1
|
Singh A, Dey P, Mihara H, Prakash NT, Prakash R. Facile synthesis of selenium nanoparticles and stabilization using exopolysaccharide from endophytic fungus, Nigrospora gullinensis, and their bioactivity study. BIOMASS CONVERSION AND BIOREFINERY 2025; 15:9581-9598. [DOI: 10.1007/s13399-024-05870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 03/31/2025]
|
2
|
Nag S, Kar S, Mishra S, Stany B, Seelan A, Mohanto S, Haryini S S, Kamaraj C, Subramaniyan V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs) - A state-of-the-art comprehensive update. Int J Pharm 2024; 662:124535. [PMID: 39094922 DOI: 10.1016/j.ijpharm.2024.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
The advancements in nanotechnology, pharmaceutical sciences, and healthcare are propelling the field of theranostics, which combines therapy and diagnostics, to new heights; emphasizing the emergence of selenium nanoparticles (SeNPs) as versatile theranostic agents. This comprehensive update offers a holistic perspective on recent developments in the synthesis and theranostic applications of SeNPs, underscoring their growing importance in nanotechnology and healthcare. SeNPs have shown significant potential in multiple domains, including antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic, wound healing, and cytoprotective therapies. The review highlights the adaptability and biocompatibility of SeNPs, which are crucial for advanced disease detection, monitoring, and personalized treatment. Special emphasis is placed on advancements in green synthesis techniques, underscoring their eco-friendly and cost-effective benefits in biosensing, diagnostics, imaging and therapeutic applications. Additionally, the appraisal scrutinizes the progressive trends in smart stimuli-responsive SeNPs, conferring their role in innovative solutions for disease management and diagnostics. Despite their promising therapeutic and prophylactic potential, SeNPs also present several challenges, particularly regarding toxicity concerns. These challenges and their implications for clinical translation are thoroughly explored, providing a balanced view of the current state and prospects of SeNPs in theranostic applications.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Shinjini Kar
- Department of Life Science and Biotechnology, Jadavpur University (JU), 188 Raja S.C. Mallick Road, Kolkata 700032, India; Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shatakshi Mishra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - B Stany
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Anmol Seelan
- Department of Biological Sciences, Sunandan Divatia School of Science, Narsee Monjee Institute of Management Studies (NMIMS), Pherozeshah Mehta Rd., Mumbai 400056, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sree Haryini S
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; Department of Applied Microbiology, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India; Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Selangor, Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Haseeb HA, Khan MA, Rasheed H, Zahid MU, Doan TD, Siddique MAR, Ahmad U, Bokhari SAI. Polygonum bistorta Linn. as a green source for synthesis of biocompatible selenium nanoparticles with potent antimicrobial and antioxidant properties. Biometals 2024:10.1007/s10534-024-00622-0. [PMID: 39127845 DOI: 10.1007/s10534-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Here, we report for the first time, green-synthesized selenium nanoparticles (SeNPs) using pharmacologically potent herb of Polygonum bistorta Linn. for multiple biomedical applications. In the study, a facile and an eco-friendly approach is utilized for synthesis of SeNPs using an aqueous roots extract of P. bistorta Linn. followed by extensive characterization via Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Energy Dispersive X-Ray (EDX) analysis. The XRD and FTIR data determine the phase composition and successful capping of plant extract onto the surface of NPs while SEM and TEM micrographic examination reveals the elliptical and spherical morphology of the particles with a mean size of 69 ± 23 nm. After comprehensive characterization, the NPs are investigated for antifungal, antibacterial, antileishmanial, antioxidant, and biocompatibility properties. The study reveals that Polygonum bistorta Linn. synthesized SeNPs exhibit significant antibacterial and antifungal activities with Staphylococcus aureus and Fusarium oxysporum inducing the highest zone of inhibition of 14 ± 1.0 mm and 20 ± 1.2 mm, respectively at the concentration of 40 mg/mL. The NPs are also found to have antiparasitic potential against promastigote and amastigote forms of Leishmania tropica. Furthermore, the NPs are discovered to have excellent potential in neutralizing harmful free radicals thus exhibiting considerable antioxidant potential. Most importantly, Polygonum bistorta Linn. synthesized SeNPs showed substantial compatibility against blood cells in vitro studies, which signifies the nontoxic nature of the NPs. The study thus concludes that medicinally important Polygonum bistorta Linn. roots can be utilized as an eco-friendly, sustainable, and green source for the synthesis of pharmacologically potent selenium nanoparticles.
Collapse
Affiliation(s)
- Hafiz Abdul Haseeb
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aslam Khan
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| | - Hassam Rasheed
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Muhammad Usman Zahid
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Thu Dung Doan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Muhammad Aamir Ramzan Siddique
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Alberta, Canada
| | - Uzair Ahmad
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, Faculty of Sciences, International Islamic University (IIU), Islamabad, Pakistan.
