1
|
Xie C, Peng J, Jiang J, Wang H, Lyu Z, Li J, Xu Q, Chen D, Cao Y, Wang L, Mei S. Dual-engineered strategy of Ni-CeO v nanozyme with enhanced oxidase activity for sensitive colorimetric detection of total antioxidant capacity. Talanta 2025; 295:128307. [PMID: 40378765 DOI: 10.1016/j.talanta.2025.128307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Antioxidants are crucial in the fight against reactive oxygen species and thus in maintaining organismal health, so it is particularly important to realize a rapid and quantitative assay for common antioxidants in life. Current nanozyme-based total antioxidant capacity (TAC) assays face limitations: hydrogen peroxide (H2O2) dependence, noble metal costs, and poor antioxidant discrimination. To address these challenges, we engineered a dual-regulated Ni-doped CeO2 (Ni-CeOv) nanozyme through oxygen vacancy engineering and 3d-2p-4f orbital coupling. Density functional theory (DFT) calculations revealed that Ni doping synergistically affects the spontaneous formation of oxygen vacancies and enhances electron transfer through gradient orbital hybridization, resulting in a 2-fold increase in oxidase-like activity (Vmax = 0.10 μM/s) compared to undoped CeO2. Leveraging this H2O2-independent nanozyme, we developed a portable colorimetric platform capable of both ultra-sensitive detection and antioxidant discrimination through distinct inhibition kinetics. Integration with smartphone-based paper sensors enabled on-site TAC quantification in commercial beverages and cosmetics within 5 min, achieving recovery rates of 98.35-104.41 %, at a cost of only $0.2/assay. This work establishes a paradigm for developing low-cost, field-deployable nanozyme sensors for the detection of TAC.
Collapse
Affiliation(s)
- Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jiahe Peng
- School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jizhou Jiang
- School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huawei Wang
- Hongshan District Center for Disease Control and Prevention, Wuhan, Hubei, 430000, China
| | - Zhixian Lyu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jun Li
- Hongshan District Center for Disease Control and Prevention, Wuhan, Hubei, 430000, China
| | - Qitong Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ding Chen
- Hongshan District Center for Disease Control and Prevention, Wuhan, Hubei, 430000, China
| | - Yan Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lipan Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Zhao H, Xu X, Cui W, Geng L, Peng X, Yang J, Shao X, Liu Y. Synchronization Strategy for Activity and Stability in Fenton-Like Single-Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503217. [PMID: 40317533 DOI: 10.1002/adma.202503217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Indexed: 05/07/2025]
Abstract
Single-atom catalysts (SACs) have garnered significant attention in the applications of environmental remediation based on Fenton-like systems. Current research on Fenton-like single-atom catalysis often emphasizes catalytic activity and mechanism regulation, while paying limited attention to the simultaneous enhancement of both activity and stability-a critical factor for the practical and scale-up applications of SACs. This review systematically summarizes recent advances in synchronization strategies for improving the activity and stability of Fenton-like single-atom catalysis, with a focus on the design principles and mechanisms of four key strategies: coordination engineering, confinement effects, carrier substitution, and catalytic module design. To the best of knowledge, this represents the first comprehensive review of Fenton-like single-atom catalysis from the perspective of concurrent optimization of activity and stability. Additionally, the auxiliary role of machine learning and lifecycle assessment (LCA) is evaluated in advancing these synchronization strategies. By investigating the interplay among different support materials, coordination configurations, and reaction environments, as well as enlarged modules, key factors governing the stability/activity of SACs are highlighted, and future directions are proposed for developing next-generation catalysts with high efficiency and long-term durability for practical environmental remediation.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wenquan Cui
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, P. R. China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, P. R. China
| | - Xianzhao Shao
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, P. R. China
| | - Yanbiao Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Tian Q, Chang J, Peng X, Geng L, Gao B, Li Q, Gao Y, Xu X. Iron Single-Atom Based Double-Reaction-Center Catalysis Triggers Internal-Driven and External-Driven Pathways for Green Fenton-Like Chemistry. Angew Chem Int Ed Engl 2025; 64:e202503995. [PMID: 40017417 DOI: 10.1002/anie.202503995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
