1
|
Smith TD, Bento Da Costa L, Downing SE, Bonar CJ, Burrows AM, Prufrock KA, Vinyard CJ, DeLeon VB. Prolonged or perpetual growth of replacement teeth in the rock hyrax. Anat Rec (Hoboken) 2024. [PMID: 39739374 DOI: 10.1002/ar.25625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Tusks are ever-growing teeth present in mammals of the clade Paenungulata. Unlike the perpetually growing incisors of rodents, tusks are not used in mastication, and in at least some paenungulatans, the tusk is composed of dentin alone in adults. Few studies have provided tissue-level information on tusks of adult paenungulatans with embedding techniques that identify epithelial and other soft tissues. In order to examine the mineralized tissues as well as the cells that form teeth, we studied a single, subadult rock hyrax (Procavia capensis) using microCT and paraffin histology with traditional staining as well as RUNX2 immunohistochemistry, and compared its teeth to scans of adult hyraxes. Three-dimensional reconstructions from microCT volumes revealed that the tusk of this specimen is the only fully erupted replacement tooth, the first adult premolar (P1) is starting to erupt, and the first permanent molar (M1) is fully erupted, whereas all other replacement teeth and M2 remain in crypts. The tusk has a thin layer of enamel on its dorsal side; this is confirmed by histology. All deciduous premolars still possess roots that are in the process of resorption. Amelogenesis has progressed to maturation or nearly so in P1-P3. Notable histological characteristics of replacement premolars include the lack of a stellate reticulum in all except P4, and expression of RUNX2 in ameloblasts, a marker which is expressed by ameloblasts at all stages of amelogenesis. Since the pulp chambers of replacement premolars are relatively large compared to adults, a lengthy time in crypts may be important for dentin production. The results confirm that the hyrax has thin enamel on tusks, supporting the hypothesis that enamel is of limited importance for non-feeding behaviors.
Collapse
Affiliation(s)
- Timothy D Smith
- Department of Health and Rehabilitation Sciences, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | | | - Sarah E Downing
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | - Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Kristen A Prufrock
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Christopher J Vinyard
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
3
|
Hogg RT, Smith TD. Space invaders: Reassessing the histology of hyperostosis frontalis interna. Anat Rec (Hoboken) 2024; 307:3364-3374. [PMID: 38544465 DOI: 10.1002/ar.25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 10/12/2024]
Abstract
Hyperostosis frontalis interna (HFI) is a human skeletal lesion characterized by nodules of hyperplastic bone and thickening of the frontal bone's inner surface. Despite its prevalence in the general population and its long history of observation-it is one of the most frequently observed pathologies in gross anatomy laboratories-HFI's etiology and pathogenesis remain poorly understood. This is largely due to the lack of a thorough survey of its histology across the various stages of its development. Our study has three major aims: (1) assess HFI histology from incipient to advanced lesions; (2) elucidate lamellar and trabecular structure in HFI; and (3) clarify impacts/roles of the dura mater in HFI. Sections of nondecalcified bone provide evidence for two different categories of lesions: (1) stratum lesions, characterized by lamellar-based overall thickening of the internal table, and (2) eruptive lesions, characterized by nodular formations of initially lamellar bone that appear to form the bulk of bone mass in advanced stages. Sections of nondecalcified bone also suggest that for both lesion types, HFI growths begin as deposits of lamellar bone, which are later remodeled into woven bone deposits; our data do not support the hypothesis that lesions begin as a "diploization" of cortical bone as suggested by prior studies. Trichrome-stained sections provide evidence that growing lesions erode through and engulf the dura mater, effectively destroying this tissue layer as they grow laterally and inwardly. Our results indicate possible avenues of research to better understand the root causes of this disorder.
Collapse
Affiliation(s)
- Russell T Hogg
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| |
Collapse
|
4
|
Smith TD, Prufrock KA, DeLeon VB. How to make a vampire. Anat Rec (Hoboken) 2023; 306:2872-2887. [PMID: 36806921 DOI: 10.1002/ar.25179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Herein, we compared the developmental maturity of the cranium, limbs, and feeding apparatus in a perinatal common vampire bat relative to its mother. In addition, we introduce a method for combining two computed tomographic imaging techniques to three-dimensionally reconstruct endocasts in poorly ossified crania. The Desmodus specimens were scanned using microcomputed tomography (microCT) and diffusible iodine-based contrast-enhanced CT to image bone and soft tissues. Muscles of the jaw and limbs, and the endocranial cavity were segmented using imaging software. Endocranial volume (ECV) of the perinatal Desmodus is 74% of adult ECV. The facial skeletal is less developed (e.g., palatal length 60% of adult length), but volumes for alveolar crypts/sockets of permanent teeth are nearly identical. The forelimb skeleton is uniformly less ossified than the distal hind limb, with no secondary centers ossified and an entirely cartilaginous carpus. All epiphyseal growth zones are active in the brachium and antebrachium, with the distal radius exhibiting the greatest number of proliferating chondrocytes arranged in columns. The hind limb skeleton is precociously ossified from the knee distally. The musculature of the fore limb, temporalis, and masseter muscles appear weakly developed (6-11% of the adult volume). In contrast, the leg and foot musculature is better developed (23-25% of adult volume), possibly enhancing the newborn's capability to grip the mother's fur. Desmodus is born relatively large, and our results suggest they are born neurally and dentally precocious, with generally underdeveloped limbs, especially the fore limb.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Kristen A Prufrock
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Eiting TP, Smith TD, Forger NG, Dumont ER. Neuronal scaling in the olfactory system of bats. Anat Rec (Hoboken) 2023; 306:2781-2790. [PMID: 37658819 DOI: 10.1002/ar.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Comparative studies are a common way to address large-scale questions in sensory biology. For studies that investigate olfactory abilities, the most commonly used metric is olfactory bulb size. However, recent work has called into question the broad-scale use of olfactory bulb size. In this paper, we use three neuroanatomical measures with a more mechanistic link to olfactory function (number of olfactory sensory neurons (OSNs), number of mitral cells (MCs), and number of glomeruli) to ask how species with different diets may differ with respect to olfactory ability. We use phyllostomid bats as our study system because behavioral and physiological work has shown that fruit- and nectar-feeding phyllostomids rely on odors for detecting, localizing, and assessing potential foods, while insect-eating species do not. Therefore, we predicted that fruit- and nectar-feeding bats would have larger numbers of these three neuroanatomical measures than insect-eating species. In general, our results supported the predictions. We found that fruit-eaters had greater numbers of OSNs and glomeruli than insect-eaters, but we found no difference between groups in number of MCs. We also examined the allometric relationship between the three neuroanatomical variables and olfactory bulb volume, and we found isometry in all cases. These findings lend support to the notion that neuroanatomical measures can offer valuable insights into comparative olfactory abilities, and suggest that the size of the olfactory bulb may be an informative parameter to use at the whole-organism level.
