1
|
Ghosh J, Cooks RG. Accelerated click reactions using boronic acids for heterocyclic synthesis in microdroplets. Chem Sci 2025:d5sc00851d. [PMID: 40276635 PMCID: PMC12015631 DOI: 10.1039/d5sc00851d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Click chemistry is important for its simplicity and versatility, however, condensation-based click reactions are limited by the general requirement of high temperatures and catalysts. Here, we report accelerated click reactions using boronic acids in microdroplets under ambient conditions without a catalyst. The reaction between 2-formyl phenylboronic acid (2-FPBA) and substituted amines leads to the formation of multi-step click products, including iminoboronates, boroxines, thiazolidines, and diazaborines, depending on the selected amine. The reactions occur during microdroplet flight and are three orders of magnitude faster than the corresponding bulk reactions. MS and NMR spectral analysis confirmed the nature of the products. We suggest that the air-liquid interface of microdroplets serves both as a superacid and as a drying surface, facilitating dehydration by its superacidicity to access these products. We also demonstrate the application of these accelerated reactions as a late-stage functionalization (LSF) tool to access a range of antihistamine drug derivatives.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
2
|
Redfern J, Cunliffe A, Goeres D, Azevedo N, Verran J. Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings. Biofilm 2024; 7:100187. [PMID: 38481762 PMCID: PMC10933470 DOI: 10.1016/j.bioflm.2024.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 11/02/2024] Open
Abstract
The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Collapse
Affiliation(s)
- J. Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - A.J. Cunliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - D.M. Goeres
- Center for Biofilm Engineering, Montana State University, MT, USA
| | - N.F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - J. Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| |
Collapse
|
3
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
4
|
Chen ZT, Lee BS, Tu TH, Chan YT, Chang CC. Covalent bonding of quaternary ammonium compounds and zwitterionic polymer functional layers on polydimethylsiloxane against Escherichia Coli adhesion. J Biomater Appl 2024; 38:772-783. [PMID: 38058117 DOI: 10.1177/08853282231219063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Quaternary ammonium compounds (QACs) are recognized by the World Health Organization as a useful disinfectant against microbes. The synergistic effect of zwitterionic polymers with QACs as antimicrobial agents rather than QACs alone is yet to be investigated. A potential strategy is the use of covalent bonding to halt the release of minute antibacterials and a hierarchy of functional layers to detain and annihilate microbes. The strategy was tested on a polydimethylsiloxane (PDMS) surface on which quaternized poly(2-dimethylaminoethyl methacrylate) (qDMA+) and sulfobetaine (SBMA) were hierarchically functionalized. Attenuated total reflectance Fourier transform infrared analysis confirmed the quaternization of DMA to qDMA+, grafting of qDMA + on PDMS (PDMS-qDMA+), and grafting of the SBMA overlayer on PDMS-qDMA+ (PDMS-qDMA+-SB). Contact angle measurement showed that PDMS-qDMA + exhibited the lowest contact angle (26.2 ± 2.9°) compared with the hydrophobic PDMS (115.2 ± 1.6°), but that of PDMSqDMA+-SB increased to 56.3 ± 1.3°. The Escherichia coli survival count revealed that PDMS-qDMA+ and PDMS-qDMA+-SB exhibited significantly greater bactericidal ability than PDMS. Confocal laser scanning microscopy revealed fewer dead bacteria on PDMS-qDMA+-SB than on PDMS-qDMA+. Scanning electron microscopy demonstrated that E. coli was disintegrated on the functionalized surface via dual-end cell lysis. To the best of our knowledge, this is the first observation of this type of process. The results confirmed the potent antibacterial and cell disruption activities of the qDMA+ and SBMA modified PDMS surface.
Collapse
Affiliation(s)
- Zi-Ti Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Bor-Shiunn Lee
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan Universityand National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Che-Chen Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Chatterjee S, Bandyopadhyay A. Cysteine-Selective Installation of Functionally Diverse Boronic Acid Probes on Peptides. Org Lett 2023; 25:2223-2227. [PMID: 36988909 DOI: 10.1021/acs.orglett.3c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The current methods for direct late-stage and residue-selective installation of a versatile boronic acid (BA) repertoire on peptides are inadequate for a wide range of applications. Here, we show the suitability and efficiency of thiol-ene radical click chemistry to install functionally versatile BA derivatives on numerous bioactive, native peptides. Our work highlights that the methodology is operationally simple and adaptable for applications with BA-modified peptides, such as cyclization, conjugation, and functional group alteration.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Anupam Bandyopadhyay
- Anupam Bandyopadhyay - Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
6
|
Yang H, Xu Z, Xu Z, Li Y. Mini-Review of Biofilm Interactions with Surface Materials in Industrial Piping System. MEMBRANES 2023; 13:125. [PMID: 36837628 PMCID: PMC9961356 DOI: 10.3390/membranes13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The growth of biofilm, which is caused by microorganism accumulation and growth on wetted surfaces, may damage industrial piping systems, increase maintenance and cleaning costs for the system sterilization, and even divulge the immune system into high risk. This article systematically analyzes the biofilm interactions with piping surface materials from the perspectives of physical convection, and biological and chemical adhesion. The thermodynamics of the flow, bacterial surface sensing, and bio-communication are the most critical factors for biofilm attachment. Furthermore, experimental analysis methods as well as biofilm control and removal approaches, are also included in this study. Finally, the resistance and growth of biofilm, as well as the practical and advanced methodology to control the biofilm and challenges associated with technology, are also discussed. Moreover, this paper may also offer a significant reference for the practice and strategic applications to address the biofilm resistance issues in industrial piping.