Double-reaction-centers (DRCs) Fenton-like chemistry with low or zero oxidant addition has garnered increasing attentions due to their alignment with the principles of green and sustainable development. However, the regulation of such processes remains a significant challenge, primarily due to deficiencies in the microscopic interpretation of their electron migration mechanisms operating with low or zero oxidant addition. In this work, iron single-atom DRCs catalyst (Fe/N-SAC) was prepared for internal-driven system (zero oxidant addition) and external-driven system (low peroxymonosulfate [PMS] addition). Results indicated the absence of dissolved oxygen activation in the PMS-zreo Fe/N-SAC system, and the iron single atoms in the Fe/N-SAC acted as the predominate electron acceptors to extract the electrons from the electron-donating pollutants with iron valence decreasing from +2.37 to +2.07 and they could also be recovered under O2 atmosphere. In contrast, the electrons from the pollutants could be transferred to both PMS and iron atoms in the external-driven Fe/N-SAC/PMS system involving both predominant electron transfer process (ETP) and iron internal-driven. Furthermore, two experimental devices based on core mechanisms of internal-driven and external-driven systems were designed to achieve long-term operation. These studies will complement the core catalytic mechanisms and module applications of internal-driven and external-driven DRCs systems.
Collapse
Affiliation(s)
- Qingbai Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| | - Jiale Chang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, P.R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P.R. China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| | - Yue Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| | - Xing Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P.R. China
| |
Collapse
|
4
|
Zhang Y, Chen M, He X, Zhao E, Liang H, Shang J, Liu K, Chen J, Zuo S, Zhou M. Intrinsic strain of defect sites steering chlorination reaction for water purification. Nat Commun 2025; 16:2652. [PMID: 40102410 PMCID: PMC11920279 DOI: 10.1038/s41467-025-57841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Carbon nanotube (CNT)-based heterogeneous advanced oxidation processes (AOPs) used for water purification have been exploited for several decades. Many strategies for modifying CNTs have been utilized to improve their catalytic performance in remediation processes. However, the strain fields of the intrinsic defect sites on CNT steering AOPs (such as chlorination) have not yet been reported. Here, we explored the strained defect sites for steering the chlorination process for water purification. The strained defect sites with the elongated sp2 hybridized C-C bonds boost electronic reactivity with the chlorine molecules via the initial Yeager-type adsorption. As a result, the reactive species in chlorination can be regulated on demand, such as the ratio of high-selectivity ClO• ranging from 38.8% in conventional defect-based systems to 87.5% in our strain-dominated process, which results in the generation of harmless intermediates and even deep mineralization during 2,4-DCP abatement. This work highlights the role that strain fields have on controlling the extent of chlorination reactions.
Collapse
Affiliation(s)
- Yinqiao Zhang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mohan Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xuanyu He
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, PR China
| | - Hao Liang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Jingge Shang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, PR China
| | - Jianqiu Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Sijin Zuo
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Minghua Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| |
Collapse
|
5
|
Zhang ZQ, Duan PJ, Bai CW, Chen XJ, Wang J, Chen F. Surface-hydroxylated single-atom catalyst with an isolated Co-O-Zn configuration achieves high selectivity in regulating active species. Nat Commun 2025; 16:2376. [PMID: 40069554 PMCID: PMC11897339 DOI: 10.1038/s41467-025-57560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Single-atom catalysts (SACs) are emerging as potent tools for the selective regulation of active species, offering substantial promise for green and sustainable Fenton catalysis. However, current SACs face limitations due to the specificity of their supports, which only allow selective regulation within certain oxidant systems. This constraint makes targeted regulation across different systems challenging. In response, this study designs a SAC, termed CoSAs-ZnO, featuring surface hydroxylation and an isolated asymmetric Co-O-Zn configuration. This SAC can realize a nearly 100% selective generation of sulfate radicals (SO4•-) and singlet oxygen (1O2) in peroxymonosulfate (PMS) and peracetic acid (PAA) systems, respectively. Moreover, the PMS-activated system can efficiently treat electron-deficient-dominated and refractory benzoic acid wastewater, achieving 100.0% removal in multiple consecutive pilot-scale experiments. The PAA-activated system facilitates the rapid conversion of benzyl alcohol to benzaldehyde, with a high selectivity of 89.0%. Detailed DFT calculations reveal that the surface hydroxyl groups on ZnO play a critical role in modulating the adsorption configurations of the oxidants, thus enabling the selective generation of specific active species in each system. This study provides insights into the design of SACs for multifunctional applications and paves the way for their deployment in wastewater treatment and high-value chemical conversion.
