1
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
2
|
Nomir AG, El Sharaby A, Hanafy BG, Abumandour MMA. Head of Zebu cattle (Bos Taurus indicus): sectional anatomy and 3D computed tomography. BMC Vet Res 2024; 20:318. [PMID: 39014413 PMCID: PMC11250968 DOI: 10.1186/s12917-024-04141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
The research was designed to use computed tomography (CT) with 3D-CT reconstruction imaging techniques and the various anatomical sections-plana transversalia, frontalis, and dorsalia-to describe the anatomical architecture of the Zebu cattle head. Our study used nine mature heads. The CT bone window created detailed images of cranial bones, mandibles, teeth, and hyoid bones. All of the head cavities were evaluated, including the cranial, orbital, oral, auricular, and nasal cavities with their paranasal and conchal sinuses. The septum nasi, attached to the vomer and maxillary bones, did not reach the nasal cavity floor caudally at the level of the second premolar teeth, resulting in a single median channel from the choanae to the nasopharynx. The positions, boundaries, and connections of the paranasal sinuses were clearly identified. There were four nasal conchal sinuses (that were named the dorsal, middle, ethmoidal, and ventral) and five paranasal sinuses that were described as the following: sinus frontalis, maxillaris, palatinorum, and lacrimalis, as defined in the different anatomical sections and computed tomographic images. The complicated sinus frontalis caused the pneumatization of all bones that surrounded the cranial cavity, with the exception of the ethmoidal and body of basisphenoid bones. The sinus maxillaris was connected to the sinus lacrimalis and palatinorum through the maxillolacrimal and palatomaxillary openings, and to the middle nasal meatus through the nasomaxillary opening. Our findings provide a detailed anatomical knowledge for disease diagnosis to internal medicine veterinarians and surgeons by offering a comprehensive atlas of the Zebu cattle anatomy.
Collapse
Affiliation(s)
- Ahmed G Nomir
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ashraf El Sharaby
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Basma G Hanafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Post Box: 22758, Alexandria, 21944, Egypt
| | - Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Post Box: 22758, Alexandria, 21944, Egypt.
| |
Collapse
|
3
|
Rosenblatt E, Cook JD, DiRenzo GV, Grant EHC, Arce F, Pepin KM, Rudolph FJ, Runge MC, Shriner S, Walsh DP, Mosher BA. Epidemiological modeling of SARS-CoV-2 in white-tailed deer (Odocoileus virginianus) reveals conditions for introduction and widespread transmission. PLoS Comput Biol 2024; 20:e1012263. [PMID: 38995977 PMCID: PMC11268674 DOI: 10.1371/journal.pcbi.1012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/24/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Emerging infectious diseases with zoonotic potential often have complex socioecological dynamics and limited ecological data, requiring integration of epidemiological modeling with surveillance. Although our understanding of SARS-CoV-2 has advanced considerably since its detection in late 2019, the factors influencing its introduction and transmission in wildlife hosts, particularly white-tailed deer (Odocoileus virginianus), remain poorly understood. We use a Susceptible-Infected-Recovered-Susceptible epidemiological model to investigate the spillover risk and transmission dynamics of SARS-CoV-2 in wild and captive white-tailed deer populations across various simulated scenarios. We found that captive scenarios pose a higher risk of SARS-CoV-2 introduction from humans into deer herds and subsequent transmission among deer, compared to wild herds. However, even in wild herds, the transmission risk is often substantial enough to sustain infections. Furthermore, we demonstrate that the strength of introduction from humans influences outbreak characteristics only to a certain extent. Transmission among deer was frequently sufficient for widespread outbreaks in deer populations, regardless of the initial level of introduction. We also explore the potential for fence line interactions between captive and wild deer to elevate outbreak metrics in wild herds that have the lowest risk of introduction and sustained transmission. Our results indicate that SARS-CoV-2 could be introduced and maintained in deer herds across a range of circumstances based on testing a range of introduction and transmission risks in various captive and wild scenarios. Our approach and findings will aid One Health strategies that mitigate persistent SARS-CoV-2 outbreaks in white-tailed deer populations and potential spillback to humans.
Collapse
Affiliation(s)
- Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| | - Jonathan D. Cook
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Graziella V. DiRenzo
- U. S. Geological Survey, Massachusetts Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Evan H. Campbell Grant
- U.S. Geological Survey, Eastern Ecological Science Center, Turner’s Falls, Massachusetts, United States of America
| | - Fernando Arce
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kim M. Pepin
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - F. Javiera Rudolph
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
- Department of Ecosystem Sciences and Management, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael C. Runge
- U.S. Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, United States of America
| | - Susan Shriner
- National Wildlife Research Center, USDA, APHIS, Fort Collins, Colorado, United States of America
| | - Daniel P. Walsh
- U. S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, Montana, United States of America
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
4
|
Núñez-Cook S, Vidal-Mugica F, Salinas P. Anatomy and computed tomography of the nasal cavity, nasal conchae, and paranasal sinuses of the endangered Patagonian huemul deer (Hippocamelus bisulcus). Anat Rec (Hoboken) 2024; 307:141-154. [PMID: 37084232 DOI: 10.1002/ar.25230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
This study explores for the first time the shape, volume, and configuration of nasal cavity structures of the endangered Patagonian huemul deer via computed tomography (CT). Three-dimensional (3D) reconstructions derived from data sets obtained from five Patagonian huemul deer skulls were analyzed. Using semiautomatic segmentation, 3D models were created of all the sinus compartments and nasal conchae. Volumetric measurements were taken of seven sinus compartments. The Patagonian huemul deer has a wide, large nasal cavity, with an osseous nasal aperture typical of cervids and a choana with characteristics that differentiate it from the pudu and roe deer. It also has six nasal meatuses and three nasal conchae, with the ventral nasal concha having the greatest volume and surface, which given its extension ensures a greater ability to humidify and heat the air. Further analysis showed the complex system of paranasal sinuses to be characterized by a rostroventral and interconnected group, where communication with the nasal cavity is common through the nasomaxillary opening, and a caudodorsal group that communicates with the nasal cavity through openings in the nasal meatuses. Our study of the endangered Patagonian huemul deer documents an intricate, and in some nasal cavity structures, unique morphological construction which may predispose it to higher rates of sinonasal afflictions due largely to its nasal complex anatomy, thus affecting its high cultural value.