Collapse
Affiliation(s)
- Thomas P Eiting
- Graduate Program in Organismic and Evolutionary Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | - Timothy D Smith
- School of Physical Therapy, 108 Central Loop, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Nancy G Forger
- Department of Psychology and Center for Neuroendocrine Studies, Tobin Hall, 135 Hicks Way, University of Massachusetts, Amherst, Massachusetts, USA
| | - Elizabeth R Dumont
- Graduate Program in Organismic and Evolutionary Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Xi J, Si XA, Malvè M. Nasal anatomy and sniffing in respiration and olfaction of wild and domestic animals. Front Vet Sci 2023; 10:1172140. [PMID: 37520001 PMCID: PMC10375297 DOI: 10.3389/fvets.2023.1172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, United States
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre, Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
7
|
Smith TD, Corbin HM, King SEE, Bhatnagar KP, DeLeon VB. A comparison of diceCT and histology for determination of nasal epithelial type. PeerJ 2021; 9:e12261. [PMID: 34760352 PMCID: PMC8571959 DOI: 10.7717/peerj.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat (Cynopterus sphinx) and a late fetal vampire bat (Desmodus rotundus) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman’s glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman’s glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Hayley M Corbin
- Department of Biology, Slippery Rock University, Slippery Rock University, Slippery Rock, PA, United States
| | - Scot E E King
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Smith TD, DeLeon VB, Eiting TP, Corbin HM, Bhatnagar KP, Santana SE. Venous networks in the upper airways of bats: A histological and diceCT study. Anat Rec (Hoboken) 2021; 305:1871-1891. [PMID: 34545690 DOI: 10.1002/ar.24762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
Our knowledge of nasal cavity anatomy has grown considerably with the advent of micro-computed tomography (CT). More recently, a technique called diffusible iodine-based contrast-enhanced CT (diceCT) has rendered it possible to study nasal soft tissues. Using diceCT and histology, we aim to (a) explore the utility of these techniques for inferring the presence of venous sinuses that typify respiratory mucosa and (b) inquire whether distribution of vascular mucosa may relate to specialization for derived functions of the nasal cavity (i.e., nasal-emission of echolocation sounds) in bats. Matching histology and diceCT data indicate that diceCT can detect venous sinuses as either darkened, "empty" spaces, or radio-opaque islands when blood cells are present. Thus, we show that diceCT provides reliable information on vascular distribution in the mucosa of the nasal airways. Among the bats studied, a nonecholocating pteropodid (Cynopterus sphinx) and an oral-emitter of echolocation sounds (Eptesicus fuscus) possess venous sinus networks that drain into the sphenopalatine vein rostral to the nasopharynx. In contrast, nasopharyngeal passageways of nasal-emitting hipposiderids are notably packed with venous sinuses. The mucosae of the nasopharyngeal passageways are far less vascular in nasal-emitting phyllostomids, in which vascular mucosae are more widely distributed in the nasal cavity, and in some nectar-feeding species, a particularly large venous sinus is adjacent to the vomeronasal organ. Therefore, we do not find a common pattern of venous sinus distribution associated with nasal emission of sounds in phyllostomids and hipposiderids. Instead, vascular mucosa is more likely critical for air-conditioning and sometimes vomeronasal function in all bats.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | | | - Thomas P Eiting
- Department of Neurobiology and Anatomy, Brain Institute, University of Utah, Utah, USA
| | - Hayley M Corbin
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Ito K, Tu VT, Eiting TP, Nojiri T, Koyabu D. On the Embryonic Development of the Nasal Turbinals and Their Homology in Bats. Front Cell Dev Biol 2021; 9:613545. [PMID: 33834019 PMCID: PMC8021794 DOI: 10.3389/fcell.2021.613545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/08/2021] [Indexed: 01/27/2023] Open
Abstract
Multiple corrugated cartilaginous structures are formed within the mammalian nasal capsule, eventually developing into turbinals. Due to its complex and derived morphology, the homologies of the bat nasal turbinals have been highly disputed and uncertain. Tracing prenatal development has been proven to provide a means to resolve homological problems. To elucidate bat turbinate homology, we conducted the most comprehensive study to date on prenatal development of the nasal capsule. Using diffusible iodine-based contrast-enhanced computed tomography (diceCT), we studied in detail the 3D prenatal development of various bat species and non-bat laurasiatherians. We found that the structure previously identified as “maxilloturbinal” is not the true maxilloturbinal and is only part of the ethmoturbinal I pars anterior. Our results also allowed us to trace the evolutionary history of the nasal turbinals in bats. The turbinate structures are overall comparable between laurasiatherians and pteropodids, suggesting that pteropodids retain the ancestral laurasiatherian condition. The absence of the ethmoturbinal I pars posterior in yangochiropterans and rhinolophoids has possibly occurred independently by convergent evolution.