Collapse
Affiliation(s)
- Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jing Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Zhou LL, Xu H, Sheng YH, Wang WK, Xu J. Mn xCo 3-xO 4 spinel activates peroxymonosulfate for highly effective bisphenol A degradation with ultralow catalyst and persulfate usage. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136826. [PMID: 39672067 DOI: 10.1016/j.jhazmat.2024.136826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Persulfates-based advanced oxidation processes are highly efficient in degrading refractory organic contaminants in wastewater. However, their practical application is often limited by the extensive consumption of catalysts and oxidants. Therefore, constructing catalysts with abundant and efficient reaction interfaces is essential for improving the efficiency of persulfate activation. In this work, we develop a novel MnxCo3-xO4 spinel with highly exposed surface active sites by etching Mn-based precursors with Co ions. This process forms sufficient interface Co-O-Mn bonds, which effectively activate peroxymonosulfate (PMS) for bisphenol A (BPA) degradation. A clear structure-activity relationship is observed between the Co/Mn content ratio and the BPA degradation rate in the MnxCo3-xO4/PMS system. Notably, Mn0.1Co2.9O4 demonstrates superior PMS activation efficiency, achieving 100 % degradation of 10 mg/L BPA within 2 minutes with 0.05 g/L catalyst and 0.05 g/L persulfate usage. Experimental analyses combined with theoretical calculations identify the interface Co-O-Mn as the active site, which plays a crucial role in accelerating PMS molecule adsorption and O-O bond activation. Additionally, the spatially adjacent Co-O-Mn sites promote redox cycling for efficient interface electron transfer during the PMS activation process. Furthermore, Zebrafish toxicity studies revealed a considerable reduction in the toxicity of the BPA treatment residue in the MnxCo3-xO4/PMS system. Overall, this work presents a novel strategy for constructing spatially adjacent redox sites in dual-metal spinel materials, offering valuable insights into reducing chemical input and advancing persulfate-based environmental remediation technology.
Collapse
Affiliation(s)
- Lu-Lu Zhou
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi-Han Sheng
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Wei-Kang Wang
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
7
|
Qian J, Zhang X, Jia Y, Xu H, Pan B. Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1060-1079. [PMID: 39761191 DOI: 10.1021/acs.est.4c10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications. Nevertheless, this industrially accepted protocol is far from sustainable because of the excessive input of chemicals and/or energy as well as the unregulated carbon emission. Recently, there have been emerging studies on the removal of organic pollutants via a completely different pathway, i.e., polymerization, meaning that the target pollutants undergo oxidative polymerization reactions to generate polymeric products. These studies have collectively shown that compared to the conventional mineralization pathway, the polymerization pathway allows more efficient removal of target pollutants, largely reduced input of chemicals, and suppressed carbon emission. In this review, we aim to provide a comprehensive examination of the fundamentals of the oxidative polymerization process, current state-of-the-art strategies for regulation of the polymerization pathway from both kinetic and thermodynamic perspectives, and resource recovery of the formed polymeric products. In the end, the limitations of the polymerization process for pollutant removal are discussed, with perspectives for future studies. Hopefully, this review could not only provide critical insight for the advancement of polymerization-oriented technologies for removal of more organic pollutants in a greener manner but also stimulate more paradigm innovations for low-carbon water treatment.