| |
Collapse
|
4
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
5
|
Xiao X, Deng H, Lin X, Ali ASM, Viscardi A, Guo Z, Qiao L, He Y, Han J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem Biol Interact 2023; 378:110483. [PMID: 37044285 DOI: 10.1016/j.cbi.2023.110483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Selenium nanoparticles (SeNPs) are a unique type of nano-sized elemental selenium that have recently found wide application in biomedicine. It has been shown that the properties of SeNPs can be varied by different fabrication methods. Moreover, SeNPs have various therapeutic effects in medical applications due to their excellent biological and adaptable physical properties. At the same time, SeNPs can be used as a carrier medium for various therapeutic substances, which can bring out the full curative effects of the drugs. In this review, the differences in bioactivity properties of SeNPs prepared from different substances were reviewed; the therapeutic effects and mechanisms of SeNPs in cancer, inflammation, neurodegenerative diseases, diabetes, reproductive diseases, cardiovascular diseases, and other diseases were discussed; and the importance of the development of SeNPs was further emphasized.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Huan Deng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Xue Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ahmed Sameir Mohamed Ali
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Angelo Viscardi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Ziwei Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Lichun Qiao
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Yujie He
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| | - Jing Han
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
6
|
An insight into biofabrication of selenium nanostructures and their biomedical application. 3 Biotech 2023; 13:79. [PMID: 36778767 PMCID: PMC9908812 DOI: 10.1007/s13205-023-03476-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Evidence shows that nanoparticles exert lower toxicity, improved targeting, and enhanced bioactivity, and provide versatile means to control the release profile of the encapsulated moiety. Among different NPs, inorganic nanoparticles (Ag, Au, Ce, Fe, Se, Te, Zn, etc.) possess a considerable place owing to their unique bioactivities in nanoforms. Selenium, an essential trace element, played a vital role in the growth and development of living organisms. It has attracted great interest as a therapeutic factor without significant adverse effects in medicine at recommended dose. Selenium nanoparticles can be fabricated by physical, biological, and chemical approaches. The biosynthesis of nanoparticles is shown an advance compared to other procedures, because it is environmentally friendly, relatively reproducible, easily accessible, biodegradable, and often results in more stable materials. The effect of size, shape, and synthesis methods on their applications in biological systems investigated by several studies. This review focused on the procedures for the synthesis of selenium nanoparticles, in particular the biogenesis of selenium nanoparticles and their biomedical characteristics, such as antibacterial, antiviral, antifungal, and antiparasitic properties. Eventually, a comprehensive future perspective of selenium nanoparticles was also presented.
Collapse
|
7
|
Huang T, Li X, Maier M, O'Brien-Simpson NM, Heath DE, O'Connor AJ. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater 2023; 158:56-79. [PMID: 36640952 DOI: 10.1016/j.actbio.2023.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Fungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections. A major challenge in the development of fungi-specific drugs is that both fungi and mammalian cells are eukaryotic and have significant overlap in their cellular machinery. This lack of fungi-specific drug targets makes human cells vulnerable to toxic side effects from many antifungal agents. Furthermore, antifungal drug resistance necessitates higher doses of the drugs, leading to significant human toxicity. There is an urgent need for new antifungal agents, specifically those that can limit the emergence of new resistant species. Non-drug nanomaterials have primarily been explored as antibacterial agents in recent years; however, they are also a promising source of new antifungal candidates. Thus, this article reviews current research on the use of inorganic nanoparticles as antifungal agents. We also highlight challenges facing antifungal nanoparticles and discuss possible future research opportunities in this field. STATEMENT OF SIGNIFICANCE: Fungal infections pose a growing threat to human health and livelihood. The rapid spread of resistance to current antifungal drugs has led to an urgent need to develop alternative antifungals. Nanoparticles have many properties that could make them useful antimycotic agents. To the authors' knowledge, there is no published review so far that has comprehensively summarized the current development status of antifungal inorganic nanomaterials, so we decided to fill this gap. In this review, we discussed the state-of-the-art research on antifungal inorganic nanoparticles including metal, metal oxide, transition-metal dichalcogenides, and inorganic non-metallic particle systems. Future directions for the design of inorganic nanoparticles with higher antifungal efficacy and lower toxicity are described as a guide for further development in this important area.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Maier
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Pescuma M, Aparicio F, Zysler RD, Lima E, Zapata C, Marfetán JA, Vélez M, Ordoñez OF. Biogenic selenium nanoparticles with antifungal activity against the wood-rotting fungus Oligoporus pelliculosus. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00787. [PMID: 36818378 PMCID: PMC9929205 DOI: 10.1016/j.btre.2023.e00787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Selenium nanoparticles (SeNPs) have antimicrobial and antifungal activity. SeNPs using Se resistant bacteria is a low cost and eco-friendly technology. Fungal contamination of wood during drying is one of the main causes of economic losses in the wood industry. The bacterium Delftia sp. 5 resistance to Se and its ability to produce SeNPs able to inhibit the growth of the wood brown-rotting fungus Oligoporus pelliculosus was analyzed. The strain showed an optimal SeNPs production when selenite concentration was 160 mg L -1. The SeNPs were spherical with an average size 192.33 ± 8.6 nm and a zeta potential of -41.4 ± 1.3 nm. The SeNPs produced by Delftia sp. 5 (33.6 ± 0.1 mg L -1 Se) inhibited the growth of O. pelliculosus in agar plates and in Nothofagus pumilio (Lenga) wood samples. Delftia sp. 5 SeNPs could be used for embedding lenga wood prior to drying for preventing the growth of the deteriorating fungi O. pelliculosus.
Collapse
Affiliation(s)
- Micaela Pescuma
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Francisca Aparicio
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Roberto D. Zysler
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Enio Lima
- Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Zapata
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - Jorge A. Marfetán
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - M.Laura Vélez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Esquel, Chubut, Argentina
| | - Omar F. Ordoñez
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, Chubut, Argentina
- CONICET Consejo Nacional de Investigaciones Científicas y Técnicas
- Corresponding author.