Collapse
Affiliation(s)
- Samuel Núñez-Cook
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- MSc Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| | - Fernando Vidal-Mugica
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco, Chile
- Fauna Andina, Wildlife Conservation and Management Center, Villarrica, Chile
- IUCN, Deer Specialist Group, Apple Valley, Minnesota, USA
- IUCN, Conservation Planning Specialist Group, Apple Valley, Minnesota, USA
| | - Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Zamora-Perarnau C, Malvè M, Fernández-Parra R. Computational fluid dynamics comparison of the upper airway velocity, pressure, and resistance in cats using an endotracheal tube or a supraglottic airway device. Front Vet Sci 2023; 10:1183223. [PMID: 37818391 PMCID: PMC10561303 DOI: 10.3389/fvets.2023.1183223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Intoduction In veterinary medicine, airway management of cats under general anesthesia is performed with an endotracheal tube (ETT) or supraglottic airway device (SGAD). This study aims to describe the use of computational fluid dynamics (CFD) to assess the velocities, pressures, and resistances of cats with ETT or SGAD. Methods A geometrical reconstruction model of the device, trachea, and lobar bronchi was carried out from computed tomography (CT) scans that include the head, neck, and thorax. Twenty CT scans of cats under general anesthesia using ETT (n = 10) and SGAD (n = 10) were modeled and analyzed. An inspiratory flow of 2.4 L/min was imposed in each model and velocity (m/s), general and regional pressures (cmH2O) were computed. General resistance (cmH2O/L/min) was calculated using differential pressure differences between the device inlet and lobar bronchi. Additionally, regional resistances were calculated at the device's connection with the breathing circuit (region A), at the glottis area for the SGAD, and the area of the ETT exit (bevel) (region B) and the device itself (region C). Results Recirculatory flow and high velocities were found at the ETT's bevel and at the glottis level in the SGAD group. The pressure gradient (Δp) was more enhanced in the ETT cases compared with the SGAD cases, where the pressure change was drastic. In region A, the Δp was higher in the ETT group, while in regions B and C, it was higher in the SGAD group. The general resistance was not statistically significant between groups (p = 0.48). Higher resistances were found at the region A (p = <0.001) in the ETT group. In contrast, the resistance was higher in the SGAD cases at the region B (p = 0.001). Discussion Overall, the provided CT-based CFD analysis demonstrated regional changes in airway pressure and resistance between ETT and SGAD during anesthetic flow conditions. Correct selection of the airway device size is recommended to avoid upper airway obstruction or changes in flow parameters.
Collapse
Affiliation(s)
- Carla Zamora-Perarnau
- Doctoral School, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
- Department of Small Animal Medicine and Surgery, Faculty of Veterinary Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
- Veterinary Referral Hospital UCV, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre (UPNA), Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rocío Fernández-Parra
- Department of Small Animal Medicine and Surgery, Faculty of Veterinary Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
- Veterinary Referral Hospital UCV, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
6
|
Yuk J, Akash MMH, Chakraborty A, Basu S, Chamorro LP, Jung S. Morphology of pig nasal structure and modulation of airflow and basic thermal conditioning. Integr Comp Biol 2023; 63:304-314. [PMID: 36731869 DOI: 10.1093/icb/icad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid-particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - Aneek Chakraborty
- Department of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
7
|
Xi J, Si XA, Malvè M. Nasal anatomy and sniffing in respiration and olfaction of wild and domestic animals. Front Vet Sci 2023; 10:1172140. [PMID: 37520001 PMCID: PMC10375297 DOI: 10.3389/fvets.2023.1172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, United States
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre, Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
8
|
Kessler C, Wootton E, Shafer ABA. Speciation without gene-flow in hybridizing deer. Mol Ecol 2023; 32:1117-1132. [PMID: 36516402 DOI: 10.1111/mec.16824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Under the ecological speciation model, divergent selection acts on ecological differences between populations, gradually creating barriers to gene flow and ultimately leading to reproductive isolation. Hybridisation is part of this continuum and can both promote and inhibit the speciation process. Here, we used white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of speciation in hybridizing sister species. We quantified genome-wide historical introgression and performed genome scans to look for signatures of four different selection scenarios. Despite ample modern evidence of hybridisation, we found negligible patterns of ancestral introgression and no signatures of divergence with gene flow, rather localized patterns of allopatric and balancing selection were detected across the genome. Genes under balancing selection were related to immunity, MHC and sensory perception of smell, the latter of which is consistent with deer biology. The deficiency of historical gene-flow suggests that white-tailed and mule deer were spatially separated during the glaciation cycles of the Pleistocene and genome wide differentiation accrued via genetic drift. Dobzhansky-Muller incompatibilities and selection against hybrids are hypothesised to be acting, and diversity correlations to recombination rates suggests these sister species are far along the speciation continuum.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Eric Wootton
- Biochemistry & Molecular Biology, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
9
|
Igado O, Joannis J. Skull Shape Variations in the Eidolon helvum (African Fruit Bat) Based on Geographical Location. Niger J Physiol Sci 2022; 37:101-111. [PMID: 35947850 DOI: 10.54548/njps.v37i1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The shape and size of a skull provides insight into the age, breed and gender of the animal. Skull shape variations have been reported in different animals, with some theories linking these variations to evolution and/or migration. This study assessed the variations observed in the skull shape, size and gross morphometrics of two groups of the Eidolon helvum obtained from two geographical regions in Nigeria (south and north). All skulls were rostro-caudally elongated, having a dolichocephalic appearance. The skulls from the north had a distinct dome shape, with a more prominent zygomatic process, absence of a 'diastema' and an extra upper molar, while the southern skulls showed a more dorsally flattened skull and a less prominent zygomatic process. The shape of the sagittal crest was different in the two groups, while there was the presence of an accessory infraorbital foramen in some of the southern skulls. The southern skulls lacked the palatine foramen. The lacrimal foramen was observed to be more caudally placed in the southern skulls. Values for most linear measurements were higher in the northern skulls, although statistically significant difference was not present in all. The value for the neurocranial volume was considerably higher in the northern skulls (4.41 ± 0.28 mls) relative to the southern skulls (2.0 ± 0.27 mls). Statistically significant differences were not observed between males and females (within regions). Data obtained from this study may find application in evolution and migration studies, wildlife medicine and surgery and comparative and forensic anatomy.
