1
|
Chen C, Yao Q, Wang J, Ran C, Chao L, Xia Y, Chen Y. Fluid Chemistry of Metal Halide Perovskites. Angew Chem Int Ed Engl 2025; 64:e202503593. [PMID: 40122693 DOI: 10.1002/anie.202503593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Solution-processed metal halide perovskites (MHPs) have been rapidly developed worldwide, with much attention to fluid dynamic, fluid crystallization, and fluid interfaces, all falling within the realm of fluid chemistry. It is widely recognized that the theory of fluid chemistry has been proven to provide an effective means for the improvement of perovskite crystallization and the enhancement of perovskite solar cells (PSCs) performance. In this review, the fluid behavior, microfluidic synthesis, and aging process of perovskite materials are first investigated, with emphasis on the related improvement methods and chemical mechanisms. Second, the internal crystallization chemistry, external interface chemistry, and the large-area PSCs based on the fluid chemistry are discussed. Finally, four specific directions for future studies of fluid chemistry of MHPs are proposed, aiming to harness the theoretical advantages of fluid chemistry and contribute to the industrialization of PSCs.
Collapse
Affiliation(s)
- Changshun Chen
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Qing Yao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Jinpei Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Lingfeng Chao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yingdong Xia
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| | - Yonghua Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
2
|
Ma Y, Pan J, Rong H, Zhang Y, Liu L, Guo Y, Ai J, Yuan Y, Wang N. Porous Aromatic Framework with Multifunctional Sites for Effective Recovery of Various Trace Iodine Species From Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500993. [PMID: 40047336 PMCID: PMC12061248 DOI: 10.1002/advs.202500993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Indexed: 05/10/2025]
Abstract
Recovery of environmental iodine is of great significance for both recycling iodine resources and addressing iodine pollution. However, iodine is highly sensitive to environmental factors and exists in various chemical species, which complicates the recovery of trace iodine in aqueous systems. Here a porous aromatic framework (iPAF-TEPT) is presented with multifunctional adsorption sites for efficient recovery of various iodine species, including molecular iodine (I2), iodide (I- and I3 -). The material utilizes a synergistic strategy combining charge-transfer interactions and Coulomb interactions to effectively adsorb different iodine species. Thanks to its high density of accessible ion exchange sites for I⁻ and I3⁻, and nitrogen-rich sites for I2, iPAF-TEPT demonstrates an unprecedented adsorption capacity for various iodine forms. Notably, iPAF-TEPT achieves exceptional removal efficiency for trace iodine pollutants, even at concentrations as low as 100 ppb, making it the first promising single-framework material for highly efficient treatment of aqueous iodine contamination.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jinjiao Pan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Huazhen Rong
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yilei Zhang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Lu Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yu Guo
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Jiayi Ai
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228P. R. China
| |
Collapse
|
3
|
Zhou Z, Zhu J, Li L, Wang C, Zhang C, Du X, Wang X, Zhao G, Wang R, Li J, Lu Z, Zong Y, Sun Y, Rümmeli MH, Zou G. Monomolecular Membrane-Assisted Growth of Antimony Halide Perovskite/MoS 2 Van der Waals Epitaxial Heterojunctions with Long-Lived Interlayer Exciton. ACS NANO 2024; 18:17282-17292. [PMID: 38904992 DOI: 10.1021/acsnano.4c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs3Sb2Br9 surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs3Sb2Br9 epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.
Collapse
Affiliation(s)
- Zhicheng Zhou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Juntong Zhu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Lutao Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Chen Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Changwen Zhang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xinyu Du
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xiangyi Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Guoxiang Zhao
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Ruonan Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Jiating Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zheng Lu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yi Zong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu 215123, China
| | - Yinghui Sun
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Mark H Rümmeli
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse Dresden 01069, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34 Zabrze 41-819, Poland
- Institute of Environmental Technology, VSB-Technical University of Ostrava,17. Listopadu 15 Ostrava 70833, Czech Republic
| | - Guifu Zou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Cheng Y, Guo X, Shi Y, Pan L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. NANOTECHNOLOGY 2024; 35:242001. [PMID: 38467065 DOI: 10.1088/1361-6528/ad3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Flexible photodetectors (PDs) have garnered increasing attention for their potential applications in diverse fields, including weather monitoring, smart robotics, smart textiles, electronic eyes, wearable biomedical monitoring devices, and so on. Notably, perovskite nanostructures have emerged as a promising material for flexible PDs due to their distinctive features, such as a large optical absorption coefficient, tunable band gap, extended photoluminescence decay time, high carrier mobility, low defect density, long exciton diffusion lengths, strong self-trapped effect, good mechanical flexibility, and facile synthesis methods. In this review, we first introduce various synthesis methods for perovskite nanostructures and elucidate their corresponding optical and electrical properties, encompassing quantum dots, nanocrystals, nanowires, nanobelts, nanosheets, single-crystal thin films, polycrystalline thin films, and nanostructured arrays. Furthermore, the working mechanism and key performance parameters of optoelectronic devices are summarized. The review also systematically compiles recent advancements in flexible PDs based on various nanostructured perovskites. Finally, we present the current challenges and prospects for the development of perovskite nanostructures-based flexible PDs.
Collapse
Affiliation(s)
- Yan Cheng
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Xin Guo
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yi Shi
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lijia Pan
- The Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|