| |
Collapse
|
9
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Mohammadi M, Montazer M, Askarizadeh E, Bashiri Rezaie A, Mahmoudi Rad M. Fabricating Antibacterial Polyethylene Terephthalate Substrates Through an Industrial Approach by Applying Emulsions of Copper-Based Nanoparticles. FIBERS AND POLYMERS 2023; 24:985-1001. [PMCID: PMC9979128 DOI: 10.1007/s12221-023-00047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 10/25/2023]
Abstract
In this research, various emulsions of copper-based nanoparticles were synthesized through the chemical reduction method followed by utilizing the pad–dry–cure technique as an industrial approach to manufacturing bactericidal polyethylene terephthalate (PET) substrates. Copper sulfate/copper acetate, sodium hypophosphite (SHP)/ascorbic acid, and cetyltrimethylammonium bromide were employed as salts, reducing agents, and stabilizers, respectively. Also, a spin finish oil was used for forming an emulsion. The effects of type and amount of copper salt and reductant as well as the use of resin and stabilizer were investigated concerning antibacterial activities, weight, and color changes of coated samples to find optimum formulation. Field-emission scanning electron microscope (FESEM) images, mapping/energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD) pattern, Raman spectroscopy, and UV–visible spectrophotometer was proved successful in synthesis and loading of copper-based emulsions on the PET substrates. The results revealed that change of copper salt, substituting SHP with ascorbic acid, the addition of resin, and the use of surfactant yielded negligible effect, enhancing impact, reducing the influence, and improving efficacy on bactericidal characteristics of the treated samples, respectively. Based on findings, the samples coated by emulsion containing only copper sulfate/SHP and emulsion including only copper acetate were considered optimum samples indicating 100% bactericidal properties against both S. aureus and E. coli pathogenic bacteria. Despite showing bactericidal activities, it was further found that the treated samples exhibited cell toxicity toward human skin cells implying their applications in indirect contact usages. Coated samples further indicated a good washing fastness even after 20 washing cycles. This route can be considered as a facile industrially applicable method for imparting bactericidal properties to polymeric substrates. Furthermore, such emulsions can potentially be consumed as an antibacterial spin finish oil in melt-spinning to develop antibacterial textiles.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, 1913674711 Iran
| | - Majid Montazer
- Department of Textile Engineering, Functional Fibrous Structures and Environmental Enhancement (FFSEE), Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Elham Askarizadeh
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, 1913674711 Iran
| | - Ali Bashiri Rezaie
- Faculty of Civil Engineering, Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, 1989934148 Iran
| |
Collapse
|
11
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
12
|
Piperazine selenium nanoparticle (Pipe@SeNP's): A futuristic anticancer contender against MDA-MB-231 cancer cell line. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Comparative Study of Antimicrobial and Antioxidant Potential of Olea ferruginea Fruit Extract and Its Mediated Selenium Nanoparticles. Molecules 2022; 27:molecules27165194. [PMID: 36014433 PMCID: PMC9415542 DOI: 10.3390/molecules27165194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology, the science of the recent era, has diverse applications in agriculture. Selenium (Se) is a non-metal and an essential micronutrient for animals and humans. In this study, selenium nanoparticles (SeNPs) were biosynthesized by using Olea ferruginea fruit extracts. The size, shape, chemical nature, and identification of functional groups involved in the synthesis of SeNPs were studied by UV-visible spectroscopy, Scanning Electron Microscope (SEM), and Fourier Transform Infra-Red (FTIR) spectrometry. SeNP synthesis was confirmed by an absorption peak at 258 nm by UV-visible spectroscopy. SEM showed that SeNPs were spherical, smooth, and between 60 and 80 nm in size. FTIR spectrometry confirmed the presence of terpenes, alcohols, ketones, aldehydes, and esters as well as phyto-constituents, such as alkaloids and flavonoids, that possibly act as reducing or capping agents of SeNPs in an aqueous solution of Olea ferruginea. Antimicrobial activity was examined against bacterial pathogens, such as Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, as well as fungal pathogens, such as Aspergillus niger and Fusarium oxysporum, by using the well-diffusion method. Antioxidant activity was observed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, ABTs assay, and reducing power assay. At a higher concentration of 400 ppm, biosynthesized SeNPs showed an inhibition zone of 20.5 mm, 20 mm, 21 mm, and 18.5 mm against Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermitis, respectively. Similarly, SeNPs also demonstrated a zone of inhibition against Aspergillus niger and Fusarium oxysporum of 17.5 and 21 mm, respectively. In contrast to Olea ferruginea fruit extracts, Olea ferruginea-mediated SeNPs demonstrated strong antimicrobial activity. By performing the DPPH, ABTs, and reducing power assay, SeNPs showed 85.2 ± 0.009, 81.12 ± 0.007, and 80.37 ± 0.0035% radical scavenging potential, respectively. The present study could contribute to the drug development and nutraceutical industries.
Collapse
|
14
|
Abou Elmaaty T, Sayed-Ahmed K, Elsisi H, Ramadan SM, Sorour H, Magdi M, Abdeldayem SA. Novel Antiviral and Antibacterial Durable Polyester Fabrics Printed with Selenium Nanoparticles (SeNPs). Polymers (Basel) 2022; 14:955. [PMID: 35267779 PMCID: PMC8912753 DOI: 10.3390/polym14050955] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic has clearly shown the importance of developing advanced protective equipment, and new antiviral fabrics for the protection and prevention of life-threatening viral diseases are needed. In this study, selenium nanoparticles (SeNPs) were combined with polyester fabrics using printing technique to obtain multifunctional properties, including combined antiviral and antibacterial activities as well as coloring. The properties of the printed polyester fabrics with SeNPs were estimated, including tensile strength and color fastness. Characterization of the SeNPs was carried out using TEM and SEM. The results of the analysis showed good uniformity and stability of the particles with sizes range from 40-60 nm and 40-80 nm for SeNPs 25 mM and 50 mM, respectively, as well as uniform coating of the SeNPs on the fabric. In addition, the SeNPs-printed polyester fabric exhibited high disinfection activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an inhibition percentage of 87.5%. Moreover, a toxicity test of the resulting printed fabric revealed low cytotoxicity against the HFB4 cell line. In contrast, the treated fabric under study showed excellent killing potentiality against Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli). This multifunctional fabric has high potential for use in protective clothing applications by providing passive and active protection pathways.