Collapse
Affiliation(s)
- Kai Ito
- Department of Anatomy, Tissue and Cell Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thomas P Eiting
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,The University Museum, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan.,Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Smith TD, Ufelle AC, Cray JJ, Rehorek SB, DeLeon VB. Inward collapse of the nasal cavity: Perinatal consolidation of the midface and cranial base in primates. Anat Rec (Hoboken) 2020; 304:939-957. [PMID: 33040450 DOI: 10.1002/ar.24537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 11/06/2022]
Abstract
Living primates show a complex trend in reduction of nasal cavity spaces and structures due to moderate to severe constraint on interorbital breadth. Here we describe the ontogeny of the posterior end of the primate cartilaginous nasal capsule, the thimble shaped posterior nasal cupula (PNC), which surrounds the hind end of the olfactory region. We used a histologically sectioned sample of strepsirrhine primates and two non-primates (Tupaia belangeri, Rousettus leschenaulti), and histochemical and immunohistochemical methods to study the PNC in a perinatal sample. At birth, most strepsirrhines possess only fragments of PNC, and these lack a perichondrium. Fetal specimens of several species reveal a more complete PNC, but the cartilage exhibits uneven or weak reactivity to type II collagen antibodies. Moreover, there is relatively less matrix than in the septal cartilage, resulting in clustering of chondrocytes, some of which are in direct contact with adjacent connective tissues. In one primate (Varecia spp.) and both non-primates, the PNC has a perichondrium at birth. In older, infant Varecia and Rousettus, the perichondrium of the PNC is absent, and PNC fragmentation at its posterior pole has occurred in the former. Loss of the perichondrium for the PNC appears to precede resorption of the posterior end of the nasal capsule. These results suggest that the consolidation of the basicranial and facial skeletons happens ontogenetically earlier in primates than other mammals. We hypothesize that early loss of cartilage at the sphenoethmoidal articulation limits chondral mechanisms for nasal complexity, such as interstitial expansion or endochondral ossification.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Alexander C Ufelle
- Department of Public Health and Social Work, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, The Ohio State College of Medicine, Columbus, Ohio, USA.,Division of Biosciences, The Ohio State College of Dentistry, Columbus, Ohio, USA
| | - Susan B Rehorek
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Smith TD, Reynolds RL, Mano N, Wood BJ, Oladipupo L, Hughes GK, Corbin HM, Taylor J, Ufelle A, Burrows AM, Durham E, Vinyard CJ, Cray JJ, DeLeon VB. Cranial synchondroses of primates at birth. Anat Rec (Hoboken) 2020; 304:1020-1053. [DOI: 10.1002/ar.24521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Timothy D. Smith
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Rebecca L. Reynolds
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
| | - Nanami Mano
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Brody J. Wood
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Lanre Oladipupo
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Gabriel K. Hughes
- School of Physical Therapy Slippery Rock University Slippery Rock Pennsylvania USA
| | - Hayley M. Corbin
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
| | - Jane Taylor
- Department of Biomedical Education and Anatomy The Ohio State College of Medicine Columbus Ohio USA
| | - Alexander Ufelle
- Department of Biology Slippery Rock University Slippery Rock Pennsylvania USA
- Department of Public Health and Social Work Slippery Rock University Slippery Rock PA
| | - Anne M. Burrows
- Department of Physical Therapy Duquesne University Pittsburgh Pennsylvania USA
| | - Emily Durham
- Department of Anthropology Penn State University State College Pennsylvania USA
| | - Christopher J. Vinyard
- Department of Anatomy and Neurobiology Northeast Ohio Medical University Rootstown Ohio USA
| | - James J. Cray
- Department of Biomedical Education and Anatomy The Ohio State College of Medicine Columbus Ohio USA
- Division of Biosciences The Ohio State College of Dentistry Columbus Ohio USA
| | - Valerie B. DeLeon
- Department of Public Health and Social Work Slippery Rock University Slippery Rock PA
- Department of Anthropology University of Florida Gainesville Florida USA
| |
Collapse
|
12
|
Smith TD, Craven BA, Engel SM, Van Valkenburgh B, DeLeon VB. "Mucosal maps" of the canine nasal cavity: Micro-computed tomography and histology. Anat Rec (Hoboken) 2020; 304:127-138. [PMID: 32959987 DOI: 10.1002/ar.24511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
