1
|
Mangal M, H S, Bose S, Banerjee T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023; 114:e23568. [PMID: 37846654 DOI: 10.1002/bip.23568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
Collapse
Affiliation(s)
- Mangal Mangal
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Supriya H
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
2
|
Cangul K, Cakmakci E, Daglar O, Gunay US, Hizal G, Tunca U, Durmaz H. Metal-Free Click Modification of Triple Bond-Containing Polyester with Azide-Functionalized Vegetable Oil: Plasticization and Tunable Solvent Adsorption. ACS OMEGA 2022; 7:23332-23341. [PMID: 35847292 PMCID: PMC9281323 DOI: 10.1021/acsomega.2c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased "green" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer. We covalently attached AzSBO to an electron-deficient triple-bond-containing polyester via a metal-free azide-alkyne click reaction. The thermal, mechanical, and solvent absorption behaviors of different amounts of azidated oil-containing polyesters were determined. Moreover, the plasticization efficiency of AzSBO was compared with the commercial plasticizers bis(2-ethylhexyl) phthalate and epoxidized soybean oil. At relatively lower AzSBO ratios, the degree of cross-linking was higher and thus the plasticization was less pronounced but the solvent resistance was significantly improved. As the ratio of AzSBO was increased, the glass transition temperature of the pristine polymer decreased up to 31 °C from 57 °C. Furthermore, the incorporation of AzSBO also improved the thermal properties and 20% AzSBO addition led to a 60 °C increase in the maximum weight loss temperature.
Collapse
Affiliation(s)
- Karen Cangul
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Emrah Cakmakci
- Department
of Chemistry, Marmara University, Istanbul 34722, Turkey
| | - Ozgun Daglar
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ufuk Saim Gunay
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Gurkan Hizal
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Umit Tunca
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| | - Hakan Durmaz
- Department
of Chemistry, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
3
|
Ferreira RR, Souza AG, Rosa DS. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Younes GR, Maric M. Increasing the Hydrophobicity of Hybrid Poly(propylene glycol)-Based Polyhydroxyurethanes by Capping with Hydrophobic Diamine. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Milan Maric
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
5
|
Pouladi J, Mirabedini S, Eivaz Mohammadloo H, Rad NG. Synthesis of novel plant oil-based isocyanate-free urethane coatings and study of their anti-corrosion properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Tian B, Li W, Wang J, Liu Y. Functional polysaccharide-based film prepared from chitosan and β-acids: Structural, physicochemical, and bioactive properties. Int J Biol Macromol 2021; 181:966-977. [PMID: 33887287 DOI: 10.1016/j.ijbiomac.2021.04.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
β-Acids are natural antibacterial and antioxidant ingredients, obtained from supercritical CO2 hop extract. In this study, β-acids/chitosan complex films were prepared using the casting method. Complex films were characterized using scanning electron microscopy (SEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). Structure analysis revealed that β-acids can be successfully combined with the chitosan matrix. Mechanical tests demonstrated that the tensile strength of the films showed a significant upward trend (1.9 MPa to 9.6 MPa) with increase in β-acids content (0.1%-0.3%). Interestingly, the chitosan-based films showed excellent UV barrier capability below 400 nm. The release of β-acids from the film followed Fickian diffusion (n < 0.45). In addition, the complex films inhibited the growth of five food-borne pathogens (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Salmonella enteritidis and Listeria monocytogenes). This study highlights the promising nature of composite film as a desirable alternative for active packaging.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Wanrong Li
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Jie Wang
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
8
|
Filler-Modified Castor Oil-Based Polyurethane Foam for the Removal of Aqueous Heavy Metals Detected Using Laser-Induced Breakdown Spectroscopy (LIBS) Technique. Polymers (Basel) 2020; 12:polym12040903. [PMID: 32294999 PMCID: PMC7240372 DOI: 10.3390/polym12040903] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022] Open
Abstract
The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions’ adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
Collapse
|