1
|
Barp L, Miklavčič Višnjevec A, Moret S. Analytical Determination of Squalene in Extra Virgin Olive Oil and Olive Processing By-Products, and Its Valorization as an Ingredient in Functional Food-A Critical Review. Molecules 2024; 29:5201. [PMID: 39519842 PMCID: PMC11547617 DOI: 10.3390/molecules29215201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Squalene is a bioactive compound with significant health benefits, predominantly found in extra virgin olive oil (EVOO) and its processing by-products. This critical review explores the analytical determination of squalene in EVOO and various by-products from olive oil production, highlighting its potential as a valuable ingredient in functional foods. An overview of existing analytical methods is provided, focusing on different approaches to sample preparation before analytical determination, evaluating their effectiveness in quantifying squalene concentrations. Studies not primarily centered on analytical methodologies or squalene quantification were excluded. A critical gap identified is the absence of an official method for squalene determination, which hinders comparability and standardization across studies, underscoring the importance of developing a reliable, standardized method to ensure accurate quantification. The valorization of squalene involves advocating for its extraction from olive oil processing by-products to enhance sustainability in the olive oil industry. By recovering squalene, the industry can not only reduce waste but also enhance functional food products with this health-promoting compound. Additionally, there is a need for economically sustainable and environmentally friendly extraction techniques that can be scaled up for industrial application, thus contributing to a circular economy within the olive oil sector.
Collapse
Affiliation(s)
- Laura Barp
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia;
| | - Sabrina Moret
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
2
|
Tian J, Jiang Q, Bao X, Yang F, Li Y, Sun H, Yao K, Yin Y. Plant-derived squalene supplementation improves growth performance and alleviates acute oxidative stress-induced growth retardation and intestinal damage in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:386-398. [PMID: 38058564 PMCID: PMC10695848 DOI: 10.1016/j.aninu.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023]
Abstract
Piglets are particularly susceptible to oxidative stress, which causes inferior growth performance and intestinal damage. Squalene (SQ), a natural bioactive substance enriched in shark liver oil, shows excellent antioxidant properties and can currently be obtained at a low cost from deodorizer distillate during the production of plant oil. This study aimed to evaluate the effects of plant-derived SQ supplementation on the growth performance of piglets and explore the beneficial roles of SQ against oxidative stress and intestinal injury in diquat-challenged piglets. Forty piglets were randomly divided into five groups and fed a basal diet supplemented with SQ at 0, 500, 1000, or 2000 mg/kg for 5 weeks. Acute oxidative stress was induced in the piglets with diquat (10 mg/kg BW) at the fourth week of the experiment, followed by a 7-d recovery period. Results showed that before the diquat challenge, SQ supplementation significantly improved growth performance (average daily gain and feed conversion ratio) and serum antioxidant status, and after the diquat challenge, SQ supplementation significantly mitigated diquat-induced growth arrest, intestinal villous atrophy, intestinal epithelial cell apoptosis, intestinal hyperpermeability, and deficiency of intestinal epithelial tight junction proteins (zonula occludens-1, occludin, and claudin-3). Under oxidative stress induced by diquat, SQ supplementation consistently improved the antioxidant status of the small intestine, liver, and muscle. In vitro, SQ was shown to alleviate hydrogen peroxide (H2O2)-induced increase of the levels of intracellular reactive oxygen species and apoptosis of porcine intestinal epithelial cells. Taken together, SQ supplementation improves growth performance and effectively alleviates acute oxidative stress-induced growth retardation and intestinal injury via improving antioxidant capacity in piglets. Our findings may provide an efficient strategy for alleviating oxidative stress-induced inferior growth performance and intestinal damage in piglets.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Haihui Sun
- Yichun Dahaigui Life Science Co., Ltd, Yichun, 336000, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, China
| |
Collapse
|
3
|
Grigaliūnaitė I, Ruiz-Méndez MV. Cleaner lipid processing: Supercritical carbon dioxide (Sc-CO2) and short path distillation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516465 DOI: 10.1016/bs.afnr.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Today, regulations and consumer awareness demand production technologies with minimum impact on the environment and maximum utilization of available resources. In the field of lipids, two well-known technologies for avoiding the use of organic solvents and chemicals stand out: supercritical (Sc) fluids and short path distillation (SPD). To date, both technologies involve high operating costs that have limited their application to selected high value-added products which are high temperature sensitive. However, improvements in process control and materials make further implementation of these techniques possible. In this chapter, an integrative review has been carried out with the aim of compiling the literature on the application of these technologies to lipid extraction, micronization and fractionation of liquid mixtures. Special attention has been paid to the separation of compounds by both technologies: deacidification, partial purification of acylglycerol compounds, isolation of unsaponifiable compounds and separation of toxic and polluting compounds.
Collapse
|
5
|
Zhang H, Duan Z, Zhang J, Liu B, Jiang W, Zhou Q. Analysis and optimization of feed liquid flow characteristics of distributor in scraping film molecular distillation equipment. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The initial liquid film is the basis of material evaporation during distillation, so it is of great significance to study the distribution of the initial liquid film of distributor in the process of scraping film molecular distillation. In this paper, CFD is used to study the distribution of distributor liquid film, and the mathematical model of the triangular tooth distributor and its peripheral cylinder is established, and the effects of the triangular tooth distributor’s speed, feed rate, and feed position on initial liquid film uniformity are investigated. And the reliability of the numerical simulation model is verified by experiments. In this paper, a new feed structure that includes an intermediate feed device and inclined tooth distributor is proposed and researched by numerical simulation. And compared with the previous structure, the liquid film distribution is more uniform. This has important guiding significance to the optimization of equipment in production.
Collapse
Affiliation(s)
- Haodong Zhang
- College of Electromechanical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Zhenya Duan
- College of Electromechanical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Junmei Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology , Qingdao 266061 , China
| | - Bin Liu
- Qingdao Special Equipment Inspection Research Institute , Qingdao 266061 , China
| | - Wencai Jiang
- Qingdao Dovere Precise Machinery Co., Ltd , Qingdao 266200 , China
| | - Qingwei Zhou
- CNPC EastChina Design Institute Co., Ltd. , Qingdao 266071 , China
| |
Collapse
|