Collapse
|
10
|
Smith TD, Corbin HM, King SEE, Bhatnagar KP, DeLeon VB. A comparison of diceCT and histology for determination of nasal epithelial type. PeerJ 2021; 9:e12261. [PMID: 34760352 PMCID: PMC8571959 DOI: 10.7717/peerj.12261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022] Open
Abstract
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat (Cynopterus sphinx) and a late fetal vampire bat (Desmodus rotundus) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman’s glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman’s glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Hayley M Corbin
- Department of Biology, Slippery Rock University, Slippery Rock University, Slippery Rock, PA, United States
| | - Scot E E King
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, USA
| | - Kunwar P Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Abumandour MMA, El-Bakary R, Enany ES, Karkoura A, Farid S. Biological aspects of the nasal turbinates of the Anatolian shepherd dog captured from Egypt: Using computed tomography, histological, and scanning electron microscopic observations. Microsc Res Tech 2021; 85:927-939. [PMID: 34651363 DOI: 10.1002/jemt.23962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
The current study was designed to describe the nasal turbinates of 15 heads of Anatolian shepherd dogs using the histology and scanning electron microscope. The caudal part of the nasal cavity is almost occupied by the ethmoidal concha that is related to the high dog's smelling. Keratinized stratified squamous epithelial lining of the rostral part of dorsal and ventral concha were interdigitated with the underlying lamina propria, with numerous sebaceous and sweat glands. The pseudostratified squamous epithelium lining of the middle part of the dorsal and ventral conchae had simple seromucous glands. The caudal third of dorsal, ventral, and ethmoidal conchae covered by olfactory epithelium that had three cell types; basal, supporting, and bipolar cells with mucous glands. SEM of the vestibular region shows that the dorsal conchae had a wrinkled surface with microvilli, little olfactory buds, and small sebaceous and sweat glands openings, while the ventral conchae had a lot of filiform-like microvilli. SEM of the respiratory region shows that the dorsal conchae had a little number of seromucous glands and a rosette-shape cilia, while the ventral conchae had numerous cellular cilia that cover all surface. SEM of the fundus region shows that the dorsal conchae had numerous microvilli of ciliated olfactory cells, while the ventral conchae had numerous long microvilli of ciliated olfactory cells. SEM of the ethmoidal nasal conchae shows a dense network of long microvilli of ciliated olfactory cells. We concluded that the morphological features of the dog's nasal turbinates were correlated with their environmental condition.
Collapse
Affiliation(s)
- Mohamed M A Abumandour
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Raafat El-Bakary
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - El-Said Enany
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf Karkoura
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sara Farid
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Ogbonnaya O, Ibe CS, Ikpegbu E. Gross morphological and morphometric study of the upper respiratory system of the African giant rat (Cricetomys gambianus, Waterhouse 1840). Anat Rec (Hoboken) 2021; 305:1536-1547. [PMID: 34529896 DOI: 10.1002/ar.24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
The nose is a structurally and functionally complex organ in the upper respiratory tract. It not only serves as the principal organ for the sense of smell, but also functions to efficiently filter, warm, and humidify inhaled air before the air enters the more delicate distal tracheobronchial airways and alveolar parenchyma of the lungs. Despite the volume of published studies on the biology of rodents, there is no information on the gross upper respiratory morphology of the African giant rat (AGR) in the available literature. Hence, this study aimed to examine the anatomy of the turbinates, their meatuses, and the morphometry of the nasal cavity. The following were found and reported in this study: (a) There were three nasal conchae in AGR: the nasoturbinate, which was the largest; the ethmoturbinate, which was composed of one well-developed ectoturbinate and three well-developed endoturbinates; and the maxilloturbinate, which was fusiform, short, and branched. (b) Three major meatuses were observed: the dorsal nasal meatus, which was the longest and widest; the middle nasal meatus, which was without limbs but had a deep oval caudal recess; and the ventral nasal meatus, which directly continued caudally into the nasopharyngeal meatus. (c) Four ethmoturbinates with four slit-like meatuses were observed, each with dorsal and ventral limbs; the first contacted the middle nasal meatus but not the nasopharyngeal meatus. (d) There were three paranasal sinuses: one sphenoid, two frontal, and two palatine sinuses. The data obtained are relevant to pathologists and eco-morphologists, considering the burrowing habitat and behaviors of AGR, and provide baseline data for more investigative studies.
