1
|
Chen Y, Huang J, Zhou Z, Zhang J, Jin C, Zeng X, Jia J, Li L. Noise exposure-induced the cerebral alterations: From emerging evidence to antioxidant-mediated prevention and treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117411. [PMID: 39591731 DOI: 10.1016/j.ecoenv.2024.117411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
It's well acknowledged that noise exposure has become a major environmental risk factor of public health. The previous standpoint holds that the main harm of noise exposure is to cause hearing loss of human. However, in the past two decades a large number of studies have linked the noise exposure to various cerebral changes. In this review, we summarized that noise exposure led to cerebral changes through breaking the redox balance, inducing neuroinflammation and neuronal apoptosis and altering the neurotransmission in numerous brain areas, including cortex, thalamus, hippocampus, amygdala, striatum and cerebellum. Those cerebral changes finally result in a variety of disorders, such as tinnitus, anxiety, depression, cognitive impairment and motor dysfunction. Furthermore, we reviewed several antioxidants, such as resveratrol, vitamin C, curcumin, N-acetylcysteine and α-asarone, and highlighted their protective mechanisms against noise exposure, aiming to provide a promising strategy to prevent and treat noise exposure-induced diseases. Taken together, noise exposure induces various cerebral changes and further leads to disorders in the central nervous system, which can be ameliorated by the treatment with antioxidants.
Collapse
Affiliation(s)
- Yuyan Chen
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Zhiying Zhou
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Chaohui Jin
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China; Judicial Expertise Center, Jiaxing University, Jiaxing, China.
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University, Jiaxing, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, China.
| |
Collapse
|
2
|
Samad N, Imran A, Bhatti SA, Imran I, Alqahtani F, Alasmari AF, Sivandzade F. Vitamin D2 protects acute and repeated noise stress induced behavioral, biochemical, and histopathological alterations: Possible antioxidant effect. Saudi J Biol Sci 2022; 29:601-609. [PMID: 35002456 PMCID: PMC8716964 DOI: 10.1016/j.sjbs.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Noise is an environmental stressor which causes distress and hearing loss in individuals residing in urban areas. Psychological deficits such as anxiety, depression, impaired memory and cognitive decline are caused by noise stress. Different vitamins have been used as a potential antioxidant for neuronal protection. In this study we investigate the anxiolytic, antidepressant and memory enhancing effect of vitamin D2 (Vit D2) following noise stress. Thirty-six albino rats were randomly divided into six groups. (i) Unstressed + corn oil (ii) Unstressed + Vit D2 (iii) Acute noise stress + corn oil (iv) Acute noise stress + Vit D2 (v) Repeated noise stress + corn oil (vi) Repeated noise stress + Vit D2. 600 IU/kg body weight of Vit D2 dosage was prepared in corn oil. Corn oil is used as vehicle and all the drugs administered via oral gavage till end of the experiment (day 16). Recorded sound of generator which was amplified by speakers and had 100 dB intensity was used as noise stress. Repeated stressed animals were exposed to noise (4-hrs) daily for 14 days, while acute stressed animals were exposed to noise (4-hrs) once after 14 days. Behavioral tests (elevated plus maze, light dark box, tail suspension test and Morris water maze) of all groups were performed after15 days treatment period. After behavioral tests rats received their last dosage and decapitated after 1-hr. Brain of all animals was removed and used for biochemical (oxidative stress biomarker, antioxidant enzymes and acetylcholinesterase) and histopathological estimations. Results show that Vit D2 decreased time spent in light box and open arm of light dark activity box and elevated plus maze test respectively (used for anxiety evaluation), decreased immobility time in tail suspension test (for depression) and improved cognitive ability evaluated by Morris water maze test in acute and repeated noise stressed rats. Furthermore, increased antioxidant enzymes activity, decreased lipid peroxidation and acetylcholinesterase activity were also observed in Vit D2 treated animals following acute and repeated noise stress. Normalization in histopathological studies was also observed in Vit D2 treated following acute and repeated noise stress. It is concluded that Vit D2 protects from noise stress induced behavioral, biochemical and histopathological impairment through its antioxidant potential.