Collapse
Affiliation(s)
- Tarek Abou Elmaaty
- Department of Material Art, Faculty of Art & Design, Galala University, Galala 43713, Egypt
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| | - Khaled Sayed-Ahmed
- Department of Agricultural Chemistry, Faculty of Agriculture, Damietta University, Damietta 34512, Egypt;
| | - Hanan Elsisi
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| | - Shaimaa M. Ramadan
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| | - Heba Sorour
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| | - Mai Magdi
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| | - Shereen A. Abdeldayem
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (H.E.); (S.M.R.); (H.S.); (M.M.); (S.A.A.)
| |
Collapse
|
15
|
Elmaaty TA, Raouf S, Sayed-Ahmed K, Plutino MR. Multifunctional Dyeing of Wool Fabrics Using Selenium Nanoparticles. Polymers (Basel) 2022; 14:191. [PMID: 35012213 PMCID: PMC8747343 DOI: 10.3390/polym14010191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/25/2023] Open
Abstract
This work aims to utilize selenium nanoparticles (Se-NPs) as a novel dyestuff, which endows wool fibers with an orange color because of their localized surface plasmon resonance. The color characteristics of dyed fibers were evaluated and analyzed. The color depth of the dyed fabrics under study was increased with the increase in Se content and dyeing temperature. The colored wool fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and an X-ray diffraction (XRD) analysis. The results indicated that spherical Se-NPs with a spherical shape were consistently deposited onto the surface of wool fibers with good distribution. In addition, the influence of high temperature on the color characteristics and imparted functionalities of the dyed fabrics were also investigated. The obtained results showed that the proposed dyeing process is highly durable to washing after 10 cycles of washes, and the acquired functionalities, mainly antimicrobial activity and UV-blocking properties, were only marginally affected, maintaining an excellent fastness property.
Collapse
Affiliation(s)
- Tarek Abou Elmaaty
- Department of Material Arts, Faculty of Art & Design, Galala University, Galala 43713, Egypt;
- Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Art, Damietta University, Damietta 34511, Egypt
| | - Sally Raouf
- Department of Textile Printing, Dyeing & Finishing, Faculty of Applied Art, Banha University, Banha 13518, Egypt;
| | - Khaled Sayed-Ahmed
- Department of Agricultural Chemistry, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| | - Maria Rosaria Plutino
- Consiglio Nazionale Delle Ricerche, c/o Dipartment ChiBioFarAm, Istituto per lo Studio dei Materiali Nanostrutturati, University of Messina, Viale F. D’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
16
|
Liu M, Zhang X, Chu S, Ge Y, Huang T, Liu Y, Yu L. Selenization of cotton products with NaHSe endowing the antibacterial activities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Vasylchenko A, Derevianko S. Antifungal Activity of a Composition of Selenium and Iodine Nanoparticles. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Razmkhah M, Montazer M, Bashiri Rezaie A, Rad MM. Facile technique for wool coloration via locally forming of nano selenium photocatalyst imparting antibacterial and UV protection properties. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
AbouElmaaty T, Abdeldayem SA, Ramadan SM, Sayed-Ahmed K, Plutino MR. Coloration and Multi-Functionalization of Polypropylene Fabrics with Selenium Nanoparticles. Polymers (Basel) 2021; 13:2483. [PMID: 34372085 PMCID: PMC8428022 DOI: 10.3390/polym13152483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, we developed a new approach for depositing selenium nanoparticles (SeNPs) into polypropylene (PP) fabrics via a one-step process under hydrothermal conditions by using an IR-dyeing machine to incorporate several functionalities, mainly coloration, antibacterial activity and ultraviolet (UV) protection. The formation, size distribution, and dispersion of the SeNPs were determined using X-ray diffraction (XRD), ultraviolet-visible (UV/Vis), transmission electron microscopy (TEM) and the color strength, fastness, antibacterial properties, and UV protection of the treated fabrics were also explored. The UV-Vis spectra and TEM analysis confirmed the synthesis of spherical well-dispersed SeNPs and the XRD analysis showed the successful deposition of SeNPs into PP fabrics. The obtained results demonstrate that the SeNPs-PP fabrics is accompanied by a noticeable enhancement in measurements of color strength, fastness, and UV-protection factor (UPF), as well as excellent antibacterial activity. Viability studies showed that SeNPs-PP fabrics are non-toxic against wi-38cell line. In addition, the treated SeNPs-PP fabrics showed an increase in conductivity. The obtained multifunctional fabrics are promising for many industrial applications such as the new generation of curtains, medical fabrics, and even automotive interior parts.
Collapse
Affiliation(s)
| | - Shereen A. Abdeldayem
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (S.A.A.); (S.M.R.)
| | - Shaimaa M. Ramadan
- Department of Textile Printing, Dyeing and Finishing, Faculty of Applied Arts, Damietta University, Damietta 34512, Egypt; (S.A.A.); (S.M.R.)
| | - Khaled Sayed-Ahmed
- Department of Agricultural Chemistry, Faculty of Agriculture, Damietta University, Damietta 34512, Egypt;
| | - Maria Rosaria Plutino
- Stituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Vill. S. Agata, 98166 Messina, Italy;
| |
Collapse
|
20
|
Miglani S, Tani-Ishii N. Biosynthesized selenium nanoparticles: characterization, antimicrobial, and antibiofilm activity against Enterococcus faecalis. PeerJ 2021; 9:e11653. [PMID: 34249505 PMCID: PMC8254471 DOI: 10.7717/peerj.11653] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Control over microbial growth is a crucial factor in determining the success of endodontic therapy. Enterococcus faecalis is the most resistant biofilm-forming species leading to endodontic failure. Hence, the current researches are directed towards discovering materials with superior disinfection properties and lesser cytotoxicity. This study aimed to synthesize and characterize biogenically produced Selenium Nanoparticles, and to evaluate the antimicrobial and antibiofilm efficacy, against Enterococcus Faecalis, for the following test groups: Group I: Distilled water (control), Group II: SeNPs (1 mg/ml), Group III: Calcium hydroxide (1 mg/ml), Group IV: 2% Chlorhexidine gluconate (CHX), Group V: 5.25% Sodium hypochlorite (NaOCl). Materials and Methods Selenium nanoparticles were derived using fresh guava leaves (Psidium guajava) and were characterized. The antibacterial efficacy against E. faecalis was evaluated by agar well diffusion method. The antibiofilm efficacy of the test groups was observed by viable cell count, antibiofilm assay, and Anthrone and Bradford’s tests. The morphology of the biofilms was analysed using the Scanning Electron Microscope and Fourier Transform Infrared spectroscopy. Results Antibacterial and antibiofilm efficacy of all tested solutions showed superior antibacterial and antibiofilm efficacy when compared to the control group. Overall, SeNPs (Group II) was the most effective against E. faecalis biofilm, followed by NaOCl (Group V), CHX (Group IV), and Ca(OH)2 (Group III). Conclusion Biogenically produced SeNPs emerged as a novel antibacterial and antibiofilm agent against E. faecalis. This nano-formulation demonstrates the potential to be developed as a root canal disinfectant combating bacterial biofilm in endodontics after the results have been clinically extrapolated.