Collapse
Affiliation(s)
- Obioma Ogbonnaya
- Department of Veterinary Anatomy, Michael Okpara University of Agriculture Umudike, Umudike, Abia State, Nigeria
| | - Chikera Samuel Ibe
- Department of Veterinary Anatomy, Michael Okpara University of Agriculture Umudike, Umudike, Abia State, Nigeria
| | - Ekele Ikpegbu
- Department of Veterinary Anatomy, Michael Okpara University of Agriculture Umudike, Umudike, Abia State, Nigeria
| |
Collapse
|
13
|
Spencer TL, Clark A, Fonollosa J, Virot E, Hu DL. Sniffing speeds up chemical detection by controlling air-flows near sensors. Nat Commun 2021; 12:1232. [PMID: 33623005 PMCID: PMC7902652 DOI: 10.1038/s41467-021-21405-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
Most mammals sniff to detect odors, but little is known how the periodic inhale and exhale that make up a sniff helps to improve odor detection. In this combined experimental and theoretical study, we use fluid mechanics and machine olfaction to rationalize the benefits of sniffing at different rates. We design and build a bellows and sensor system to detect the change in current as a function of odor concentration. A fast sniff enables quick odor recognition, but too fast a sniff makes the amplitude of the signal comparable to noise. A slow sniff increases signal amplitude but delays its transmission. This trade-off may inspire the design of future devices that can actively modulate their sniffing frequency according to different odors.
Collapse
Affiliation(s)
- Thomas L Spencer
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adams Clark
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jordi Fonollosa
- B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, 08028, Barcelona, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
| | - Emmanuel Virot
- John A, Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, MA, USA
| | - David L Hu
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
14
|
Alsafy M, Madkour N, Abumandour M, El-Gendy S, Karkoura A. Anatomical description of the head in Ossimi Sheep: Sectional anatomy and Computed Tomographic approach. Morphologie 2020; 105:29-44. [PMID: 32646844 DOI: 10.1016/j.morpho.2020.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
The objective of present investigation was to explore the morphology of the head in Ossimi sheep. Here, the nasal, paranasal sinuses, oral, orbital, cranial, auricular and pharyngeal cavities were examined by the computed tomography images interpreted by the anatomical sections. Also, three-dimensional CT of the head was reconstructed. The Ossimi sheep was shown to possess long, double scroll dorsal and ventral nasal conchae that occupy the nasal cavity rostrally, while its caudal part possessed five small ethmoidal triangular nasal projections, the largest one was the middle nasal concha and the others contained the ethmoidal sinus. The dorsal and middle nasal meatuses were narrow and the ventral meatus was wide and lead directly to the choanae. The nasal septum failed to reach the floor at the caudal part of the nasal cavity thus forming a single channel that continued to the nasopharynx. The vomeronasal organ extended throughout the length of the nasal cavity from the incisive duct caudal to the dental pad to the level of the 3rd upper cheek tooth. The paranasal sinuses identified were the frontal, maxillary, lacrimal, palatine and ethmoidal sinuses. The study recorded the absence of the sphenoid sinus and small palatine sinus in sheep different from that in other ruminants. The obtained results may be useful as a basic anatomical reference for the surgeons and pathologists.
Collapse
Affiliation(s)
- Mohamed Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Naglaa Madkour
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Mohamed Abumandour
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Samir El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Ashraf Karkoura
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| |
Collapse
|
15
|
Brokaw AF, Smotherman M. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking. PLoS One 2020; 15:e0226689. [PMID: 31914127 PMCID: PMC6948747 DOI: 10.1371/journal.pone.0226689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
Many animals display morphological adaptations of the nose that improve their ability to detect and track odors. Bilateral odor sampling improves an animals' ability to navigate using olfaction and increased separation of the nostrils facilitates olfactory source localization. Many bats use odors to find food and mates and bats display an elaborate diversity of facial features. Prior studies have quantified how variations in facial features correlate with echolocation and feeding ecology, but surprisingly none have asked whether bat noses might be adapted for olfactory tracking in flight. We predicted that bat species that rely upon odor cues while foraging would have greater nostril separation in support of olfactory tropotaxis. Using museum specimens, we measured the external nose and cranial morphology of 40 New World bat species. Diet had a significant effect on external nose morphology, but contrary to our predictions, insectivorous bats had the largest relative separation of nostrils, while nectar feeding species had the narrowest nostril widths. Furthermore, nasal echolocating bats had significantly narrower nostrils than oral emitting bats, reflecting a potential trade-off between sonar pulse emission and stereo-olfaction in those species. To our knowledge, this is the first study to evaluate the evolutionary interactions between olfaction and echolocation in shaping the external morphology of a facial feature using modern phylogenetic comparative methods. Future work pairing olfactory morphology with tracking behavior will provide more insight into how animals such as bats integrate olfactory information while foraging.