Collapse
Affiliation(s)
- Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Ayesha Imran
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Sheraz A Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, 60800 Multan, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| |
Collapse
|
3
|
Zhang Z, Zhou H, Zhou J. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J Mol Endocrinol 2021; 66:259-272. [PMID: 33729996 PMCID: PMC8111324 DOI: 10.1530/jme-20-0321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Earlier, it was shown that reversing the downregulation of neuritin expression in the brain improves central neuropathy in diabetic rats. We investigated the protective mechanism of neuritin in diabetic cognitive dysfunction via astrocytes. Further, the impact of the overexpression of neuritin in the cortex and the hippocampus on diabetic cognitive dysfunction and astrogliosis in type 2 diabetic (db/db) mice was assessed. Antagonists were used to inhibit the JAK2/STAT3 signaling pathway in U-118MG, an astrocyte cell line. Immunofluorescence, Western blotting, and real-time PCR were performed. Neuritin overexpression in the hippocampus of db/db mice significantly ameliorated cognitive dysfunction, hippocampal neuronal impairment, and synaptic plasticity deterioration, and inhibited astrogliosis and the JAK2/STAT3 signaling pathway in the hippocampus. Neuritin suppressed the JAK2/STAT3 signaling pathway to inhibit lipopolysaccharide-induced gliosis in U-118MG cells. It was observed that neuritin regulates the JAK2/STAT3 signaling pathway in astrocytes to inhibit astrogliosis and improve diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Correspondence should be addressed to J Zhou:
| |
Collapse
|
4
|
Eckert MA, Harris KC, Lang H, Lewis MA, Schmiedt RA, Schulte BA, Steel KP, Vaden KI, Dubno JR. Translational and interdisciplinary insights into presbyacusis: A multidimensional disease. Hear Res 2021; 402:108109. [PMID: 33189490 PMCID: PMC7927149 DOI: 10.1016/j.heares.2020.108109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
There are multiple etiologies and phenotypes of age-related hearing loss or presbyacusis. In this review we summarize findings from animal and human studies of presbyacusis, including those that provide the theoretical framework for distinct metabolic, sensory, and neural presbyacusis phenotypes. A key finding in quiet-aged animals is a decline in the endocochlear potential (EP) that results in elevated pure-tone thresholds across frequencies with greater losses at higher frequencies. In contrast, sensory presbyacusis appears to derive, in part, from acute and cumulative effects on hair cells of a lifetime of environmental exposures (e.g., noise), which often result in pronounced high frequency hearing loss. These patterns of hearing loss in animals are recognizable in the human audiogram and can be classified into metabolic and sensory presbyacusis phenotypes, as well as a mixed metabolic+sensory phenotype. However, the audiogram does not fully characterize age-related changes in auditory function. Along with the effects of peripheral auditory system declines on the auditory nerve, primary degeneration in the spiral ganglion also appears to contribute to central auditory system aging. These inner ear alterations often correlate with structural and functional changes throughout the central nervous system and may explain suprathreshold speech communication difficulties in older adults with hearing loss. Throughout this review we highlight potential methods and research directions, with the goal of advancing our understanding, prevention, diagnosis, and treatment of presbyacusis.
Collapse
Affiliation(s)
- Mark A Eckert
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA.
| | - Kelly C Harris
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Hainan Lang
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| | - Morag A Lewis
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Richard A Schmiedt
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Karen P Steel
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, United Kingdom
| | - Kenneth I Vaden
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA
| | - Judy R Dubno
- Medical University of South Carolina, Department of Otolaryngology - Head and Neck Surgery, Charleston, SC 29425, USA; Medical University of South Carolina, Department of Pathology and Laboratory Medicine, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Chen XM, Ji SF, Liu YH, Xue XM, Xu J, Gu ZH, Deng SL, Liu CD, Wang H, Chang YM, Wang XC. Ginsenoside Rd Ameliorates Auditory Cortex Injury Associated With Military Aviation Noise-Induced Hearing Loss by Activating SIRT1/PGC-1α Signaling Pathway. Front Physiol 2020; 11:788. [PMID: 32792971 PMCID: PMC7385399 DOI: 10.3389/fphys.2020.00788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Free radicals and oxidative stress play an important role in the pathogenesis of noise-induced hearing loss (NIHL). Some ginseng monomers showed certain therapeutic effects in NIHL by scavenging free radicals. Therefore, we hypothesized that ginsenoside Rd (GSRd) may exert neuroprotective effects after noise-induced auditory system damage through a mechanism involving the SIRT1/PGC-1α signaling pathway. Forty-eight guinea pigs were randomly divided into four equal groups (normal control group, noise group, experimental group that received GSRd dissolved in glycerin through an intraperitoneal injection at a dose of 30 mg/kg body weight from 5 days before noise exposure until the end of the noise exposure period, and experimental control group). Hearing levels were examined by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). Hematoxylin-eosin and Nissl staining were used to examine neuron morphology. RT-qPCR and western blotting analysis were used to examine SIRT1/PGC-1α signaling and apoptosis-related genes, including Bax and Bcl-2, in the auditory cortex. Bax and Bcl-2 expression was assessed via immunohistochemistry analysis. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were determined using a commercial testing kit. Noise exposure was found to up-regulate ABR threshold and down-regulate DPOAE amplitudes, with prominent morphologic changes and apoptosis of the auditory cortex neurons (p < 0.01). GSRd treatment restored hearing loss and remarkably alleviated morphological changes or apoptosis (p < 0.01), concomitantly increasing Bcl-2 expression and decreasing Bax expression (p < 0.05). Moreover, GSRd increased SOD and GSH-Px levels and decreased MDA levels, which alleviated oxidative stress damage and activated SIRT1/PGC-1α signaling pathway. Taken together, our findings suggest that GSRd ameliorates auditory cortex injury associated with military aviation NIHL by activating the SIRT1/PGC-1α signaling pathway, which can be an attractive pharmacological target for the development of novel drugs for NIHL treatment.