Collapse
Affiliation(s)
- Sanjay Miglani
- Department of Conservative Dentistry & Endodontics, Faculty of Dentistry, Jamia Millia Islamia University, Delhi, India
| | - Nobuyuki Tani-Ishii
- Department of Pulp Biology and Endodontics, Graduate School of Dentistry, Kanagawa Dental College, Yokosuka, Kanagawa, Japan
| |
Collapse
|
21
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Muchová J, Hearnden V, Michlovská L, Vištejnová L, Zavaďáková A, Šmerková K, Kočiová S, Adam V, Kopel P, Vojtová L. Mutual influence of selenium nanoparticles and FGF2-STAB ® on biocompatible properties of collagen/chitosan 3D scaffolds: in vitro and ex ovo evaluation. J Nanobiotechnology 2021; 19:103. [PMID: 33849566 PMCID: PMC8045349 DOI: 10.1186/s12951-021-00849-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
In a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.
Collapse
Affiliation(s)
- Johana Muchová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK
| | - Lenka Michlovská
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
| | - Lucie Vištejnová
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Anna Zavaďáková
- Biomedical Center, Medical Faculty in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Kristýna Šmerková
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Silvia Kočiová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Vojtěch Adam
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1665/1, 613 00, Brno, Czech Republic
| | - Pavel Kopel
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Lucy Vojtová
- CEITEC-Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Yilmaz MT, İspirli H, Taylan O, Dertli E. A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Wang Q, Barnes LM, Maslakov KI, Howell CA, Illsley MJ, Dyer P, Savina IN. In situ synthesis of silver or selenium nanoparticles on cationized cellulose fabrics for antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111859. [PMID: 33579491 DOI: 10.1016/j.msec.2020.111859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
In this study, we developed a method to prepare inorganic nanoparticles in situ on the surface of cationized cellulose using a rapid microwave-assisted synthesis. Selenium nanoparticles (SeNPs) were employed as a novel type of antimicrobial agent and, using the same method, silver nanoparticles (AgNPs) were also prepared. The results demonstrated that both SeNPs and AgNPs of about 100 nm in size were generated on the cationized cellulose fabrics. The antibacterial tests revealed that the presence of SeNPs clearly improved the antibacterial performance of cationized cellulose in a similar way as AgNPs. The functionalised fabrics demonstrated strong antibacterial activity when assessed using the challenge test method, even after repeated washing. Microscopic investigations revealed that the bacterial cells were visually damaged through contact with the functionalised fabrics. Furthermore, the functionalised fabrics showed low cytotoxicity towards human cells when tested in vitro using an indirect contact method. In conclusion, this study provides a new approach to prepare cationic cellulose fabrics functionalised with Se or Ag nanoparticles, which exhibit excellent antimicrobial performance, low cytotoxicity and good laundry durability. We have demonstrated that SeNPs can be a good alternative to AgNPs and the functionalised fabrics have great potential to serve as an anti-infective material.
Collapse
Affiliation(s)
- Qiaoyi Wang
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Lara-Marie Barnes
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Carol A Howell
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom; Enteromed Ltd., 85 Great Portland St, First floor, London, W1W 7LT, United Kingdom
| | - Matthew J Illsley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom; Anamad Ltd., Sussex Innovation Centre, Science Park Square, Brighton, BN1 9SB, United Kingdom
| | - Patricia Dyer
- School of Art, University of Brighton, 58-67 Grand Parade, Brighton BN2 0JY, United Kingdom
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom.
| |
Collapse
|
25
|
Abstract
In recent years, nanoparticles have become a fashionable subject of research due to their sizes, shapes, and unique intrinsic physicochemical properties. In particular for the last 5 years, nano-Se has received tremendous attention in terms of its production, characteristic, and possible application for poultry/animal science and medical sciences. Indeed, Nano-Se is shown to be a potential source of Se for poultry/animal nutrition. However, there is an urgent need to address the questions related to nano-Se absorption, assimilation, and metabolism. It is not clear at present if major biological effects of nano-Se are due to Se-protein synthesis, direct antioxidant/prooxidant effects, or both. It is necessary to understand how metallic nano-Se can be converted into H2Se and further to SeCys to be incorporated into selenoproteins. The aforementioned issues must be resolved before nano-Se finds its way to animal/poultry production as a feed supplement and clearly this subject warrants further investigation.
Collapse
|
26
|
Dorazilová J, Muchová J, Šmerková K, Kočiová S, Diviš P, Kopel P, Veselý R, Pavliňáková V, Adam V, Vojtová L. Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1971. [PMID: 33027935 PMCID: PMC7601368 DOI: 10.3390/nano10101971] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
Abstract
A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water‑retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.