Collapse
Affiliation(s)
- Alyson F. Brokaw
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Smotherman
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
16
|
Xi J, Talaat M, Si X, Dong H, Donepudi R, Kabilan S, Corley R. Ventilation Modulation and Nanoparticle Deposition in Respiratory and Olfactory Regions of Rabbit Nose. Animals (Basel) 2019; 9:E1107. [PMID: 31835419 PMCID: PMC6940773 DOI: 10.3390/ani9121107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 12/05/2022] Open
Abstract
The rabbit nose's ability to filter out inhaled agents is directly related to its defense to infectious diseases. The knowledge of the rabbit nose anatomy is essential to appreciate its functions in ventilation regulation, aerosol filtration and olfaction. The objective of this study is to numerically simulate the inhalation and deposition of nanoparticles in a New Zealand white (NZW) rabbit nose model with an emphasis on the structure-function relation under normal and sniffing conditions. To simulate the sniffing scenario, the original nose model was modified to generate new models with enlarged nostrils or vestibules based on video images of a rabbit sniffing. Ventilations into the maxilloturbinate and olfactory region were quantified with varying nostril openings, and deposition rates of inhaled aerosols ranging from 0.5 nm to 1000 nm were characterized on the total, sub-regional and local basis. Results showed that particles which deposited in the olfactory region came from a specific area in the nostril. The spiral vestibule played an essential role in regulating flow resistance and flow partition into different parts of the nose. Increased olfactory doses were persistently predicted in models with expanded nostrils or vestibule. Particles in the range of 5-50 nm are more sensitive to the geometry variation than other nanoparticles. It was also observed that exhaled aerosols occupy only the central region of the nostril, which minimized the mixing with the aerosols close to the nostril wall, and potentially allowed the undisruptive sampling of odorants. The results of this study shed new light on the ventilation regulation and inhalation dosimetry in the rabbit nose, which can be further implemented to studies of infectious diseases and immunology in rabbits.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
| | - Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
| | - Xiuhua Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, Riverside, CA 91752, USA;
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903, USA;
| | - Ramesh Donepudi
- Sleep and Neurodiagnostic Center, Lowell General Hospital, Lowell, MA 01854, USA;
| | | | - Richard Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID 83701, USA;
| |
Collapse
|
17
|
Smith TD, Craven BA, Engel SM, Bonar CJ, DeLeon VB. Nasal airflow in the pygmy slow loris ( Nycticebus pygmaeus) based on a combined histological, computed tomographic and computational fluid dynamics methodology. ACTA ACUST UNITED AC 2019; 222:jeb.207605. [PMID: 31712355 DOI: 10.1242/jeb.207605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
'Macrosmatic' mammals have dedicated olfactory regions within their nasal cavity and segregated airstreams for olfaction and respiratory air-conditioning. Here, we examined the 3D distribution of olfactory surface area (SA) and nasal airflow patterns in the pygmy slow loris (Nycticebus pygmaeus), a primate with primitive nasal cavities, except for enlarged eyes that converge upon the posterodorsal nasal region. Using the head of an adult loris cadaver, we co-registered micro-computed tomography (CT) slices and histology sections to create a 3D reconstruction of the olfactory mucosa distribution. Histological sections were used to measure olfactory surface area and to annotate CT reconstructions. The loris has a complex olfactory recess (∼19% of total nasal SA) with multiple olfactory turbinals. However, the first ethmoturbinal has a rostral projection that extends far anterior to the olfactory recess, lined by ∼90% non-olfactory epithelium. Only one (of three) frontoturbinals bears olfactory mucosa. Computational fluid dynamics simulations of nasal airflow and odorant deposition revealed that there is some segregation of respiratory and olfactory flow in the loris nose, but that it is not as distinct as in well-studied 'macrosmats' (e.g. the dog). In the loris, airflow is segregated medially and laterally to vertically elongated, plate-like first ethmoturbinals. Thus, lorises may be said to have certain macrosmatic anatomical characteristics (e.g. olfactory recess), but not segregated nasal airflow patterns that are optimized for olfaction, as in canids. These results imply that a binary 'microsmatic/macrosmatic' dichotomy does not exist. Rather, mammals appear to exhibit complex trends with respect to specialization of the turbinals and recesses.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Serena M Engel
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA 16057, USA
| | | | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Coppola DM, Fitzwater E, Rygg AD, Craven BA. Tests of the chromatographic theory of olfaction with highly soluble odors: a combined electro-olfactogram and computational fluid dynamics study in the mouse. Biol Open 2019; 8:bio.047217. [PMID: 31649069 PMCID: PMC6826284 DOI: 10.1242/bio.047217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The idea that the vertebrate nasal cavity operates like a gas chromatograph to separate and discriminate odors, referred to herein as the ‘chromatographic theory’ (CT), has a long and interesting history. Though the last decade has seen renewed interest in the notion, its validity remains in question. Here we examine a necessary condition of the theory: a correlation between nasal odor deposition patterns based on mucus solubility and the distribution of olfactory sensory neuron odotypes. Our recent work in the mouse failed to find such a relationship even across large sorption gradients within the olfactory epithelium (OE). However, these studies did not test extremely soluble odorants or low odor concentrations, factors that could explain our inability to find supporting evidence for the CT. The current study combined computational fluid dynamics (CFD) simulations of odor sorption patterns and electro-olfactogram (EOG) measurements of olfactory sensory neuron responses. The odorants tested were at the extremes of mucus solubility and at a range of concentrations. Results showed no relationship between local odor sorption patterns and EOG response maps. Together, results again failed to support a necessary condition of the CT casting further doubt on the viability of this classical odor coding mechanism. Summary: This paper casts doubt on the classical chromatographic theory of olfaction, showing there is no correlation between olfactory receptor spatial layout and odor solubility patterns, a necessary condition of the theory.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Emily Fitzwater
- Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Alex D Rygg
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Peri E, Gingerich PD, Aringhieri G, Bianucci G. Reduction of olfactory and respiratory turbinates in the transition of whales from land to sea: the semiaquatic middle Eocene Aegyptocetus tarfa. J Anat 2019; 236:98-104. [PMID: 31498900 DOI: 10.1111/joa.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 11/29/2022] Open
Abstract
Ethmoturbinates, nasoturbinates, and maxilloturbinates are well developed in the narial tract of land-dwelling artiodactyls ancestral to whales, but these are greatly reduced or lost entirely in modern whales. Aegyptocetus tarfa is a semiaquatic protocetid from the middle Eocene of Egypt. Computed axial tomography scans of the skull show that A. tarfa retained all three sets of turbinates like a land mammal. It is intermediate between terrestrial artiodactyls and aquatic whales in reduction of the turbinates. Ethmoturbinates in A. tarfa have 26% of the surface area expected for an artiodactyl. These have an olfactory function and indicate that early whales retained a sense of smell in the transition from land to sea. Maxilloturbinates in A. tarfa have 6% of the surface area expected for an artiodactyl. These have a respiratory function and their markedly reduced size suggests that rapid inhalation and exhalation was already more important than warming and humidifying air, in contrast to extant land mammals. Finally, the maxilloturbinates of A. tarfa, although greatly reduced, still show some degree of similarity to those of artiodactyls, supporting the phylogenetic affinity of cetaceans and artiodactyls based on morphological and molecular evidence.