Nasal turbinals, delicate and complex bones of the nasal cavity that support respiratory or olfactory mucosa (OM), are now easily studied using high resolution micro-computed tomography (μ-CT). Standard μ-CT currently lacks the capacity to identify OM or other mucosa types without additional radio-opaque staining techniques. However, even unstained mucosa is more radio-opaque than air, and thus mucosal thickness can be discerned. Here, we assess mucosal thickness of the nasal fossa using the cranium of a cadaveric adult dog that was μ-CT scanned with an isotropic resolution of 30 μm, and subsequently histologically sectioned and stained. After co-alignment of μ-CT slice planes to that of histology, mucosal thickness was estimated at four locations. Results based on either μ-CT or histology indicate olfactory mucosa is thicker on average compared with non-olfactory mucosa (non-OM). In addition, olfactory mucosa has a lesser degree of variability than the non-OM. Variability in the latter appears to relate mostly to the varying degree of vascularity of the lamina propria. Because of this, in structures with both specialized vascular respiratory mucosa and OM, such as the first ethmoturbinal (ET I), the range of thickness of OM and non-OM may overlap. Future work should assess the utility of diffusible iodine-based contrast enhanced CT techniques, which can differentiate epithelium from the lamina propria, to enhance our ability to differentiate mucosa types on more rostral ethmoturbinals. This is especially critical for structures such as ET I, which have mixed functional roles in many mammals.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Serena M Engel
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | | | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Paddock K, Zeigler L, Harvey B, Prufrock KA, Liptak JM, Ficorilli CM, Hogg RT, Bonar CJ, Evans S, Williams L, Vinyard CJ, DeLeon VB, Smith TD. Comparative dental anatomy in newborn primates: Cusp mineralization. Anat Rec (Hoboken) 2020; 303:2415-2475. [PMID: 31802627 PMCID: PMC7269855 DOI: 10.1002/ar.24326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 11/07/2022]
Abstract
Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.5-39 μm voxels. Grayscale intensity from scans was converted to hydroxyapatite (HA) density (mg HA/cm3 ) using a linear conversion of grayscale values to calibration standards of known HA density (R2 = .99). Using Amira software, mineralized dental tissues were captured by segmenting the tooth cusps first and then capturing the remainder of the teeth at descending thresholds of gray levels. We assessed the relationship of MHD of selected teeth to cranial length using Pearson correlation coefficients. In monkeys, anterior teeth are more mineralized than postcanine teeth. In tarsiers and most lemurs and lorises, postcanine teeth are the most highly mineralized. This suggests that monkeys have a more prolonged process of dental mineralization that begins with incisors and canines, while mineralization of postcanine teeth is delayed. This may in part be a result of relatively late weaning in most anthropoid primates. Results also reveal that in lemurs and lorises, MHD of the mandibular first permanent molar (M1 ) negatively correlates with cranial length. In contrast, the MHD of M1 positively correlates with cranial length in monkeys. This supports the hypothesis that natural selection acts independently on dental growth as opposed to mineralization and indicates clear phylogenetic differences among primates.
Collapse
Affiliation(s)
- Kelsey Paddock
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Larissa Zeigler
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Brianna Harvey
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| | - Kristen A. Prufrock
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jordan M. Liptak
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| | | | - Russell T. Hogg
- Department of Rehabilitation Sciences, Florida Gulf Coast University, Fort Myers, Florida
| | | | | | - Lawrence Williams
- Department of Veterinary Sciences, UT MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas
| | - Christopher J. Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| | - Valerie B. DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida
| | - Timothy D. Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania
| |
Collapse
|
14
|
Eberspächer-Schweda MC, Schmitt K, Handschuh S, Fuchs-Baumgartinger A, Reiter AM. Diagnostic Yield of Micro-Computed Tomography (micro-CT) Versus Histopathology of a Canine Oral Fibrosarcoma. J Vet Dent 2020; 37:14-21. [PMID: 32484022 DOI: 10.1177/0898756420926519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Micro-computed tomography (micro-CT) imaging currently gains increased interest in human as well as veterinary medicine. The ability to image 3-dimensional (3D) biopsy specimens nondestructively down to 1 µm spatial resolution makes it a promising tool for microscopic tissue evaluation in addition to histopathology. Visualizing tumor margins and calculating tumor load on 3D reconstructions may also enhance oncological therapies. The objective of this study was to describe the workflow from tumor resection to histopathological diagnosis, using both routine hematoxylin-eosin (HE)-stained sections and micro-CT tomograms on a stage II oral fibrosarcoma in a 7-year-old Hovawart dog. The maxillectomy specimen was fixed with formalin and stained with an X-ray dense soft tissue contrast agent. Micro-CT imaging was done using an ex vivo specimen micro-CT device. Tumor margins could not be exactly determined on micro-CT tomograms due to limited image resolution and contrast. Histopathology was performed after washing out the contrast agent. It showed neoplastic cells infiltrating the surrounding tissue further than assumed from micro-CT images. A total tumor volume of 10.3 cm3 could be calculated based on correlating micro-CT tomograms with HE-stained sections. This correlative approach may be of particular interest for oncological therapy. More than that, micro-CT imaging technology supported histopathology by means of 3D orientation and selection of slices to be cut on determining tumor margins. In this clinical case report, micro-CT imaging did not provide unambiguous clinical evidence for oncological decision-making, but it showed potential to support histopathology and calculate tumor volume for further clinical use.