Collapse
Affiliation(s)
- Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Jia
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hui Xu
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Fan Y, Liu C, Wang F, Sun Z, Kong D, Yao J, Chu M, Zhang G, Wang Y. Mesoporous Atomically Dispersed Fe Catalysts with Enhanced Nonradical Pathways in Fenton-like Reactions: The Role of SiO 2 Templates. Inorg Chem 2024; 63:23960-23969. [PMID: 39636049 DOI: 10.1021/acs.inorgchem.4c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Single-atom catalysts (SACs) are extensively applied in Fenton-like catalytic processes to treat water pollutants. However, the role of the porous structures of SACs supports in catalytic reactions is often overlooked despite its significant contribution to mass diffusion during the reaction. Herein, we adopted a hard-template-assisted approach to fabricate Fe-based SACs (Fe-SACs) featuring a mesoporous architecture. The SiO2 template not only adjusts the pore architecture of the support but also facilitates the conversion of active sites from nanoscale sites to single-atom sites, thereby improving the selectivity for pollutant degradation via nonradical pathways (singlet oxygen and electron transfer mechanism). The experimental results demonstrated that using large-sized SiO2 (∼200 nm) as a template leads to metal aggregation on its surface, forming Fe nanoparticles (Fe-NPs). Fe-NPs exhibit narrow pore structures that prevent peroxymonosulfate (PMS) from being activated, resulting in a slow degradation of pollutants primarily through radical pathways. In contrast, employing small-sized SiO2 (∼10 nm) as a hard template not only produces supports with mesoporous structures but also promotes the building of single-atom active sites. The prepared Fe-SACs effectively activated PMS through nonradical pathways and removed contaminants at a rate k of 0.89 min-1, 33 times faster than Fe-NPs. This template-assisted method sheds light on the synthesis of effective Fenton-like catalysts with porous structures that enhance the efficient breakdown of contaminants in wastewater.
Collapse
Affiliation(s)
- Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- School of Economic Crime Investigation, Shandong Police College, Jinan 250200, China
| | - Feifei Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dezhi Kong
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jianfei Yao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | |
Collapse
|
9
|
Zhan H, Li C, Cao Z, Zhou R, Zhang S, Guo Z, Zhou Q. Oxygen vacancies and Y-O-Ag bonds in the Z-scheme heterojunction cooperate to promote photodegradation of organic pollutants. J Colloid Interface Sci 2024; 673:711-721. [PMID: 38901361 DOI: 10.1016/j.jcis.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Y2O3 is a cost-effective and environmentally friendly wide-band gap photocatalyst with extensive application potential. However, its limited ability to be excited by visible light restricts its practical uses. In this study, we coupled the narrow bandgap semiconductor AgI with Y2O3 to form a Z-scheme heterostructure, significantly promoting its photocatalytic degradation activity. Characterization and experimental results demonstrated the formation of Y-O-Ag bonds through coupling with AgI, leading to an increase in oxygen vacancies in Y2O3, which promotes the chemisorption of H2O and O2. The Y-O-Ag bond introduction promotes electron transfer, improves hole utilization, and boosts energy transfer efficiency, thus promoting the efficient generation of ·OH and 1O2. The photocatalytic degradation rates of RhB and o-nitrophenol by 7.5% AgI/Y2O3 were 26.5 and 4 times higher than those of pure Y2O3, respectively. This study provides theoretical support for the Z-scheme heterojunction to improve photocatalytic activity and offers efficient solutions and practical design ideas for sewage purification.
Collapse
Affiliation(s)
- Haiyin Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chenxu Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zixuan Cao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University,126 Hobgood, 2117 TAMU, College Station, TX 77843-2117, USA
| | - Simiao Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziyu Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Liu H, Yang S, Mi J, Sun C, Chen J, Li J. 4d-2p-4f Gradient Orbital Coupling Enables Tandem Catalysis for Simultaneous Abatement of N 2O and CO on Atomically Dispersed Rh/CeO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39259756 DOI: 10.1021/acs.est.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
N2O and CO coexist in various industrial and mobile sources. The synergistic reaction of N2O and CO to generate N2 and CO2 has garnered significant research interest, but it remains extremely challenging. Herein, we constructed an atomically dispersed Rh-supported CeO2 catalyst with asymmetric Rh-O-Ce sites through gradient Rh 4d-O 2p-Ce 4f orbital coupling. This design effectively regulates the 4f electron states of Ce and promotes the electron filling of the O 3π* antibonding orbital to facilitate N-O bond cleavage. Near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) reveals that CO reacts with the surface-adsorbed O* generated by N2O decomposition through self-tandem catalysis, accelerating the rate-limiting step in N2O decomposition and activating the synergistic reaction of N2O and CO at temperatures as low as 115 °C. This work can guide the development of high-performance catalysts using the strategy of high-order orbital hybridization combined with the tandem concept to achieve versatile catalytic applications.