Collapse
Affiliation(s)
- Jana Dorazilová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Johana Muchová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Kristýna Šmerková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Silvia Kočiová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Pavel Diviš
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic;
| | - Pavel Kopel
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Radek Veselý
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka 6, 662 50 Brno, Czech Republic;
| | - Veronika Pavliňáková
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| | - Vojtěch Adam
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic; (J.D.); (J.M.); (K.Š.); (S.K.); (P.K.); (V.P.); (V.A.)
| |
Collapse
|
27
|
Soliman ES, Mahmoud FF, Fadel MA, Hamad RT. Prophylactic impact of nano-selenium on performance, carcasses quality, and tissues' selenium concentration using reversed-phase high-performance liquid chromatography during microbial challenge in broiler chickens. Vet World 2020; 13:1780-1797. [PMID: 33132589 PMCID: PMC7566255 DOI: 10.14202/vetworld.2020.1780-1797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background and Aim: Nano-selenium (NS) supplementation contributes in improving productivity, performance, and meat quality while reducing public health concern. Influence of NS and inorganic selenium (Se) water additive on performance, carcass quality, immunoglobulin concentration, intestinal microbiota, Se tissue concentrations, and tissue architecture was studied. Materials and Methods: Two-hundred and sixty 1-day-old Hubbard chicks were randomly grouped into five groups (5×52) and supplemented with 0.5 and 1.0 mL of NS and inorganic Se (100 mg.L−1). G1, G2, G3, and G4 were challenged with Escherichia coli O157: H7 2.6×108 on the 14th day. A total of 2250 samples, including 250 sera, 250 intestinal swabs, and 1500 organ and tissue samples as liver, spleen, heart, bursa, intestine, and breast muscles, and 250 eviscerated carcasses were collected. Results: The results revealed a highly significant increase (p<0.01) in live body weights, weight gains, performance indices, carcasses, and organs weights, whereas immunoglobulin G and M concentrations in broilers treated with 0.5 and 1.0 mL NS, respectively, synchronized reveal a highly significant decline (p<0.01) in total bacterial and Enterobacteriaceae counts of intestinal swabs and breast muscles, final pH24, and drip loss in broilers treated with 0.5 and 1.0 mL NS, respectively. Meanwhile, water holding capacity revealed no significant differences between all groups. Reversed-phase high-performance liquid chromatography examination revealed the earlier disappearance of NS residues than inorganic Se from the broiler’s liver and muscles. Histopathological photomicrographs of the liver, spleen, bursa of Fabricius, and intestine, as well as, the immunohistochemistry of intestinal sections revealed superior tissue architecture in broilers treated with NS contrary to inorganic Se. Conclusion: The study showed significant stimulation actions of NS on performance, immunity, carcass and meat quality, intestinal and muscles’ bacterial load as well as short withdrawal period and nearly normal cellular architecture compared to inorganic Se.
Collapse
Affiliation(s)
- Essam S Soliman
- Department of Animal Hygiene, Zoonosis and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Fadwa F Mahmoud
- Food Hygiene and Microbiology, Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Ismailia 41511, Egypt
| | - Mai A Fadel
- Pharmacology and Pyrogen Unit, Chemistry and Food Deficiency Department, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt
| | - Rania T Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Al Minufya 33511, Egypt
| |
Collapse
|
28
|
Ahmad A, Ullah S, Syed F, Tahir K, Khan AU, Yuan Q. Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine (Lond) 2020; 15:809-828. [DOI: 10.2217/nnm-2019-0413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis, a category 1 disease, has remained neglected for decades, and therefore, has developed into a severe health problem worldwide. Unfortunately, the available antileishmanial drugs are limited, and the parasites have shown an inevitable resistance toward most of these drugs. All these factors pose a barrier to control the parasite at present. Hence, new strategies are needed to develop more effective and less toxic nanomedicines that could treat and manage the Leishmania parasite. One of these effective strategies is to construct nanometals with biologically active molecules that could possess dynamic antileishmanial activities with desirable biocompatibility. In this review paper, antileishmanial potencies of different metal nanoparticles, with particular emphasis on biogenic metal nanoparticles from 2011 to 2019, are summarized. The mechanisms by which metal-based nanomedicines kill Leishmania are also discussed.
Collapse
Affiliation(s)
- Aftab Ahmad
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Sadeeq Ullah
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chaoyang District, Beijing, 100029, PR China
| | - Fatima Syed
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University D.I. Khan, KP, 29050, Pakistan
| | - Arif U Khan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
29
|
Noor N, Mutalik S, Younas MW, Chan CY, Thakur S, Wang F, Yao MZ, Mou Q, Leung PHM. Durable Antimicrobial Behaviour from Silver-Graphene Coated Medical Textile Composites. Polymers (Basel) 2019; 11:E2000. [PMID: 31816952 PMCID: PMC6961056 DOI: 10.3390/polym11122000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
Silver nanoparticle (AgNP) and AgNP/reduced graphene oxide (rGO) nanocomposite impregnated medical grade polyviscose textile pads were formed using a facile, surface-mediated wet chemical solution-dipping process, without further annealing. Surfaces were sequentially treated in situ with a sodium borohydride (NaBH4) reducing agent, prior to formation, deposition, and fixation of Ag nanostructures and/or rGO nanosheets throughout porous non-woven (i.e., randomly interwoven) fibrous scaffolds. There was no need for stabilising agent use. The surface morphology of the treated fabrics and the reaction mechanism were characterised by Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-Vis) absorption spectra, X-ray diffraction (XRD), Raman spectroscopy, dynamic light scattering (DLS) energy-dispersive X-ray analysis (EDS), and scanning electron microscopic (SEM). XRD and EDS confirmed the presence of pure-phase metallic silver. Variation of reducing agent concentration allowed control over characteristic plasmon absorption of AgNP while SEM imaging, EDS, and DLS confirmed the presence of and dispersion of Ag particles, with smaller agglomerates existing with concurrent rGO use, which also coincided with enhanced AgNP loading. The composites demonstrated potent antimicrobial activity against the clinically relevant gram-negative Escherichia coli (a key causative bacterial agent of healthcare-associated infections; HAIs). The best antibacterial rate achieved for treated substrates was 100% with only a slight decrease (to 90.1%) after 12 equivalent laundering cycles of standard washing. Investigation of silver ion release behaviours through inductively coupled plasmon optical emission spectroscopy (ICP-OES) and laundering durability tests showed that AgNP adhesion was aided by the presence of the rGO host matrix allowing for robust immobilisation of silver nanostructures with relatively high stability, which offered a rapid, convenient, scalable route to conformal NP-decorated and nanocomposite soft matter coatings.