Collapse
Affiliation(s)
- Matthias C Eberspächer-Schweda
- Dentistry and Oral Surgery Service, Clinic of Small Animal Surgery, Department of Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kira Schmitt
- Dentistry and Oral Surgery Service, Clinic of Small Animal Surgery, Department of Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephan Handschuh
- VetCore Facility for Research Imaging Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Alexander M Reiter
- Dentistry and Oral Surgery Service, Section of Surgery, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Smith TD, Craven BA, Engel SM, Bonar CJ, DeLeon VB. Nasal airflow in the pygmy slow loris ( Nycticebus pygmaeus) based on a combined histological, computed tomographic and computational fluid dynamics methodology. ACTA ACUST UNITED AC 2019; 222:jeb.207605. [PMID: 31712355 DOI: 10.1242/jeb.207605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
'Macrosmatic' mammals have dedicated olfactory regions within their nasal cavity and segregated airstreams for olfaction and respiratory air-conditioning. Here, we examined the 3D distribution of olfactory surface area (SA) and nasal airflow patterns in the pygmy slow loris (Nycticebus pygmaeus), a primate with primitive nasal cavities, except for enlarged eyes that converge upon the posterodorsal nasal region. Using the head of an adult loris cadaver, we co-registered micro-computed tomography (CT) slices and histology sections to create a 3D reconstruction of the olfactory mucosa distribution. Histological sections were used to measure olfactory surface area and to annotate CT reconstructions. The loris has a complex olfactory recess (∼19% of total nasal SA) with multiple olfactory turbinals. However, the first ethmoturbinal has a rostral projection that extends far anterior to the olfactory recess, lined by ∼90% non-olfactory epithelium. Only one (of three) frontoturbinals bears olfactory mucosa. Computational fluid dynamics simulations of nasal airflow and odorant deposition revealed that there is some segregation of respiratory and olfactory flow in the loris nose, but that it is not as distinct as in well-studied 'macrosmats' (e.g. the dog). In the loris, airflow is segregated medially and laterally to vertically elongated, plate-like first ethmoturbinals. Thus, lorises may be said to have certain macrosmatic anatomical characteristics (e.g. olfactory recess), but not segregated nasal airflow patterns that are optimized for olfaction, as in canids. These results imply that a binary 'microsmatic/macrosmatic' dichotomy does not exist. Rather, mammals appear to exhibit complex trends with respect to specialization of the turbinals and recesses.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Serena M Engel
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | | | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Laitman JT, Albertine KH. The Anatomical Record Uncovers Nature's Extreme Species and How They Have Survived in a Novel Two-Volume Special Issue. Anat Rec (Hoboken) 2019; 303:7-9. [PMID: 31777184 DOI: 10.1002/ar.24297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
17
|
Lundeen IK, Kirk EC. Internal nasal morphology of the Eocene primate Rooneyia viejaensis and extant Euarchonta: Using μCT scan data to understand and infer patterns of nasal fossa evolution in primates. J Hum Evol 2019; 132:137-173. [PMID: 31203844 DOI: 10.1016/j.jhevol.2019.04.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 11/18/2022]
Abstract
Primates have historically been viewed as having a diminished sense of smell compared to other mammals. In haplorhines, olfactory reduction has been inferred partly based on the complexity of the bony turbinals within the nasal cavity. Some turbinals are covered in olfactory epithelium, which contains olfactory receptor neurons that detect odorants. Accordingly, turbinal number and complexity has been used as a rough anatomical proxy for the relative importance of olfactory cues for an animal's behavioral ecology. Unfortunately, turbinals are delicate and rarely preserved in fossil specimens, limiting opportunities to make direct observations of the olfactory periphery in extinct primates. Here we describe the turbinal morphology of Rooneyia viejaensis, a late middle Eocene primate of uncertain phylogenetic affinities from the Tornillo Basin of West Texas. This species is currently the oldest fossil primate for which turbinals are preserved with minimal damage or distortion. Microcomputed tomography (μCT) reveals that Rooneyia possessed 1 nasoturbinal, 4 bullar ethmoturbinals, 1 frontoturbinal, 1 interturbinal, and an olfactory recess. This pattern is broadly similar to the condition seen in some extant strepsirrhine primates but differs substantially from the condition seen in extant haplorhines. Crown haplorhines possess only two ethmoturbinals and lack frontoturbinals, interturbinals, and an olfactory recess. Additionally, crown anthropoids have ethmoturbinals that are non-bullar. These observations reinforce the conclusion that Rooneyia is not a stem tarsiiform or stem anthropoid. However, estimated olfactory turbinal surface area in Rooneyia is greater than that of similar-sized haplorhines but smaller than that of similar-sized lemuriforms and lorisiforms. This finding suggests that although Rooneyia was broadly plesiomorphic in retaining a large complement of olfactory turbinals as in living strepsirrhines, Rooneyia may have evolved somewhat diminished olfactory abilities as in living haplorhines.
Collapse
Affiliation(s)
- Ingrid K Lundeen
- Department of Anthropology, University of Texas at Austin, SAC 4.102, 2201 Speedway Stop C3200, Austin, TX 78712, USA.
| | - E Christopher Kirk
- Department of Anthropology, University of Texas at Austin, SAC 4.102, 2201 Speedway Stop C3200, Austin, TX 78712, USA; Jackson School Museum of Earth History, University of Texas at Austin, J. J. Pickle Research Campus, 10100 Burnet Road, PRC 6-VPL, R7600, Austin, TX 78758, USA
| |
Collapse
|
18
|
Rygg AD, Van Valkenburgh B, Craven BA. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity. Chem Senses 2018; 42:683-698. [PMID: 28981825 DOI: 10.1093/chemse/bjx053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nasal airflow plays a critical role in olfaction by transporting odorant from the environment to the olfactory epithelium, where chemical detection occurs. Most studies of olfaction neglect the unsteadiness of sniffing and assume that nasal airflow and odorant transport are "quasi-steady," wherein reality most mammals "sniff." Here, we perform computational fluid dynamics simulations of airflow and odorant deposition in an anatomically accurate model of the coyote (Canis latrans) nasal cavity during quiet breathing, a notional quasi-steady sniff, and unsteady sniffing to: quantify the influence of unsteady sniffing, assess the validity of the quasi-steady assumption, and investigate the functional advantages of sniffing compared to breathing. Our results reveal that flow unsteadiness during sniffing does not appreciably influence qualitative (gross airflow and odorant deposition patterns) or quantitative (time-averaged olfactory flow rate and odorant uptake) measures of olfactory function. A quasi-steady approximation is, therefore, justified for simulating time-averaged olfactory function in the canine nose. Simulations of sniffing versus quiet breathing demonstrate that sniffing delivers about 2.5 times more air to the olfactory recess and results in 2.5-3 times more uptake of highly- and moderately-soluble odorants in the sensory region per unit time, suggesting one reason why dogs actively sniff. Simulations also reveal significantly different deposition patterns in the olfactory region during inspiration for different odorants, and that during expiration there is little retronasal odorant deposition in the sensory region. These results significantly improve our understanding of canine olfaction, and have several practical implications regarding computer simulation of olfactory function.