Collapse
Affiliation(s)
- Haoyi Yang
- NUS College of Design and Engineering, National University of Singapore, Singapore 118429, Singapore
| | - Zezheng Xu
- UNSW Environment Leadership Program, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Zetong Xu
- Qingdao Huanghai Vocational Institute, Qingdao 266555, China
| | - Yuanzhe Li
- School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
7
|
Tamfu AN, Kocak G, Ceylan O, Citak F, Bütün V, Çiçek H. Synthesis of cross‐linked diazaborine‐based polymeric microparticles with antiquorum sensing, anti‐swarming, antimicrobial, and antibiofilm properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries University of Ngaoundere Ngaoundere Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education Adiyaman University Adiyaman Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Funda Citak
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Hüseyin Çiçek
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
8
|
Recent advances in development of poly (dimethylaminoethyl methacrylate) antimicrobial polymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gupta S, Puttaiahgowda YM, Nagaraja A, Jalageri MD. Antimicrobial polymeric paints: An up‐to‐date review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | | | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| | - Manohara Dhulappa Jalageri
- Department of Chemistry, Manipal Institute of Technology Manipal Academy of Higher Education Manipal India
| |
Collapse
|
10
|
Chatterjee S, Anslyn EV, Bandyopadhyay A. Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chem Sci 2020; 12:1585-1599. [PMID: 34163920 PMCID: PMC8179052 DOI: 10.1039/d0sc05009a] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Recently, reversible click reactions have found numerous applications in chemical biology, supramolecular chemistry, and biomedical applications. Boronic acid (BA)-mediated cis-diol conjugation is one of the best-studied reactions among them. An excellent understanding of the chemical properties and biocompatibility of BA-based compounds has inspired the exploration of novel chemistries using boron to fuel emergent sciences. This topical review focuses on the recent progress of iminoboronate and salicylhydroxamic-boronate constituted reversible click chemistries in the past decade. We highlight the mechanism of reversible kinetics and its applications in chemical biology, medicinal chemistry, biomedical devices, and material chemistry. This article also emphasizes the fundamental reactivity of these two conjugate chemistries with assorted nucleophiles at variable pHs, which is of utmost importance to any stimuli-responsive biological and material chemistry explorations.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| | - Eric V Anslyn
- Department of Chemistry, University of Texas 1 University Station A1590 Austin Texas 78712 USA
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| |
Collapse
|
11
|
Abstract
Bacteria can migrate in groups of flagella-driven cells over semisolid surfaces. This coordinated form of motility is called swarming behavior. Swarming is associated with enhanced virulence and antibiotic resistance of various human pathogens and may be considered as favorable adaptation to the diverse challenges that microbes face in rapidly changing environments. Consequently, the differentiation of motile swarmer cells is tightly regulated and involves multi-layered signaling networks. Controlling swarming behavior is of major interest for the development of novel anti-infective strategies. In addition, compounds that block swarming represent important tools for more detailed insights into the molecular mechanisms of the coordination of bacterial population behavior. Over the past decades, there has been major progress in the discovery of small-molecule modulators and mechanisms that allow selective inhibition of swarming behavior. Herein, an overview of the achievements in the field and future directions and challenges will be presented.
Collapse
Affiliation(s)
- Sina Rütschlin
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| | - Thomas Böttcher
- Department of ChemistryKonstanz Research, School Chemical Biology, ZukunftskollegUniversity of Konstanz78457KonstanzGermany
| |
Collapse
|
12
|
Shen Y, Li P, Chen X, Zou Y, Li H, Yuan G, Hu H. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and N-Acetylcysteine Against Biofilms of Five Common Pathogens. Microb Drug Resist 2019; 26:290-299. [PMID: 31211651 DOI: 10.1089/mdr.2018.0385] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria in biofilms are more resistant to antibacterial agents than bacteria in planktonic form. Hence, antibacterial agents should be able to eradicate biofilms to ensure the best outcomes. Little is known about how well many antibacterial agents can disrupt biofilms. In this study, we compared sodium lauryl sulfate (SDS), rhamnolipids (RHL), and N-acetylcysteine (NAC) for their ability to eradicate mature biofilms and inhibit new biofilm formation against Helicobacter pylori, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus mutans. SDS and RHL effectively inhibited formation of five bacterial biofilms in a dose-dependent manner, even at concentrations below the minimal inhibitory concentrations (MICs), suggesting that their antibiofilm activities are unrelated to their antibacterial activities. In contrast, NAC at certain concentrations promoted biofilm formation by all bacteria except P. aeruginosa, whereas at supra-MIC concentrations, it inhibited biofilm formation against the four bacteria, suggesting that its antibiofilm activity depends on its antibacterial activity. NAC was ineffective at eradicating mature H. pylori biofilms, and it actually promoted their formation at concentrations >10 mg/mL. Our results suggest that RHL is superior at eradicating biofilms of H. pylori, E. coli, and S. mutans; SDS is more effective against S. aureus biofilms; and NAC is more effective against P. aeruginosa biofilms. Our results may help determine which antibiofilm agents are effective against certain bacterial strains and develop agents effective against specific bacterial threats.
Collapse
Affiliation(s)
- Yuanna Shen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengyu Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaonan Chen
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yiqing Zou
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huatian Li
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gang Yuan
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haiyan Hu
- Lab of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Synthesis and Antibacterial Activities of Boronic Acid-Based Recyclable Spherical Polymer Brushes. Macromol Res 2019. [DOI: 10.1007/s13233-019-7084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|