Collapse
Affiliation(s)
- Nuruzzaman Noor
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Suhas Mutalik
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Muhammad Waseem Younas
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Cheuk Ying Chan
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Suman Thakur
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Faming Wang
- Materials Synthesis and Processing Lab, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (S.M.); (M.W.Y.); (C.Y.C.); (S.T.); (F.W.)
| | - Mian Zhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| | - Qianqian Mou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| | - Polly Hang-mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Lee Shau Kee Building, Hung Hom, Kowloon, Hong Kong SAR 999077, China; (M.Z.Y.); (Q.M.); (P.H.-m.L.)
| |
Collapse
|
30
|
Mondal A, Douglass M, Hopkins SP, Singha P, Tran M, Handa H, Brisbois EJ. Multifunctional S-Nitroso- N-acetylpenicillamine-Incorporated Medical-Grade Polymer with Selenium Interface for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34652-34662. [PMID: 31483604 PMCID: PMC8007129 DOI: 10.1021/acsami.9b10610] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Modern crises in implantable or indwelling blood-contacting medical devices are mainly due to the dual problems of infection and thrombogenicity. There is a paucity of biomaterials that can address both problems simultaneously through a singular platform. Taking cues from the body's own defense mechanism against infection and blood clotting (thrombosis) via the endogenous gasotransmitter nitric oxide (NO), both of these issues are addressed through the development of a layered S-nitroso-N-acetylpenicillamine (SNAP)-doped polymer with a blended selenium (Se)-polymer interface. The unique capability of the SNAP-Se-1 polymer composites to explicitly release NO from the SNAP reservoir as well as generate NO via the incorporated Se is reported for the first time. The NO release from the SNAP-doped polymer increased substantially in the presence of the Se interface. The Se interface was able to generate NO in the presence of S-nitrosoglutathione (GSNO) and glutathione (GSH), demonstrating the capability of generating NO from endogenous S-nitrosothiols (RSNO). Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) traced distribution of elemental Se nanoparticles on the interface and the surface properties were evaluated by surface wettability and roughness. The SNAP-Se-1 efficiently inhibited the growth of bacteria and reduced platelet adhesion while showing minimal cytotoxicity, thus potentially eliminating the risks of systemic antibiotic and blood coagulation therapy. The SNAP-Se-1 exhibited antibacterial activity of ∼2.39 and ∼2.25 log reductions in the growth of clinically challenging adhered Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. SNAP-Se-1 also significantly reduced platelet adhesion by 85.5% compared to corresponding controls. A WST-8-based cell viability test performed on NIH 3T3 mouse fibroblast cells provided supporting evidence for the potential biocompatibility of the material in vitro. These results highlight the prospective utility of SNAP-Se-1 as a blood-contacting infection-resistant biomaterial in vitro which can be further tuned by application specificity.
Collapse
Affiliation(s)
- Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Martin Tran
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
- Corresponding Authors: Dr. Hitesh Handa, Assistant Professor, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109, ; Dr. Elizabeth Brisbois, Assistant Professor, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, Telephone: (407) 266-7169,
| | - Elizabeth J Brisbois
- Department of Materials Science & Engineering, College of Engineering & Computer Science , University of Central Florida , Orlando , Florida 32816 , United States
- Corresponding Authors: Dr. Hitesh Handa, Assistant Professor, University of Georgia, 220 Riverbend Road, Athens, GA 30602, Telephone: (706) 542-8109, ; Dr. Elizabeth Brisbois, Assistant Professor, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, Telephone: (407) 266-7169,
| |
Collapse
|
31
|
Huang T, Holden JA, Heath DE, O'Brien-Simpson NM, O'Connor AJ. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. NANOSCALE 2019; 11:14937-14951. [PMID: 31363721 DOI: 10.1039/c9nr04424h] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently. One promising candidate to address this requirement is selenium nanoparticles (Se NPs), which are made from the essential dietary trace element Se and have antimicrobial activity against Gram-positive bacteria. The size of nanomaterials can strongly affect their biophysical properties and functions; however, the effects of the size of Se NPs on their antibacterial efficacy has not been systematically investigated. Therefore, in this work, spherical Se NPs ranging from 43 to 205 nm in diameter were fabricated, and their mammalian cytotoxicity and antibacterial activity as a function of their size were systematically studied. The antibacterial activity of the Se NPs was shown to be strongly size dependent, with 81 nm Se NPs showing the maximal growth inhibition and killing effect of methicillin-sensitive and methicillin-resistant Staphylococcus aureus (MSSA and MRSA). The Se NPs were shown to have multi-modal mechanisms of action that depended on their size, including depleting internal ATP, inducing ROS production, and disrupting membrane potential. All the Se NPs were non-toxic towards mammalian cells up to 25 μg mL-1. Furthermore, the MIC value for the 81 nm particles produced in this research is 16 ± 7 μg mL-1, significantly lower than previously reported MIC values for Se NPs. This data illustrates that Se NP size is a facile yet critical and previously underappreciated parameter that can be tailored for maximal antimicrobial efficacy. We have identified that using Se NPs with a size of 81 nm and concentration of 10 μg mL-1 shows promise as a safe and efficient way to kill S. aureus without damaging mammalian cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | |
Collapse
|
32
|
Shavandi A, Saeedi P, Ali MA, Jalalvandi E. Green synthesis of polysaccharide-based inorganic nanoparticles and biomedical aspects. FUNCTIONAL POLYSACCHARIDES FOR BIOMEDICAL APPLICATIONS 2019. [PMCID: PMC7151831 DOI: 10.1016/b978-0-08-102555-0.00008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biologically mediated inorganic nanoparticles (NPs) are considered as a green, cheap, and environmental-friendly materials, which connect the nanotechnology and biomedical sciences. Metallic NPs such as gold and silver NPs, synthesized using natural materials are an important branch of inorganic NPs with catalytic functionalities and a diverse range of biomedical applications such as antimicrobial application. Polysaccharides are excellent candidates to stabilize and control the size of NPs during the synthesis process. These polymers possess multiple binding sites, which facilitate attachment to the metal surface. As a result, polysaccharides can effectively create an organic-inorganic network of the metal NPs and confer a significant protection against aggregation and chemical modifications. This chapter discusses the methods of the preparation of polysaccharide-mediated NPs and reviews various types and diverse applications for these novel materials.