Collapse
Affiliation(s)
- Alex D Rygg
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California 90095, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California 90095, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
19
|
Smith TD, McMahon MJ, Millen ME, Llera C, Engel SM, Li L, Bhatnagar KP, Burrows AM, Zumpano MP, DeLeon VB. Growth and Development at the Sphenoethmoidal Junction in Perinatal Primates. Anat Rec (Hoboken) 2017; 300:2115-2137. [DOI: 10.1002/ar.23630] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy D. Smith
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
- Department of AnthropologyUniversity of PittsburghPittsburgh Pennsylvania
| | - Matthew J. McMahon
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Michelle E. Millen
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Catherine Llera
- Department of AnthropologyUniversity of FloridaGainesville Florida
| | - Serena M. Engel
- School of Physical TherapySlippery Rock UniversitySlippery Rock Pennsylvania
| | - Ly Li
- Department of Physical TherapyDuquesne UniversityPittsburgh Pennsylvania
| | - Kunwar P. Bhatnagar
- Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisville Kentucky
| | - Anne M. Burrows
- Department of AnthropologyUniversity of PittsburghPittsburgh Pennsylvania
- Department of Physical TherapyDuquesne UniversityPittsburgh Pennsylvania
| | - Michael P. Zumpano
- Department of Basic SciencesNew York Chiropractic CollegeSeneca Falls New York
| | | |
Collapse
|
20
|
DeLeon VB, Smith TD, Rosenberger AL. Ontogeny of the Postorbital Region in Tarsiers and Other Primates. Anat Rec (Hoboken) 2017; 299:1631-1645. [PMID: 27870349 DOI: 10.1002/ar.23476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/06/2022]
Abstract
Bony structure of the postorbital region is a key trait distinguishing major clades of primates. Strepsirrhines share a postorbital bar, and anthropoids share a complete postorbital septum. At issue is whether the partial postorbital septum of tarsiers unites living tarsiers more closely with anthropoids than with certain large-eyed Eocene fossils. Previously we reported incomplete postorbital closure in tarsiers at birth. In this article, we document comparative analyses of the postorbital region in a broad range of perinatal primates. Virtual reconstructions of microCT data were used to study three-dimensional structure of the perinatal cranium in these taxa. We also describe and illustrate formation of the tarsier partial postorbital septum through the perinatal period using a growth series of Tarsius syrichta. Our results support the hypothesis that partial postorbital septation in the tarsier is secondary to eye hypertrophy. Based on these observations, we propose a structural hypothesis for phylogenetic differences observed in the primate postorbital region. Specifically, we propose that key postorbital traits, including the frontal spur in strepsirrhines and the posterior lamina of the zygomatic in anthropoids, develop as a result of the spatial relationships of brain, eyes, and teeth. Haplorhines are united by expansion of the anterior cranial fossa and loss of the frontal spur. Anthropoids are further united to the exclusion of tarsiers by expansion of the temporal lobes and associated formation of the posterior lamina of the zygomatic. Mechanical forces related to these spatial relationships may be modulated by deep fascia of the orbit to induce formation of the postorbital septum. Anat Rec, 299:1631-1645, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Alfred L Rosenberger
- Department of Anthropology and Archaeology, Brooklyn College, Brooklyn, New York, USA
| |
Collapse
|
21
|
Rosenberger AL, Smith TD, DeLeon VB, Burrows AM, Schenck R, Halenar LB. Eye Size and Set in Small-Bodied Fossil Primates: A Three-Dimensional Method. Anat Rec (Hoboken) 2016; 299:1671-1689. [DOI: 10.1002/ar.23479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Alfred L. Rosenberger
- Department of Anthropology and Archaeology; Brooklyn College, City University of New York; Brooklyn New York
- New York Consortium in Evolutionary Primatology (NYCEP), Department of Anthropology; The Graduate Center, City University of New York; New York New York
- Department of Mammalogy; American Museum of Natural History; New York New York
| | - Tim D. Smith
- School of Physical Therapy; Slippery Rock University; Slippery Rock Pennsylvania
- Department of Anthropology; University of Pittsburgh; Pittsburgh Pennsylvania
| | - Valerie B. DeLeon
- Department of Anthropology; University of Florida; Gainesville Florida
| | - Anne M. Burrows
- Department of Physical Therapy; Duquesne University; Pittsburgh Pennsylvania
| | - Robert Schenck
- Earth and Environmental Sciences; CUNY Graduate Center; New York New York
| | - Lauren B. Halenar
- Department of Biology; Farmingdale State College (SUNY); Farmingdale New York
- New York Consortium in Evolutionary Primatology Morphometrics Group (NMG), City University of New York; New York New York
| |
Collapse
|
22
|