Collapse
Affiliation(s)
- Hao Liu
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- College of Geography and Environment, Shandong Normal University, Jinan 250014, P. R. China
| | - Shan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jinxing Mi
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
11
|
Guo Z, Zhu Q, Wang S, Jiang M, Fan X, Zhang W, Han M, Wu X, Hou X, Zhang Y, Shao Z, Shi J, Zhong X, Li S, Wu X, Huang K, Feng S. Manipulating the Spin State of Spinel Octahedral Sites via a π-π Type Orbital Coupling to Boost Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202406711. [PMID: 38923764 DOI: 10.1002/anie.202406711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Spin state is often regarded as the crucial valve to release the reactivity of energy-related catalysts, yet it is also challenging to precisely manipulate, especially for the active center ions occupied at the specific geometric sites. Herein, a π-π type orbital coupling of 3d (Co)-2p (O)-4f (Ce) was employed to regulate the spin state of octahedral cobalt sites (CoOh) in the composite of Co3O4/CeO2. More specifically, the equivalent high-spin ratio of CoOh can reach to 54.7 % via tuning the CeO2 content, thereby triggering the average eg filling (1.094) close to the theoretical optimum value. The corresponding catalyst exhibits a superior water oxidation performance with an overpotential of 251 mV at 10 mA cm-2, rivaling most cobalt-based oxides state-of-the-art. The π-π type coupling corroborated by the matched energy levels between Ce t1u/t2u-O and CoOh t2g-O π type bond in the calculated crystal orbital Hamilton population and partial density of states profiles, stimulates a π-donation between O 2p and π-symmetric Ce 4fyz 2 orbital, consequently facilitating the electrons hopping from t2g to eg orbital of CoOh. This work offers an in-depth insight into understanding the 4f and 3d orbital coupling for spin state optimization in composite oxides.
Collapse
Affiliation(s)
- Zhangtao Guo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaohua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mengpei Jiang
- Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua RD, Shenyang, 110016, China
| | - Xinxin Fan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wanyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mei Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaotian Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingyu Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shuting Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Ma Y, Xu S, Huang Y, Du J, Wang J, Gao B, Song J, Ma S, Jia H, Zhan S. The mechanism differences between sulfadiazine degradation and antibiotic resistant bacteria inactivation by iron-based graphitic biochar and peroxydisulfate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134907. [PMID: 38878442 DOI: 10.1016/j.jhazmat.2024.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
In this study, the activation of peroxydisulfate (PS) by K2FeO4-activation biochar (KFeB) and acid-picking K2FeO4-activation biochar (AKFeB) was investigated to reveal the mechanism differences between iron site and graphitic structure in sulfadiazine (SDZ) degradation and ARB inactivation, respectively. KFeB/PS and AKFeB/PS systems had similar degradation property towards SDZ, but only KFeB/PS system showed excellent bactericidal property. The mechanism study demonstrated that dissolved SDZ was degraded through electron transfer pathway mediated by graphitic structure, while suspended ARB was inactivated through free radicals generated by iron-activated PS, accompanied by excellent removal on antibiotic resistance genes (ARGs). The significant decrease in conjugative transfer frequency indicated the reduced horizontal gene transfer risk of ARGs after treatment with KFeB/PS system. Transcriptome data suggested that membrane protein channel disruption and adenosine triphosphate synthesis inhibition were key reasons for conjugative transfer frequency reduction. Continuous flow reactor of KFeB/PS system can efficiently remove antibiotics and ARB, implying the potential application in practical wastewater purification. In conclusion, this study provides novel insights for classified and collaborative control of antibiotics and ARB by carbon-based catalysts driven persulfate advanced oxidation technology.