Collapse
Affiliation(s)
- Emanuele Peri
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | | | - Giacomo Aringhieri
- Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| |
Collapse
|
20
|
Rygg AD, Van Valkenburgh B, Craven BA. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity. Chem Senses 2018; 42:683-698. [PMID: 28981825 DOI: 10.1093/chemse/bjx053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nasal airflow plays a critical role in olfaction by transporting odorant from the environment to the olfactory epithelium, where chemical detection occurs. Most studies of olfaction neglect the unsteadiness of sniffing and assume that nasal airflow and odorant transport are "quasi-steady," wherein reality most mammals "sniff." Here, we perform computational fluid dynamics simulations of airflow and odorant deposition in an anatomically accurate model of the coyote (Canis latrans) nasal cavity during quiet breathing, a notional quasi-steady sniff, and unsteady sniffing to: quantify the influence of unsteady sniffing, assess the validity of the quasi-steady assumption, and investigate the functional advantages of sniffing compared to breathing. Our results reveal that flow unsteadiness during sniffing does not appreciably influence qualitative (gross airflow and odorant deposition patterns) or quantitative (time-averaged olfactory flow rate and odorant uptake) measures of olfactory function. A quasi-steady approximation is, therefore, justified for simulating time-averaged olfactory function in the canine nose. Simulations of sniffing versus quiet breathing demonstrate that sniffing delivers about 2.5 times more air to the olfactory recess and results in 2.5-3 times more uptake of highly- and moderately-soluble odorants in the sensory region per unit time, suggesting one reason why dogs actively sniff. Simulations also reveal significantly different deposition patterns in the olfactory region during inspiration for different odorants, and that during expiration there is little retronasal odorant deposition in the sensory region. These results significantly improve our understanding of canine olfaction, and have several practical implications regarding computer simulation of olfactory function.
Collapse
Affiliation(s)
- Alex D Rygg
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California 90095, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California 90095, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
21
|
Coppola DM, Ritchie BE, Craven BA. Tests of the sorption and olfactory "fovea" hypotheses in the mouse. J Neurophysiol 2017; 118:2770-2788. [PMID: 28877965 DOI: 10.1152/jn.00455.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/07/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
The spatial distribution of receptors within sensory epithelia (e.g., retina and skin) is often markedly nonuniform to gain efficiency in information capture and neural processing. By contrast, odors, unlike visual and tactile stimuli, have no obvious spatial dimension. What need then could there be for either nearest-neighbor relationships or nonuniform distributions of receptor cells in the olfactory epithelium (OE)? Adrian (Adrian ED. J Physiol 100: 459-473, 1942; Adrian ED. Br Med Bull 6: 330-332, 1950) provided the only widely debated answer to this question when he posited that the physical properties of odors, such as volatility and water solubility, determine a spatial pattern of stimulation across the OE that could aid odor discrimination. Unfortunately, despite its longevity, few critical tests of the "sorption hypothesis" exist. Here we test the predictions of this hypothesis by mapping mouse OE responses using the electroolfactogram (EOG) and comparing these response "maps" to computational fluid dynamics (CFD) simulations of airflow and odorant sorption patterns in the nasal cavity. CFD simulations were performed for airflow rates corresponding to quiet breathing and sniffing. Consistent with predictions of the sorption hypothesis, water-soluble odorants tended to evoke larger EOG responses in the central portion of the OE than the peripheral portion. However, sorption simulation patterns along individual nasal turbinates for particular odorants did not correlate with their EOG response gradients. Indeed, the most consistent finding was a rostral-greater to caudal-lesser response gradient for all the odorants tested that is unexplained by sorption patterns. The viability of the sorption and related olfactory "fovea" hypotheses are discussed in light of these findings.NEW & NOTEWORTHY Two classical ideas concerning olfaction's receptor-surface two-dimensional organization-the sorption and olfactory fovea hypotheses-were found wanting in this study that afforded unprecedented comparisons between electrophysiological recordings in the mouse olfactory epithelium and computational fluid dynamic simulations of nasal airflow. Alternatively, it is proposed that the olfactory receptor layouts in macrosmatic mammals may be an evolutionary contingent state devoid of the functional significance found in other sensory epithelia like the cochlea and retina.