Smith TD, Martell MC, Rossie JB, Bonar CJ, Deleon VB. Ontogeny and Microanatomy of the Nasal Turbinals in Lemuriformes. Anat Rec (Hoboken) 2016; 299:1492-1510. [PMID: 27535814 DOI: 10.1002/ar.23465] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/11/2022]
Abstract
The nasal cavity of strepsirrhine primates (lemurs and lorises) has the most primitive arrangement of extant primates. In nocturnal species, the numerous turbinals of the ethmoid bear a large surface area of olfactory mucosa (OM). In this study, we examine turbinal development in four genera of diurnal or cathemeral lemuriformes. In addition, we examined an age series of each genus to detect whether structures bearing OM as opposed to respiratory mucosa (RM) develop differently, as has been observed in nocturnal strepsirrhines. In adults, the maxilloturbinal is covered by highly vascular respiratory mucosa throughout its entire length, with large sinusoidal vessels in the lamina propria; any parts of other turbinals that closely borders the maxilloturbinal has a similar mucosa. Posteriorly, the most vascular RM is restricted in the nasopharyngeal duct, which becomes partitioned from the dorsal olfactory region. A comparison of newborns to adults reveals that the first ethmoturbinal increases more in length in the parts that are covered with RM than OM, which supports the idea that ethmoturbinals can specialize in more than one function. Finally, we observe that the regions of turbinals that are ultimately covered with RM develop more accessory lamellae or additional surface area of existing scrolls compared to the regions covered with OM. Because such outgrowths of bone develop postnatally and without cartilaginous precursors, we hypothesize that the complexity of olfactory lamellae within the ethmoturbinal complex is primarily established at birth, while respiratory lamellae become elaborated due to the epigenetic influence of respiratory physiology. Anat Rec, 299:1492-1510, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania. .,Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Molly C Martell
- Department of Anthropology, University of Florida, Gainesville, Florida
| | - James B Rossie
- Department of Anthropology, SUNY Stony Brook, Stony Brook, New York
| | | | - Valerie B Deleon
- Department of Anthropology, University of Florida, Gainesville, Florida
| |
Collapse
|
23
|
Xi J, Si XA, Kim J, Zhang Y, Jacob RE, Kabilan S, Corley RA. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction. Anat Rec (Hoboken) 2016; 299:853-68. [PMID: 27145450 DOI: 10.1002/ar.23367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan
| | - Xiuhua A Si
- Department of Mechanical Engineering, California Baptist University, Riverside, California
| | - Jongwon Kim
- College of Engineering, University of Georgia, Athens, Georgia
| | - Yu Zhang
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan
| | - Richard E Jacob
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| | - Senthil Kabilan
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
24
|
Smith TD, Muchlinksi MN, Jankord KD, Progar AJ, Bonar CJ, Evans S, Williams L, Vinyard CJ, DeLeon VB. Dental maturation, eruption, and gingival emergence in the upper jaw of newborn primates. Anat Rec (Hoboken) 2015; 298:2098-131. [PMID: 26425925 PMCID: PMC4654129 DOI: 10.1002/ar.23273] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 11/07/2022]
Abstract
In this report we provide data on dental eruption and tooth germ maturation at birth in a large sample constituting the broadest array of non-human primates studied to date. Over 100 perinatal primates, obtained from natural captive deaths, were screened for characteristics indicating premature birth, and were subsequently studied using a combination of histology and micro-CT. Results reveal one probable unifying characteristic of living primates: relatively advanced maturation of deciduous teeth and M1 at birth. Beyond this, there is great diversity in the status of tooth eruption and maturation (dental stage) in the newborn primate. Contrasting strategies in producing a masticatory battery are already apparent at birth in strepsirrhines and anthropoids. Results show that dental maturation and eruption schedules are potentially independently co-opted as different strategies for attaining feeding independence. The most common strategy in strepsirrhines is accelerating eruption and the maturation of the permanent dentition, including replacement teeth. Anthropoids, with only few exceptions, accelerate mineralization of the deciduous teeth, while delaying development of all permanent teeth except M1. These results also show that no living primate resembles the altricial tree shrew (Tupaia) in dental development. Our preliminary observations suggest that ecological explanations, such as diet, provide an explanation for certain morphological variations at birth. These results confirm previous work on perinatal indriids indicating that these and other primates telegraph their feeding adaptations well before masticatory anatomy is functional. Quantitative analyses are required to decipher specific dietary and other influences on dental size and maturation in the newborn primate.
