1
|
Song J, Jancik-Prochazkova A, Kawakami K, Ariga K. Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science. Chem Sci 2024; 15:18715-18750. [PMID: 39568623 PMCID: PMC11575615 DOI: 10.1039/d4sc05575f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024] Open
Abstract
Lateral nanoarchitectonics is a method of precisely designing functional materials from atoms, molecules, and nanomaterials (so-called nanounits) in two-dimensional (2D) space using knowledge of nanotechnology. Similar strategies can be seen in biological systems; in particular, biological membranes ingeniously arrange and organise functional units within a single layer of units to create powerful systems for photosynthesis or signal transduction and others. When our major lateral nanoarchitectural approaches such as layer-by-layer (LbL) assembly and Langmuir-Blodgett (LB) films are compared with biological membranes, one finds that lateral nanoarchitectonics has potential to become a powerful tool for designing advanced functional nanoscale systems; however, it is still rather not well-developed with a great deal of unexplored possibilities. Based on such a discussion, this review article examines the current status of lateral nanoarchitectonics from the perspective of in-plane functional structure organisation at different scales. These include the extension of functions at the molecular level by on-surface synthesis, monolayers at the air-water interface, 2D molecular patterning, supramolecular polymers, macroscopic manipulation and functionality of molecular machines, among others. In many systems, we have found that while the targets are very attractive, the research is still in its infancy, and many challenges remain. Therefore, it is important to look at the big picture from different perspectives in such a comprehensive review. This review article will provide such an opportunity and help us set a direction for lateral nanotechnology toward more advanced functional organization.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
| | - Anna Jancik-Prochazkova
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Ibaraki Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba 305-0044 Japan
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwa-no-ha Kashiwa 277-8561 Japan
| |
Collapse
|
2
|
E W, Yi W, Ding H, Zhu J, Rosei F, Yang X, Yu M. Achieving metal-like catalysis from semiconductor for on-surface synthesis. Proc Natl Acad Sci U S A 2024; 121:e2408919121. [PMID: 39240967 PMCID: PMC11406267 DOI: 10.1073/pnas.2408919121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024] Open
Abstract
Free of posttransfer, on-surface synthesis (OSS) of single-atomic-layer nanostructures directly on semiconductors holds considerable potential for next-generation devices. However, due to the high diffusion barrier and abundant defects on semiconductor surfaces, extended and well-defined OSS on semiconductors has major difficulty. Furthermore, given semiconductors' limited thermal catalytic activity, initiating high-barrier reactions remains a significant challenge. Herein, using TiO2(011) as a prototype, we present an effective strategy for steering the molecule adsorption and reaction processes on semiconductors, delivering lengthy graphene nanoribbons with extendable widths. By introducing interstitial titanium (Tiint) and oxygen vacancies (Ov), we convert TiO2(011) from a passive supporting template into a metal-like catalytic platform. This regulation shifts electron density and surface dipoles, resulting in tunable catalytic activity together with varied molecule adsorption and diffusion. Cyclodehydrogenation, which is inefficient on pristine TiO2(011), is markedly improved on Tiint/Ov-doped TiO2. Even interribbon cyclodehydrogenation is achieved. The final product's dimensions, quality, and coverage are all controllable. Tiint doping outperforms Ov in producing regular and prolonged products, whereas excessive Tiint compromises molecule landing and coupling. This work demonstrates the crucial role of semiconductor substrates in OSS and advances OSS on semiconductors from an empirical trial-and-error methodology to a systematic and controllable paradigm.