Collapse
|
33
|
Nanostructured biomedical selenium at the biological interface (Review). Biointerphases 2018; 13:06D301. [DOI: 10.1116/1.5042693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Haque RA, Iqbal MA, Mohamad F, Razali MR. Antibacterial and DNA cleavage activity of carbonyl functionalized N -heterocyclic carbene-silver(I) and selenium compounds. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
Nguyen TH, Vardhanabhuti B, Lin M, Mustapha A. Antibacterial properties of selenium nanoparticles and their toxicity to Caco-2 cells. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.01.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Huang X, Chen X, Chen Q, Yu Q, Sun D, Liu J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater 2016; 30:397-407. [PMID: 26518106 DOI: 10.1016/j.actbio.2015.10.041] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
Abstract
Developing highly effective antibacterial agents is important for a wide range of applications. However, the emergence of multiple antibiotic-resistant bacteria poses a public health threat. Many developed agents have limited practical application due to chemical instability, low biocompatibility, and poor long-term antibacterial efficiency. In the following study, we synthesize a synergistic nanocomposite by conjugating quercetin (Qu) and acetylcholine (Ach) to the surface of Se nanoparticles (Qu-Ach@SeNPs). Quercetin has been reported to exhibit a wide range of biological activities related to their antibacterial activity and acetylcholine as a neurotransmitter, which can combine with the receptor on the bacterial cell. Arrows indicate NPs and arrowheads indicate compromised cell walls. The study demonstrated how Qu-Ach@SeNPs exhibit a synergistically enhanced antibacterial performance against the multidrug-resistant superbugs (MDRs) compared to Qu@SeNPs and Ach@SeNPs alone. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant Staphylococcus aureus (MRSA), at a low dose. The mechanistic studies showed that Qu-Ach@SeNPs attach to the bacterial cell wall, causing irreversible damage to the membrane, and thereby achieving a remarkable synergistic antibacterial effect to inhibit MRSA. The findings suggested that the synergistic properties of quercetin and acetylcholine enhance the antibacterial activity of SeNPs. In this way, Qu-Ach@SeNPs comprise a new class of inorganic nano-antibacterial agents that can be used as useful applications in biomedical devices. STATEMENT OF SIGNIFICANCE The Qu-Ach@SeNPs have low cytotoxicity when tested on normal human cells in vitro. Qu-Ach@SeNPs are effective against MDRs, such as Methicillin-resistant S. aureus (MRSA), at a low dose. Importantly, Qu-Ach@SeNPs showed no emergence of resistance. These results suggest that Qu-Ach@SeNPs have excellent antibacterial activities. These agents can serve as good antibacterial agents against superbugs. Our data suggest that these antibacterial agents may have widespread application in the field of medicine for combating infectious diseases caused by MDRs, as well as other infectious diseases.
Collapse
|
38
|
Richtera L, Chudobova D, Cihalova K, Kremplova M, Milosavljevic V, Kopel P, Blazkova I, Hynek D, Adam V, Kizek R. The Composites of Graphene Oxide with Metal or Semimetal Nanoparticles and Their Effect on Pathogenic Microorganisms. MATERIALS 2015. [PMCID: PMC5455720 DOI: 10.3390/ma8062994] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present experiment describes a synthesis process of composites based on graphene oxide, which was tested as a carrier for composites of metal- or metalloid-based nanoparticles (Cu, Zn, Mn, Ag, AgP, Se) and subsequently examined as an antimicrobial agent for some bacterial strains (Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). The composites were first applied at a concentration of 300 µM on all types of model organisms and their effect was observed by spectrophotometric analysis, which showed a decrease in absorbance values in comparison with the control, untreated strain. The most pronounced inhibition (87.4%) of S. aureus growth was observed after the application of graphene oxide composite with selenium nanoparticles compared to control. Moreover, the application of the composite with silver and silver phosphate nanoparticles showed the decrease of 68.8% and 56.8%, respectively. For all the tested composites, the observed antimicrobial effect was found in the range of 26% to 87.4%. Interestingly, the effects of the composites with selenium nanoparticles significantly differed in Gram-positive (G+) and Gram-negative (G−) bacteria. The effects of composites on bacterial cultures of S. aureus and MRSA, the representatives of G+ bacteria, increased with increasing concentrations. On the other hand, the effects of the same composites on G− bacteria E. coli was observed only in the highest applied concentration.
Collapse
Affiliation(s)
- Lukas Richtera
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Dagmar Chudobova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Monika Kremplova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Iva Blazkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (L.R.); (D.C.); (K.C.); (M.K.); (V.M.); (P.K.); (I.B.); (D.H.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-5-4513-3350; Fax: +420-5-4521-2044
| |
Collapse
|