Collapse
Affiliation(s)
- Timothy D. Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock PA, 16057
- Department of Anthropology, University of Pittsburgh, Pittsburgh PA
| | - Magdalena N. Muchlinksi
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, USA
| | - Kathryn D. Jankord
- School of Physical Therapy, Slippery Rock University, Slippery Rock PA, 16057
| | - Abbigal J. Progar
- Department of Biology, Slippery Rock University, Slippery Rock PA, 16057
| | | | - Sian Evans
- Dumond Conservancy, Miami, Florida 33170
- Department of Biological Sciences, Florida International University, Miami Fl 33199
| | - Lawrence Williams
- Michale E. Keeling Center for Comparative Medicine and Research, Department of Veterinary Sciences. UT MD Anderson Cancer Center
| | | | | |
Collapse
|
25
|
Van Valkenburgh B, Smith TD, Craven BA. Tour of a labyrinth: exploring the vertebrate nose. Anat Rec (Hoboken) 2015; 297:1975-84. [PMID: 25312359 DOI: 10.1002/ar.23021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023]
Abstract
This special issue of The Anatomical Record is the outcome of a symposium entitled "Inside the Vertebrate Nose: Evolution, Structure and Function." The skeletal framework of the nasal cavity is a complicated structure that often houses sinuses and comprises an internal skeleton of bone or cartilage that can vary greatly in architecture among species. The nose serves multiple functions, including olfaction and respiratory air-conditioning, and its morphology is constrained by evolution, development, and conflicting demands on cranial space, such as enlarged orbits. The nasal cavity of vertebrates has received much more attention in the last decade due to the emergence of nondestructive methods that allow improved visualization of the internal anatomy of the skull, such as high-resolution x-ray computed tomography and magnetic resonance imaging. The 17 articles included here represent a broad range of investigators, from paleontologists to engineers, who approach the nose from different perspectives. Key topics include the evolution and development of the nose, its comparative anatomy and function, and airflow through the nasal cavity of individual species. In addition, this special issue includes review articles on anatomical reduction of the olfactory apparatus in both cetaceans and primates (the vomeronasal system), as well as the molecular biology of olfaction in vertebrates. Together these articles provide an expansive summary of our current understanding of vertebrate nasal anatomy and function. In this introduction, we provide background information and an overview of each of the three primary topics, and place each article within the context of previous research and the major challenges that lie ahead.
Collapse
|
26
|
Ranslow AN, Richter JP, Neuberger T, Van Valkenburgh B, Rumple CR, Quigley AP, Pang B, Krane MH, Craven BA. Reconstruction and morphometric analysis of the nasal airway of the white-tailed deer (Odocoileus virginianus) and implications regarding respiratory and olfactory airflow. Anat Rec (Hoboken) 2015; 297:2138-47. [PMID: 25312370 DOI: 10.1002/ar.23037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/08/2022]
Abstract
Compared with other mammals (e.g., primates, rodents, and carnivores), the form and function of the ungulate nasal fossa, in particular the ethmoidal region, has been largely unexplored. Hence, the nasal anatomy of the largest prey species remains far less understood than that of their predators, rendering comparisons and evolutionary context unclear. Of the previous studies of nasal anatomy, none have investigated the detailed anatomy and functional morphology of the white-tailed deer (Odocoileus virginianus), a species that is ubiquitous throughout North and Central America and in northern regions of South America. Here, nasal form and function is quantitatively investigated in an adult white-tailed deer using high-resolution magnetic resonance imaging, combined with anatomical reconstruction and morphometric analysis techniques. The cross-sectional anatomy of the airway is shown and a three-dimensional anatomical model of the convoluted nasal fossa is reconstructed from the image data. A detailed morphometric analysis is presented that includes quantitative distributions of airway size and shape (e.g., airway perimeter, cross-sectional area, surface area) and the functional implications of these data regarding respiratory and olfactory airflow are investigated. The white-tailed deer is shown to possess a long, double scroll maxilloturbinal that occupies approximately half of the length of the nasal fossa and provides a large surface area for respiratory heat and moisture exchange. The ethmoidal region contains a convoluted arrangement of folded ethmoturbinals that appear to be morphologically distinct from the single and double scroll ethmoturbinals found in most other non-primates. This complex folding provides a large surface area in the limited space available for chemical sensing, due to the expansive maxilloturbinal. Morphologically, the white-tailed deer is shown to possess a dorsal meatus that leads to an olfactory recess, a nasal architecture that has been shown in other non-primate species to cause unique nasal airflow patterns to develop during sniffing that are optimized for odorant delivery to the sensory part of the nose. Additionally, we demonstrate that, during respiration, airflow in the nasal vestibule and the anterior maxilloturbinal region may be transitional or turbulent, in which case turbulent mixing is expected to enhance respiratory heat and moisture exchange, which could be an important contribution to thermoregulation and water conservation in the white-tailed deer.
Collapse
Affiliation(s)
- Allison N Ranslow
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania; Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Valkenburgh B, Pang B, Bird D, Curtis A, Yee K, Wysocki C, Craven BA. Respiratory and olfactory turbinals in feliform and caniform carnivorans: the influence of snout length. Anat Rec (Hoboken) 2015; 297:2065-79. [PMID: 25312365 DOI: 10.1002/ar.23026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
To enhance bite force at the canines, feliform carnivorans have short rostra relative to caniform carnivorans. Rostral reduction in feliforms results in less rostrocaudal space for the maxilloturbinals, the complex set of bones involved in conditioning inspired air and conserving water. It is unknown whether the maxilloturbinals might show adaptations to adjust for this loss, such as greater complexity than what is observed in longer snouted caniforms. To understand the impact of rostral shortening on turbinals in feliforms, we used high resolution CT scans to quantify turbinal surface areas (SA) in 16 feliforms and compared them with published data on 20 caniforms. Results indicate that feliforms have reduced maxilloturbinal SA for their body mass relative to caniforms, but comparable fronto-ethmoturbinal SA. However, anterior portions of the ethmoturbinals in feliforms extend forward into the snout and are positioned within the respiratory pathway. When the SA of these anterior ethmoturbinals is added to maxilloturbinal SA to produce an estimated respiratory SA, feliforms and caniforms are similar in respiratory SA. This transfer of ethmoturbinal SA to respiratory function results in feliforms having less estimated olfactory SA relative to caniforms. Previous work on canids found a positive association between olfactory surface area and diet, but this was not found for felids. Results are consistent with feliforms having somewhat reduced olfactory ability relative to caniforms. If confirmed by behavioral data, the relative reduction in olfactory SA in many feliforms may reflect a greater reliance on vision in foraging relative to caniforms.
Collapse
|