1
|
Moreira AF, Filipe HAL, Miguel SP, Ribeiro MJ, Coutinho P. Recent advances in smart gold nanoparticles for photothermal therapy. Nanomedicine (Lond) 2025:1-15. [PMID: 40329458 DOI: 10.1080/17435889.2025.2500912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025] Open
Abstract
Gold nanoparticles (AuNPs) possess unique properties, including low toxicity and excellent optical characteristics, making them highly appealing for biomedical applications. The plasmonic photothermal effect of AuNPs has been explored to trigger localized hyperthermia. Four commonly explored gold nanoparticles (spheres, rods, stars, and cages) are produced and optimized to present the localized surface plasmon resonance effect in the near-infrared region, exploiting the increased penetration in the human body. Additionally, the production of hybrid AuNPs, combining them with other materials, such as silica, graphene, zinc oxide, polymers, and small molecules has been explored to amplify the photothermal effect (T ≥ 45ºC). This review provides an overview of AuNPs' application in photothermal therapy, describing the general synthesis processes and the main particle parameters that affect their application in photothermal therapy, including the hybrid nanomaterials. Associated with this rapid progress, surface functionalization can also improve colloidal stability, safety, and therapeutic outcomes. In this regard, we also highlight the emerging trend of applying cell-derived vesicles as biomimetic coatings, capable of evading immune recognition, increasing blood circulation, and targeting specific tissues. In addition, the challenges and future developments of AuNPs for accelerating the clinical translations are discussed in light of their therapeutic and theragnostic potential.
Collapse
Affiliation(s)
- André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Hugo A L Filipe
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Maximiano J Ribeiro
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Guarda, Portugal
| |
Collapse
|
2
|
Tang Z, Hou Y, Huang S, Hosmane NS, Cui M, Li X, Suhail M, Zhang H, Ge J, Iqbal MZ, Kong X. Dumbbell-shaped bimetallic AuPd nanoenzymes for NIR-II cascade catalysis-photothermal synergistic therapy. Acta Biomater 2024; 177:431-443. [PMID: 38307478 DOI: 10.1016/j.actbio.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The noble metal NPs that are currently applied to photothermal therapy (PTT) have their photoexcitation location mainly in the NIR-I range, and the low tissue penetration limits their therapeutic effect. The complexity of the tumor microenvironment (TME) makes it difficult to inhibit tumor growth completely with a single therapy. Although TME has a high level of H2O2, the intratumor H2O2 content is still insufficient to catalyze the generation of sufficient hydroxide radicals (‧OH) to achieve satisfactory therapeutic effects. The AuPd-GOx-HA (APGH) was obtained from AuPd bimetallic nanodumbbells modified by glucose oxidase (GOx) and hyaluronic acid (HA) for photothermal enhancement of tumor starvation and cascade catalytic therapy in the NIR-II region. The CAT-like activity of AuPd alleviates tumor hypoxia by catalyzing the decomposition of H2O2 into O2. The GOx-mediated intratumoral glucose oxidation on the one hand can block the supply of energy and nutrients essential for tumor growth, leading to tumor starvation. On the other hand, the generated H2O2 can continuously supply local O2, which also exacerbates glucose depletion. The peroxidase-like activity of bimetallic AuPd can catalyze the production of toxic ‧OH radicals from H2O2, enabling cascade catalytic therapy. In addition, the high photothermal conversion efficiency (η = 50.7 %) of APGH nanosystems offers the possibility of photothermal imaging-guided photothermal therapy. The results of cell and animal experiments verified that APGH has good biosafety, tumor targeting, and anticancer effects, and is a precious metal nanotherapeutic system integrating glucose starvation therapy, nano enzyme cascade catalytic therapy, and PTT therapy. This study provides a strategy for photothermal-cascade catalytic synergistic therapy combining both exogenous and endogenous processes. STATEMENT OF SIGNIFICANCE: AuPd-GOx-HA cascade nanoenzymes were prepared as a potent cascade catalytic therapeutic agent, which enhanced glucose depletion, exacerbated tumor starvation and promoted cancer cell apoptosis by increasing ROS production through APGH-like POD activity. The designed system has promising photothermal conversion ability in the NIR-II region, simultaneously realizing photothermal-enhanced catalysis, PTT, and catalysis/PTT synergistic therapy both in vitro and in vivo. The present work provides an approach for designing and developing catalytic-photothermal therapies based on bimetallic nanoenzymatic cascades.