Collapse
Affiliation(s)
| | | | - Brent A Craven
- Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
22
|
Onyono PN, Kavoi BM, Kiama SG, Makanya AN. Functional Morphology of the Olfactory Mucosa and Olfactory Bulb in Fossorial Rodents: The East African Root Rat (Tachyoryctes splendens) and the Naked Mole Rat (Heterocephalus glaber). Tissue Cell 2017; 49:612-621. [PMID: 28780992 DOI: 10.1016/j.tice.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022]
Abstract
Optimal functioning of the olfactory system is critical for survival of fossorial rodents in their subterranean lifestyle. This study examines the structure of the olfactory mucosa and olfactory bulb of two fossorial rodents exhibiting distinct social behaviors, the East African root rat and the naked mole rat. The social naked mole rat displayed simpler ethmoturbinates consisting of dorsomedial and broad discoid/flaplike parts that projected rostrally from the ethmoid bone. In the solitary root rat however, the ethmoturbinates were highly complex and exhibited elaborate branching which greatly increased the olfactory surface area. In addition, when correlated with the whole brain, the volume of the olfactory bulbs was greater in the root rat (4.24×10-2) than in the naked mole rat (3.92×10-2). Results of this study suggest that the olfactory system of the root rat is better specialized than that of the naked mole rat indicating a higher level of dependence on this system since it leads a solitary life. The naked mole rat to the contrary may have compensated for its relatively inferior olfactory system by living in groups in a social system. These findings demonstrate that structure of the olfactory system of fossorial mammals is dictated by both behavior and habitat.
Collapse
Affiliation(s)
- P N Onyono
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya; Department of Veterinary Anatomy and Physiology, Egerton University, P.O. BOX 536-20115, Egerton, Kenya.
| | - B M Kavoi
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya
| | - S G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya
| | - A N Makanya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, P.O. BOX 30197-00100, Nairobi, Kenya
| |
Collapse
|
23
|
Curtis AA, Simmons NB. Unique Turbinal Morphology in Horseshoe Bats (Chiroptera: Rhinolophidae). Anat Rec (Hoboken) 2016; 300:309-325. [PMID: 27863117 DOI: 10.1002/ar.23516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 11/12/2022]
Abstract
The mammalian nasal fossa contains a set of delicate and often structurally complex bones called turbinals. Turbinals and associated mucosae function in regulating respiratory heat and water loss, increasing surface area for olfactory tissue, and directing airflow within the nasal fossa. We used high-resolution micro-CT scanning to investigate a unique maxilloturbinal morphology in 37 species from the bat family Rhinolophidae, which we compared with those of families Hipposideridae, Megadermatidae, and Pteropodidae. Rhinolophids exhibit numerous structural modifications along the nasopharyngeal tract associated with emission of high duty cycle echolocation calls via the nostrils. In rhinolophids, we found that the maxilloturbinals and a portion of ethmoturbinal I form a pair of strand-like bony structures on each side of the nasal chamber. These structures project anteriorly from the transverse lamina and complete a hairpin turn to project posteriorly down the nasopharyngeal duct, and vary in length among species. The strand-like maxilloturbinals in Rhinolophidae were not observed in our outgroups and represent a synapomorphy for this family, and are unique in form among mammals. Within Rhinolophidae, maxilloturbinal size and cross-sectional shape were correlated with phylogeny. We hypothesize that strand-shaped maxilloturbinals may function to reduce respiratory heat and water loss without greatly impacting echolocation call transmission since they provide increased mucosal surface area for heat and moisture exchange but occupy minimal space. Alternatively, they may play a role in transmission of echolocation calls since they are located directly along the path sound travels between the larynx and nostrils during call emission. Anat Rec, 300:309-325, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Abigail A Curtis
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, 10024
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, 10024
| |
Collapse
|
24
|
Holcomb KM, Galloway NL, Mathiason CK, Antolin MF. Intra-host mathematical model of chronic wasting disease dynamics in deer (Odocoileus). Prion 2016; 10:377-390. [PMID: 27537196 PMCID: PMC5105936 DOI: 10.1080/19336896.2016.1189054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bioassays of native cervid hosts have established the presence of infectious chronic wasting disease (CWD) prions in saliva, blood, urine, and feces of clinically diseased and pre-clinical infected deer. The intra-host trafficking of prions from the time of initial infection to shedding has been less well defined. We created a discrete-time compartmentalized model to simulate the misfolding catalysis, trafficking, and shedding of infectious prions throughout the organ systems of CWD-infected cervids. Using parameter values derived from experimental infections of North American deer (Odocoileus spp.), the exponential-based model predicts prion deposition over time with: 1) nervous tissues containing the highest deposition of prions at 20 months post-infection and 2) excreted fluids containing low levels of prions throughout infection with the highest numbers of prions predicted to be shed in saliva and feces (as high as 10 lethal doses (1.34 × 1029 prions) in 11–15 months). These findings are comparable to prion deposition described in literature as assayed by conventional and ultrasensitive amplification assays. The comparison of our model to published data suggests that highly sensitive assays (sPMCA, RT-QuIC, and bioassay) are appropriate for early prion detection in bodily fluids and secretions. The model provides a view of intra-host prion catalysis leading to pre-clinical shedding and provides a framework for continued development of antemortem diagnostic methods.