Collapse
Affiliation(s)
- Wenlong E
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Wei Yi
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory and Department of Chemical Physics, University of Science and Technology of China, Hefei230029, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Department of Chemical Physics, University of Science and Technology of China, Hefei230029, China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste34127, Italy
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen518055, China
| | - Miao Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China
- School of Materials and Energy, University of Electronic Science and Technology, Chengdu610000, China
| |
Collapse
|
3
|
Yang J, Li J, Zhang X, Yang W, Jeong SY, Huang E, Liu B, Woo HY, Chen Z, Guo X. Functionalized Phenanthrene Imide-Based Polymers for n-Type Organic Thin-Film Transistors. Angew Chem Int Ed Engl 2024; 63:e202319627. [PMID: 38443313 DOI: 10.1002/anie.202319627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
High-performing n-type polymers are crucial for the advance of organic electronics field, however strong electron-deficient building blocks with optimized physicochemical properties for constructing them are still limited. The imide-functionalized polycyclic aromatic hydrocarbons (PAHs) with extended π-conjugated framework, high electron deficiency and good solubility serve as promising candidates for developing high-performance n-type polymers. Among the PAHs, phenanthrene (PhA) features a well-delocalized aromatic π-system with multiple modifiable active sites . However, the PhA-based imides are seldom studied, mainly attributed to the synthetic challenge. Herein, we report two functionalized PhAs, CPOI and CPCNI, by simultaneously incorporating imide with carbonyl or dicyanomethylene onto PhA. Notably, the dicyanomethylene-modified CPCNI exhibits a well stabilized LUMO energy level (-3.84 eV), attributed to the synergetic inductive effect from imide and cyano groups. Subsequently, based on CPOI and CPCNI, two polymers PCPOI-Tz and PCPCNI-Tz were developed. Applied to organic thin-film transistors, owing to the strong electron-deficiency of CPCNI, polymer PCPCNI-Tz shows an improved electron mobility and largely decreased threshold voltage compared with PCPOI-Tz. This work affords two structurally novel electron-deficient building blocks and highlights the effectiveness of dual functionalization of PhAs with strong electron-withdrawing groups for devising n-type polymers.
Collapse
Affiliation(s)
- Jie Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Xiage Zhang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Enmin Huang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Zhicai Chen
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Xugang Guo
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Guangdong, Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
4
|
Liu K, Zheng W, Osella S, Qiu ZL, Böckmann S, Niu W, Meingast L, Komber H, Obermann S, Gillen R, Bonn M, Hansen MR, Maultzsch J, Wang HI, Ma J, Feng X. Cove-Edged Chiral Graphene Nanoribbons with Chirality-Dependent Bandgap and Carrier Mobility. J Am Chem Soc 2024; 146:1026-1034. [PMID: 38117539 DOI: 10.1021/jacs.3c11975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Graphene nanoribbons (GNRs) have garnered significant interest due to their highly customizable physicochemical properties and potential utility in nanoelectronics. Besides controlling widths and edge structures, the inclusion of chirality in GNRs brings another dimension for fine-tuning their optoelectronic properties, but related studies remain elusive owing to the absence of feasible synthetic strategies. Here, we demonstrate a novel class of cove-edged chiral GNRs (CcGNRs) with a tunable chiral vector (n,m). Notably, the bandgap and effective mass of (n,2)-CcGNR show a distinct positive correlation with the increasing value of n, as indicated by theory. Within this GNR family, two representative members, namely, (4,2)-CcGNR and (6,2)-CcGNR, are successfully synthesized. Both CcGNRs exhibit prominently curved geometries arising from the incorporated [4]helicene motifs along their peripheries, as also evidenced by the single-crystal structures of the two respective model compounds (1 and 2). The chemical identities and optoelectronic properties of (4,2)- and (6,2)-CcGNRs are comprehensively investigated via a combination of IR, Raman, solid-state NMR, UV-vis, and THz spectroscopies as well as theoretical calculations. In line with theoretical expectation, the obtained (6,2)-CcGNR possesses a low optical bandgap of 1.37 eV along with charge carrier mobility of ∼8 cm2 V-1 s-1, whereas (4,2)-CcGNR exhibits a narrower bandgap of 1.26 eV with increased mobility of ∼14 cm2 V-1 s-1. This work opens up a new avenue to precisely engineer the bandgap and carrier mobility of GNRs by manipulating their chiral vector.
Collapse
Affiliation(s)
- Kun Liu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Steffen Böckmann
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Laura Meingast
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Roland Gillen
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Janina Maultzsch
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120 Germany
| |
Collapse
|