Collapse
Affiliation(s)
- Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Mingyue Cui
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianan Li
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou 310018, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Recent Advances in Bio-Inspired Versatile Polydopamine Platforms for “Smart” Cancer Photothermal Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Tang Z, Ali I, Hou Y, Akakuru OU, Zhang Q, Mushtaq A, Zhang H, Lu Y, Ma X, Ge J, Iqbal MZ, Kong X. pH-Responsive Au@Pd bimetallic core-shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window. J Mater Chem B 2022; 10:6532-6545. [PMID: 36000458 DOI: 10.1039/d2tb01337a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotheranostic agents based on plasmonic nanostructures with their resonance wavelengths located in the second near-infrared window (NIR-II) have gained significant attention in profound tumor photothermal therapy. However, the modulation of localized surface plasmon resonance of gold nanomaterials from the first near-infrared (NIR-I) window to the NIR-II window is still challenging. The structures and compositions of the plasmonic nanomaterials have demonstrated promising characteristics in controlling the optical properties of plasmonic nanostructures. Here, gold nanorod (Au NR) coated with an ultrathin palladium (Pd) shell was developed for tumor-targeted NIR-II photothermal-augmented nanocatalytic therapy through the combination of compositional manipulation and structural evolution strategies. These Au@Pd core-shell hybrid NRs (HNRs) were functionalized with biocompatible chitosan (CS) to acquire lower toxicity and higher stability in physiological systems. Further, Au@Pd-CS HNRs were endowed with an excellent targeting ability by conjugating with folic acid (FA). The as-synthesized Au@Pd-CS-FA HNRs show efficient and complete photothermal ablation of tumor cells upon 1064 nm laser irradiation. The remarkable photothermal conversion efficiency of 69.0% was achieved, which is superior to many reported photothermal agents activated in the NIR-II region. Excitingly, Au@Pd-CS-FA HNRs have peroxidase and catalase activities, simultaneously producing ˙OH for catalytic therapy and O2 for relieving tumor hypoxia and photodynamic therapy. Additionally, in vivo tumor photothermal therapy was carried out, where the biocompatible Au@Pd-CS-FA HNRs penetrate intensely into the tumor cells and consequently show remarkable therapeutic effects. The idea about plasmonic modulation behind the bimetallic core-shell nanostructure in this report can be extended to construct new classes of metal-based nanotheranostic agents with dual-modal combined therapy as an alternative to traditional chemotherapy.
Collapse
Affiliation(s)
- Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Israt Ali
- Institute National de la Recherche Scientifique, Énergie Matériaux Télécommunications Research Centre, 1650 Lionel-Boulet Blvd., Varennes, Quebec J3X 1P7, Canada
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yuguang Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang, 315201, China
| | - Jian Ge
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone, Hangzhou, 310018, Zhejiang Province, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
5
|
Sun S, Song Y, Chen J, Huo M, Chen Y, Sun L. NIR -I and NIR-II irradiation tumor ablation using NbS 2 nanosheets as the photothermal agent. NANOSCALE 2021; 13:18300-18310. [PMID: 34724017 DOI: 10.1039/d1nr05449j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photothermal therapy has been considered a powerful means of cancer therapy due to its minimal invasiveness, effectiveness, and convenience. Although promising, the therapeutic effects are greatly limited as they rely on the photothermal agent (PTA). It is urgent to develop new PTAs with high photothermal conversion performance, especially under irradiation in the long-wavelength biowindows. Herein, a dual-biowindow-responsive PTA made of NbS2-PVP nanosheets was fabricated to be used both in the first near-infrared (NIR-I) and the second near-infrared (NIR-II) biowindows. With excellent hydrophilicity and biocompatibility, the nanosheets could effectively convert the near-infrared (NIR) light into heat, showing prominent photothermal stability. The calculated photothermal conversion efficiencies reached 59.2% (under NIR-I excitation) and 69.1% (under NIR-II excitation), respectively, which are comparable to those of metallic PTAs. The NbS2-PVP nanosheets had low cytotoxicity and could trigger strong photothermal treatment and cause cancer cell death upon irradiation by NIR-I or NIR-II light in vitro. Moreover, we have also demonstrated the highly efficient tissue ablation and tumor inhibition capability of NbS2-PVP nanosheets in vivo. This work explores an effective PTA of two-dimensional nanomaterials in NIR-I and NIR-II biowindows and offers a reference for the design of new kinds of PTAs.
Collapse
Affiliation(s)
- Songqiang Sun
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yapai Song
- School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jiabo Chen
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Lining Sun
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Science, Shanghai University, Shanghai 200444, China
- School of Material Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Gong T, Wang X, Ma Q, Li J, Li M, Huang Y, Liang W, Su D, Guo R. Triformyl cholic acid and folic acid functionalized magnetic graphene oxide nanocomposites: Multiple-targeted dual-modal synergistic chemotherapy/photothermal therapy for liver cancer. J Inorg Biochem 2021; 223:111558. [PMID: 34329998 DOI: 10.1016/j.jinorgbio.2021.111558] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023]
Abstract
Photo-chemotherapy (PCT) reveals great potential in hepatocellular carcinoma (HCC) treatment, therefore the construct of smart PCT nano-agents with high photothermal conversion efficiency and accurate drug delivery is of great significant. Herein, a novel hybrid nanomaterial MGO-TCA-FA has been designed and constructed by grafting the triformyl cholic acid (TCA) and folic acid (FA) on the surface of Fe3O4 modified graphene oxide (MGO). The doxorubicin hydrochloride (DOX) as a model drug could be effectively loaded on the MGO-TCA-FA via hydrogen bonding and π-π stacking (the drug loading amount was 1040 mg/g). The formed MGO-TCA-FA@DOX has been developed to be an effective PCT nanoplatform with the advantages of multiple-targeted drug delivery, near-infrared light (NIR) and pH triggered drug release, and photothermal conversion efficiency. In vitro experiments showed that compared with other cancer cells and normal liver cells, MGO-TCA-FA@DOX could specifically target liver cancer cells and presented significant killing ability to liver cancer cells. More importantly, in vivo experiments indicated that PCT synergistic therapy (MGO-TCA-FA@DOX) revealed the best tumor inhibition (the tumor inhibition rate was about 85%) compared with chemotherapy and photothermal therapy alone. Thus, this study supplied a viable multiple-targeted PCT nano-agent for chemo-photothermal combination therapy of liver cancer.