Collapse
Affiliation(s)
- Karen M Holcomb
- a Department of Biology , Colorado State University , Fort Collins , CO , USA
| | - Nathan L Galloway
- a Department of Biology , Colorado State University , Fort Collins , CO , USA
| | - Candace K Mathiason
- b Department of Microbiology , Immunology, and Pathology, Colorado State University , Fort Collins , CO , USA
| | - Michael F Antolin
- a Department of Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
25
|
Xi J, Si XA, Kim J, Zhang Y, Jacob RE, Kabilan S, Corley RA. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction. Anat Rec (Hoboken) 2016; 299:853-68. [PMID: 27145450 DOI: 10.1002/ar.23367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan
| | - Xiuhua A Si
- Department of Mechanical Engineering, California Baptist University, Riverside, California
| | - Jongwon Kim
- College of Engineering, University of Georgia, Athens, Georgia
| | - Yu Zhang
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan
| | - Richard E Jacob
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| | - Senthil Kabilan
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard A Corley
- Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
26
|
Yee KK, Craven BA, Wysocki CJ, Van Valkenburgh B. Comparative Morphology and Histology of the Nasal Fossa in Four Mammals: Gray Squirrel, Bobcat, Coyote, and White-Tailed Deer. Anat Rec (Hoboken) 2016; 299:840-52. [PMID: 27090617 DOI: 10.1002/ar.23352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 02/29/2016] [Indexed: 11/11/2022]
Abstract
Although the anatomy of the nasal fossa is broadly similar among terrestrial mammals, differences are evident in the intricacies of nasal turbinal architecture, which varies from simple scroll-like to complex branching forms, and in the extent of nonsensory and olfactory epithelium covering the turbinals. In this study, detailed morphological and immunohistochemical examinations and quantitative measurements of the turbinals and epithelial lining of the nasal fossa were conducted in an array of species that include the gray squirrel, bobcat, coyote, and white-tailed deer. Results show that much more of the nose is lined with olfactory epithelium in the smallest species (gray squirrel) than in the larger species. In two species with similar body masses, bobcat and coyote, the foreshortened felid snout influences turbinal size and results in a decrease of olfactory epithelium on the ethmoturbinals relative to the longer canine snout. Ethmoturbinal surface area exceeds that of the maxilloturbinals in all four sampled animals, except the white-tailed deer, in which the two are similar in size. Combining our results with published data from a broader array of mammalian noses, it is apparent that olfactory epithelial surface area is influenced by body mass, but is also affected by aspects of life history, such as diet and habitat, as well as skull morphology, itself a product of multiple compromises between various functions, such as feeding, vision, and cognition. The results of this study warrant further examination of other mammalian noses to broaden our evolutionary understanding of nasal fossa anatomy. Anat Rec, 299:840-852, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen K Yee
- Monell Chemical Senses Center, Philadelphia, Pennsylvania
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | | | | |
Collapse
|
27
|
Pang B, Yee KK, Lischka FW, Rawson NE, Haskins ME, Wysocki CJ, Craven BA, Van Valkenburgh B. The influence of nasal airflow on respiratory and olfactory epithelial distribution in felids. ACTA ACUST UNITED AC 2016; 219:1866-74. [PMID: 27045093 DOI: 10.1242/jeb.131482] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/26/2016] [Indexed: 11/20/2022]
Abstract
The surface area of the maxilloturbinals and fronto-ethmoturbinals is commonly used as an osteological proxy for the respiratory and the olfactory epithelium, respectively. However, this assumption does not fully account for animals with short snouts in which these two turbinal structures significantly overlap, potentially placing fronto-ethmoturbinals in the path of respiratory airflow. In these species, it is possible that anterior fronto-ethmoturbinals are covered with non-sensory (respiratory) epithelium instead of olfactory epithelium. In this study, we analyzed the distribution of olfactory and non-sensory, respiratory epithelia on the turbinals of two domestic cats (Felis catus) and a bobcat (Lynx rufus). We also conducted a computational fluid dynamics simulation of nasal airflow in the bobcat to explore the relationship between epithelial distribution and airflow patterns. The results showed that a substantial amount of respiratory airflow passes over the anterior fronto-ethmoturbinals, and that contrary to what has been observed in caniform carnivorans, much of the anterior ethmoturbinals are covered by non-sensory epithelium. This confirms that in short-snouted felids, portions of the fronto-ethmoturbinals have been recruited for respiration, and that estimates of olfactory epithelial coverage based purely on fronto-ethmoturbinal surface area will be exaggerated. The correlation between the shape of the anterior fronto-ethmoturbinals and the direction of respiratory airflow suggests that in short-snouted species, CT data alone are useful in assessing airflow patterns and epithelium distribution on the turbinals.
Collapse
Affiliation(s)
- Benison Pang
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, 610 Charles Young Drive E, Los Angeles, CA 90095-7239, USA
| | - Karen K Yee
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Fritz W Lischka
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Nancy E Rawson
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Mark E Haskins
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles J Wysocki
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, 610 Charles Young Drive E, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
28
|
Van Valkenburgh B, Smith TD, Craven BA. Tour of a labyrinth: exploring the vertebrate nose. Anat Rec (Hoboken) 2015; 297:1975-84. [PMID: 25312359 DOI: 10.1002/ar.23021] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023]
Abstract
This special issue of The Anatomical Record is the outcome of a symposium entitled "Inside the Vertebrate Nose: Evolution, Structure and Function." The skeletal framework of the nasal cavity is a complicated structure that often houses sinuses and comprises an internal skeleton of bone or cartilage that can vary greatly in architecture among species. The nose serves multiple functions, including olfaction and respiratory air-conditioning, and its morphology is constrained by evolution, development, and conflicting demands on cranial space, such as enlarged orbits. The nasal cavity of vertebrates has received much more attention in the last decade due to the emergence of nondestructive methods that allow improved visualization of the internal anatomy of the skull, such as high-resolution x-ray computed tomography and magnetic resonance imaging. The 17 articles included here represent a broad range of investigators, from paleontologists to engineers, who approach the nose from different perspectives. Key topics include the evolution and development of the nose, its comparative anatomy and function, and airflow through the nasal cavity of individual species. In addition, this special issue includes review articles on anatomical reduction of the olfactory apparatus in both cetaceans and primates (the vomeronasal system), as well as the molecular biology of olfaction in vertebrates. Together these articles provide an expansive summary of our current understanding of vertebrate nasal anatomy and function. In this introduction, we provide background information and an overview of each of the three primary topics, and place each article within the context of previous research and the major challenges that lie ahead.
Collapse
|