Collapse
Affiliation(s)
- Yanbing Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yan Huang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jingzhen Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Boqiang Gao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Jia Song
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shuanglong Ma
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest, A&F University, Yangling 712100, China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
13
|
Kiki C, Yan X, Elimian EA, Jiang B, Sun Q. Deciphering the Role of Microbial Extracellular and Intracellular Organic Matter in Antibiotic Photodissipation: Molecular and Fluorescent Profiling under Natural Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11661-11674. [PMID: 38874829 DOI: 10.1021/acs.est.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study addresses existing gaps in understanding the specific involvement of dissolved organic matter (DOM) fractions in antibiotic photolysis, particularly under natural conditions and during DOM photobleaching. Employing fluorescent, chemical, and molecular analysis techniques, it explores the impact of extracellular and intracellular organic matter (EOM and IOM) on the photodissipation of multiclass antibiotics, coupled with DOM photobleaching under natural solar radiation. Key findings underscore the selective photobleaching of DOM fractions, propelled by distinct chemical profiles, influencing DOM-mediated antibiotic photolysis. Notably, lipid-like substances dominate in the IOM, while lignin-like substances prevail in the EOM, each uniquely responding to sunlight and exhibiting selective photobleaching. Sunlight primarily targets fulvic acid-like lignin components in EOM, contrasting the initial changes observed in tryptophan-like lipid substances in IOM. The lower photolability of EOM, attributed to its rich unsaturated compounds, contributes to an enhanced rate of indirect antibiotic photolysis (0.339-1.402 h-1) through reactive intermediates. Conversely, the abundance of aliphatic compounds in IOM, despite it being highly photolabile, exhibits a lower mediation of antibiotic photolysis (0.067-1.111 h-1). The triplet state excited 3DOM* plays a pivotal role in the phototransformation and toxicity decrease of antibiotics, highlighting microbial EOM's essential role as a natural aquatic photosensitizer for water self-purification. These findings enhance our understanding of DOM dynamics in aquatic systems, particularly in mitigating antibiotic risks, and introduce innovative strategies in environmental management and water treatment technologies.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, 01 BP: 526 Cotonou, Benin
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Ehiaghe A Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H, Canada
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Meng Y, Liu YQ, Wang C, Si Y, Wang YJ, Xia WQ, Liu T, Cao X, Guo ZY, Chen JJ, Li WW. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat Commun 2024; 15:5314. [PMID: 38906879 PMCID: PMC11192908 DOI: 10.1038/s41467-024-49605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Yan Meng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, China
| | - Yang Si
- Kunming Institute of Physics, Kunming, China
| | - Yun-Jie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Tian Liu
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China
| | - Xu Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China, Suzhou, China.
| |
Collapse
|
15
|
Liu Y, Wang P, Xie L, Xia Y, Zhan S, Hu W, Li Y. Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In 2Se 3 for Electrochemical H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202319470. [PMID: 38566301 DOI: 10.1002/anie.202319470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Liangbo Xie
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| |
Collapse
|
16
|
Wang J, Ge X, Yin W, Wang X, Wu Y. Precise Modulation of the Coordination Environment of Single Cu Site Catalysts to Regulate the Peroxymonosulfate Activation Pathway for Water Remediation. Inorg Chem 2024; 63:9307-9314. [PMID: 38718357 DOI: 10.1021/acs.inorgchem.4c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Single atom site catalysts (SACs) with atomically dispersed active sites can be expected to be potential ideal catalysts for accurately modulating the persulfate activation pathway during the water remediation process because of their well-defined structure and the maximum metallic atom utilization. In this paper, a series of Cu SACs with different coordination environments were synthesized to elaborately regulate the peroxymonosulfate activation pathway in AOPs to clarify active species generation and transformation in water remediation. The degradation rate constants (kobs) of Cu-N2, Cu-N3, and Cu-N4 were 0.028, 0.021, and 0.015 min-1, respectively. Cu-N2 SACs exhibited a noticeable enhanced performance for bisphenol A (BPA) removal from water compared to that of the Cu-Nx SACs (x = 3, 4), accompanied by peroxymonosulfate (PMS) activation pathway variation. As shown by experimental and theoretical results, the PMS activation pathway was transformed from ROS to electron transfer with nitrogen coordination numbers decreasing from 4 to 2, which can be ascribed to the uneven charge distribution of Cu sites as well as upshifts in the d-band center, and thereby optimized electron transfer for PMS activation. Furthermore, the increasing nitrogen vacancies of single Cu site catalysts can also result in more unoccupied 3d orbitals of Cu atoms in SACs, thereby improving the intermediates' (PMS and BPA) adsorption-desorption process and BPA removal performance. These findings provided a beneficial approach for the coordination number regulation of SACs in water remediation.