Collapse
Affiliation(s)
- Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoyu Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Qing Ma
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Li
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Meining Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Dan Su
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
7
|
Zhang Q, Wang J, Xu L, Lu S, Yang H, Duan Y, Yang Q, Qiu M, Chen C, Zhao S, Liu X, Liu H. PEGylated
copper(
II
)‐chelated polydopamine nanocomposites for photothermal‐enhanced chemodynamic therapy against tumor cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.51172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiuye Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Jingjing Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Luen Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Shi‐Yu Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Huawei Yang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering College of Engineering, Peking University Beijing China
| | - Yifan Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Qiang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Mengfan Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Chunmei Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Sheng Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| | - Xiaohong Liu
- Chongqing Youth Vocational and Technical College Chongqing China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences Chongqing China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education School of Materials and Energy, Southwest University Chongqing China
| |
Collapse
|
8
|
Yim W, Zhou J, Mantri Y, Creyer MN, Moore CA, Jokerst JV. Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14974-14984. [PMID: 33761255 PMCID: PMC8061782 DOI: 10.1021/acsami.1c00993] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) imaging holds great promise as a noninvasive imaging modality. Gold nanorods (GNRs) with absorption in the second near-infrared (NIR-II) window have emerged as excellent PA probes because of their tunable optical absorption, surface modifiability, and low toxicity. However, pristine GNRs often undergo shape transition upon laser illumination due to thermodynamic instability, leading to a reduced PA signal after a few seconds of imaging. Here, we report monodisperse GNR-melanin nanohybrids where a tunable polydopamine (PDA) coating was conformally coated on GNRs. GNR@PDAs showed a threefold higher PA signal than pristine GNRs due to the increased optical absorption, cross-sectional area, and thermal confinement. More importantly, the PA signal of GNR@PDAs only decreased by 29% during the 5 min of laser illumination in the NIR-II window, while significant attenuation (77%) was observed for GNRs. The GNR@PDAs maintained 87% of its original PA signal in vivo even after 10 min of laser illumination. This PDA-enabled strategy affords a rational design for robust PA imaging probes and provides more opportunities for other types of photomediated biomedicines, such as photothermal and photodynamic regimens.
Collapse
Affiliation(s)
- Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Colman A Moore
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| |
Collapse
|
9
|
Polydopamine-Coated Laponite Nanoplatforms for Photoacoustic Imaging-Guided Chemo-Phototherapy of Breast Cancer. NANOMATERIALS 2021; 11:nano11020394. [PMID: 33557046 PMCID: PMC7913843 DOI: 10.3390/nano11020394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Theranostic nanoplatforms combining photosensitizers and anticancer drugs have aroused wide interest due to the real-time photoacoustic (PA) imaging capability and improved therapeutic efficacy by the synergistic effect of chemotherapy and phototherapy. In this study, polydopamine (PDA) coated laponite (LAP) nanoplatforms were synthesized to efficiently load indocyanine green (ICG) and doxorubicin (DOX), and modified with polyethylene glycol-arginine-glycine-aspartic acid (PEG-RGD) for PA imaging-guided chemo-phototherapy of cancer cells overexpressing αvβ3 integrin. The formed ICG/LAP-PDA-PEG-RGD/DOX nanoplatforms showed significantly higher photothermal conversion efficiency than ICG solution and excellent PA imaging capability, and could release DOX in a pH-sensitive and NIR laser-triggered way, which is highly desirable feature in precision chemotherapy. In addition, the ICG/LAP-PDA-PEG-RGD/DOX nanoplatforms could be uptake by cancer cells overexpressing αvβ3 integrin with high specificity, and thus serve as a targeted contrast agent for in vivo PA imaging of cancer. In vivo experiments with 4T1 tumor-bearing mouse model demonstrated that ICG/LAP-PDA-PEG-RGD/DOX nanoplatforms exhibited much stronger therapeutic effect and higher survival rate than monotherapy due to the synergetic chemo-phototherapy under NIR laser irradiation. Therefore, the reported ICG/LAP-PDA-PEG-RGD/DOX represents a promising theranostic nanoplatform for high effectiveness PA imaging-guided chemo-phototherapy of cancer cells overexpressing αvβ3 integrin.
Collapse
|
10
|
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50:1111-1137. [DOI: 10.1039/d0cs00664e] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent development of second near-infrared photothermal combinational nanotheranostics for cancer, infectious diseases and regenerative medicine.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
11
|
A supramolecular polymer hybrid membrane with superior photothermal properties for local heating applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|