCOH intermediates is significantly weaker than *OCHO/*HCOO species. The moderate binding strength of *CO on Pd/Ti-BPDC is responsible for its superior catalytic activity toward CH3 OH generation. Electronic structural analysis was performed to uncover the origin of the activity trend for CO2 reduction to different products on M/Ti-BPDC. The calculation results indicate that the activity and selectivity of CO2 photoreduction can be effectively tuned by designing single-atom metal-based MOF catalysts.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianbin Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fanshu Ding
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
40
|
Tian YQ, Dai LF, Mu WL, Yu WD, Yan J, Liu C. Atomically accurate site-specific ligand tailoring of highly acid- and alkali-resistant Ti(iv)-based metallamacrocycle for enhanced CO 2 photoreduction. Chem Sci 2023; 14:14280-14289. [PMID: 38098712 PMCID: PMC10718071 DOI: 10.1039/d3sc06046b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Skillfully engineering surface ligands at specific sites within robust clusters presents both a formidable challenge and a captivating opportunity. Herein we unveil an unprecedented titanium-oxo cluster: a calix[8]arene-stabilized metallamacrocycle (Ti16L4), uniquely crafted through the fusion of four "core-shell" {Ti4@(TBC[8])(L)} subunits with four oxalate moieties. Notably, this cluster showcases an exceptional level of chemical stability, retaining its crystalline integrity even when immersed in highly concentrated acid (1 M HNO3) and alkali (20 M NaOH). The macrocycle's surface unveils four specific, customizable μ2-bridging sites, primed to accommodate diverse carboxylate ligands. This adaptability is highlighted through deliberate modifications achieved by alternating crystal soaking in alkali and carboxylic acid solutions. Furthermore, Ti16L4 macrocycles autonomously self-assemble into one-dimensional nanotubes, which subsequently organize into three distinct solid phases, contingent upon the specific nature of the four μ2-bridging ligands. Notably, the Ti16L4 exhibit a remarkable capacity for photocatalytic activity in selectively reducing CO2 to CO. Exploiting the macrocycle's modifiable shell yields a significant boost in performance, achieving an exceptional maximum CO release rate of 4.047 ± 0.243 mmol g-1 h-1. This study serves as a striking testament to the latent potential of precision-guided surface ligand manipulation within robust clusters, while also underpinning a platform for producing microporous materials endowed with a myriad of surface functionalities.
Collapse
Affiliation(s)
- Yi-Qi Tian
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Lin-Fang Dai
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wen-Lei Mu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Wei-Dong Yu
- China College of Science, Hunan University of Technology and Business Changsha 410000 P. R. China
| | - Jun Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 Hunan P. R. China
| |
Collapse
|
41
|
Wu Z, Chen D, Liu H, Lin A, Chen Q, Chen X. Fe-MOF-based fluorescent sensor with on/off capabilities for the highly sensitive detection of tert-butylhydroquinone in edible oils. Anal Chim Acta 2023; 1278:341745. [PMID: 37709474 DOI: 10.1016/j.aca.2023.341745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
In this work, a "turn off-on" fluorescent sensor was developed for highly sensitive determination of tert-butylhydroquinone (TBHQ) based on an Fe(III)-based metal-organic framework (Fe-MOF). An Fe-MOF with an octahedral structure was synthesized via a simple hydrothermal method using ferric chloride hexahydrate and 2-aminoterephthalic acid (NH2-BDC) as raw materials. The fluorescence of Fe-MOF is extremely weak owing to ligand-to-metal charge transfer (LMCT) and internal filtration effect (IFE). When the system contained TBHQ, the binding of TBHQ to Fe(III) inhibited the LMCT of the fluorescent ligand NH2-BDC to Fe(III), releasing the fluorescence of NH2-BDC and thus restoring the fluorescence. With this as the basis, a rapid, sensitive, and selective fluorescence sensor is developed for the detection of TBHQ. Under the optimal conditions, TBHQ showed good linearity with fluorescence intensity in the range of 0-1.5 × 102 μmol L-1 and a detection limit of 0.0030 μmol L-1 (S/N = 3). The selectivity, reproducibility, and stability of the developed Fe-MOF-based sensors are comprehensively studied. Finally, the practicality of the method is verified by examining the detection of TBHQ in soybean oil; the results are consistent with those obtained using conventional high-performance liquid chromatography.
Collapse
Affiliation(s)
- Zisen Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Dongyan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Haodi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Anhui Lin
- School of Marine Engineering, Jimei University, Xiamen, 361021, China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
42
|
Wu Y, Hu Q, Chen Q, Jiao X, Xie Y. Fundamentals and Challenges of Engineering Charge Polarized Active Sites for CO 2 Photoreduction toward C 2 Products. Acc Chem Res 2023; 56:2500-2513. [PMID: 37658473 DOI: 10.1021/acs.accounts.3c00373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
ConspectusGlobal warming and climatic deterioration are partly caused by carbon dioxide (CO2) emission. Given this, CO2 reduction into valuable carbonaceous fuels is a win-win route to simultaneously alleviate the greenhouse effect and the energy crisis, where CO2 reduction into hydrocarbon fuels by solar energy may be a potential strategy. Up to now, most of the current photocatalysts photoconvert CO2 to C1 products. It is extremely difficult to achieve production of C2 products, which have higher economic value and energy density, due to the kinetic challenge of C-C coupling of the C1 intermediates. Therefore, to realize CO2 photoreduction to C2 fuels, design of high-activity photocatalysts to expedite the C-C coupling is significant. Besides, the current mechanism for CO2 photoreduction toward C2 fuels is usually uncertain, which is possibly attributed to the following two reasons: (1) It is arduous to determine the actual catalytic sites for the C-C coupling step. (2) It is hard to monitor the low-concentration active intermediates during the multielectron transfer step.Most traditional metal-based photocatalysts usually possess charge balanced active sites that have the same charge density. In this aspect, the neighboring C1 intermediates may also show the same charge distribution, which would lead to dipole-dipole repulsion, thus preventing C-C coupling for producing C2 fuels. By contrast, photocatalysts with charge polarized active sites possess obviously different charge distributions in the adjacent C1 intermediates, which can effectively suppress the electrostatic repulsion to steer the C-C coupling. Based on this analysis, higher asymmetric charge density on the active sites would be more beneficial to anchoring between the adjacent intermediates and active atoms in catalysts, which can boost C-C coupling.In this Account, we summarize various strategies, including vacancy engineering, doping engineering, loading engineering, and heterojunction engineering, for tailoring charge polarized active sites to boost the C-C coupling for the first time. Also, we overview diverse in situ characterization technologies, such as in situ X-ray photoelectron spectroscopy, in situ Raman spectroscopy, and in situ Fourier transform infrared spectroscopy, for determining charge polarized active sites and monitoring reaction intermediates, helping to reveal the internal catalytic mechanism of CO2 photoreduction toward C2 products. We hope this Account may help readers to understand the crucial function of charge polarized active sites during CO2 photoreduction toward C2 products and provide guidance for designing and preparing highly active catalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|