Collapse
Affiliation(s)
- Jie Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xiao Ge
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P. R. China
| | - Yuen Wu
- Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Li F, Liu K, Bao Y, Li Y, Zhao Z, Wang P, Zhan S. Molecular level removal of antibiotic resistant bacteria and genes: A review of interfacial chemical in advanced oxidation processes. WATER RESEARCH 2024; 254:121373. [PMID: 38447374 DOI: 10.1016/j.watres.2024.121373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
As a kind of novel and persistent environmental pollutants, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been frequently detected in different aquatic environment, posing potential risks to public health and ecosystems, resulting in a biosecurity issue that cannot be ignored. Therefore, in order to control the spread of antibiotic resistance in the environment, advanced oxidation technology (such as Fenton-like, photocatalysis, electrocatalysis) has become an effective weapon for inactivating and eliminating ARB and ARGs. However, in the process of advanced oxidation technology, studying and regulating catalytic active sites at the molecular level and studying the adsorption and surface oxidation reactions between catalysts and ARGs can achieve in-depth exploration of the mechanism of ARGs removal. This review systematically reveals the catalytic sites and related mechanisms of catalytic antagonistic genes in different advanced oxidation processes (AOPs) systems. We also summarize the removal mechanism of ARGs and how to reduce the spread of ARGs in the environment through combining a variety of characterization methods. Importantly, the potential of various catalysts for removing ARGs in practical applications has also been recognized, providing a promising approach for the deep purification of wastewater treatment plants.
Collapse
Affiliation(s)
- Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Kewang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
18
|
Zhang P, He M, Li F, Fang D, Li C, Mo X, Li K, Wang H. Unlocking Bimetallic Active Centers via Heterostructure Engineering for Exceptional Phosphate Electrosorption: Internal Electric Field-Induced Electronic Structure Reconstruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2112-2122. [PMID: 38146610 DOI: 10.1021/acs.est.3c07254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Development of electrode materials exhibiting exceptional phosphate removal performance represents a promising strategy to mitigate eutrophication and meet ever-stricter stringent emission standards. Herein, we precisely designed a novel LaCeOx heterostructure-decorated hierarchical carbon composite (L8C2PC) for high-efficiency phosphate electrosorption. This approach establishes an internal electric field within the LaCeOx heterostructure, where the electrons transfer from Ce atoms to neighboring La atoms through superexchange interactions in La-O-Ce coordination units. The modulatory heterostructure endows a positive shift of the d band of La sites and the increase of electron density at Fermi level, promoting stronger orbital overlap and binding interactions. The introduction of oxygen vacancies during the in situ nucleation process reduces the kinetic barrier for phosphate-ion migration and supplies additional active centers. Moreover, the hierarchical carbon framework ensures electrical double-layer capacitance for phosphate storage and interconnected ion migration channels. Such synergistically multiple active centers grant the L8C2PC electrode with high-efficiency record in phosphate electrosorption. As expected, the L8C2PC electrode demonstrates the highest removal capability among the reported electrode materials with a saturation capacity of 401.31 mg P g-1 and a dynamic capacity of 91.83 mg P g-1 at 1.2 V. This electrochemical system also performs well in the dephosphorization in natural water samples with low concentration that enable effluent concentration to meet the first-class discharge standard for China (0.5 mg P L-1). This study advances efficient dephosphorization techniques to a new level and offers a deep understanding of the internal electric field that regulates metal orbitals and electron densities in heterostructure engineering.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Mingming He
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Fukuan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Dezhi Fang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Chen Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Xiaoping Mo
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Kexun Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China
| | - Hao Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|