Collapse
Affiliation(s)
- Xue-Min Chen
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Shuai-Fei Ji
- Medical School of Chinese PLA, Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital, Beijing, China
| | - Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| | - Xin-Miao Xue
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Jin Xu
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Zheng-Hui Gu
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Sen-Lin Deng
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Cheng-Dong Liu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Han Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
| |
Collapse
|
6
|
Hyperbaric Oxygen Treatment Ameliorates Hearing Loss and Auditory Cortex Injury in Noise Exposed Mice by Repressing Local Ceramide Accumulation. Int J Mol Sci 2019; 20:ijms20194675. [PMID: 31547176 PMCID: PMC6801451 DOI: 10.3390/ijms20194675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Noise-induced hearing loss (NIHL) relates closely to auditory cortex (AC) injury, so countermeasures aiming at the AC recovery would be of benefit. In this work, the effect of hyperbaric oxygen treatment on NIHL was elucidated, which was imposed on mice before (HBOP), during (HBOD) or after (HBOA) noise exposure. Morphology of neurons was assayed by hematoxylin-eosin or Nissl staining. Ceramide (Cer) level was measured through immunohistochemistry analysis. Apoptotic neurons were counted using transferase-mediated dUTP nick end labeling (TUNEL) staining. We demonstrated that the intense, broad band noise raised the threshold of auditory brainstem response, evoked neuronal degeneration or apoptosis and triggered the Cer accumulation in AC, all of which were restored significantly by HBOP, but not HBOD or HBOA. Cer over-generation reversed the advantages of HBOP significantly, while its curtailment recapitulated the effect. Next, noise exposure raised the superoxide or malondialdehyde (MDA) production which was blocked by HBOP or Cer repression. Oxidative control not only attenuated the hearing loss or neurodegeneration but, in turn, reduced the Cer formation significantly. In summary, mutual regulation between Cer and oxidative stress underlies the HBOP’s curative effect on hearing loss and neuronal damage in noise-exposed mice.
Collapse
|
7
|
Abstract
Hearing loss is one of the most common yet unrecognized impairments experienced by adults, especially as they age. Mental health investigators and practitioners require better understanding of hearing loss, its association with psychiatric disorders, and the treatment of these disorders in the presence of hearing loss as well as the treatment of hearing loss itself. In this review, the authors briefly explore the global burden of hearing loss. Next we provide an overview of the extant literature on hearing loss associated with cognitive impairment, depression, anxiety disorders, psychoses, and quality of life with attention focused on the strength of the association, possible mechanisms explaining the association, data on treatment options specific to these disorders, and future research opportunities for these disorders. Current approaches to the treatment of hearing loss are presented, including hearing aids, rehabilitation including psychotherapies, surgical procedures (specifically cochlear implants), and induction loops connected to telecoils. Finally, cutting edge research into the pathophysiology and potential biological treatments of hearing loss is described.
Collapse
Affiliation(s)
- Dan G Blazer
- Department of Psychiatry and Behavioral Sciences,Duke University School of Medicine, Duke University Medical Center,Durham, NC 27710 Box 3003,USA
| | - Debara L Tucci
- Division of Head and Neck Surgery and Communication Sciences, Department of Surgery,Duke University School of Medicine,Durham, NC 27710 Box 3003,USA
| |
Collapse
|
8
|
Eckert MA, Vaden KI, Dubno JR. Age-Related Hearing Loss Associations With Changes in Brain Morphology. Trends Hear 2019; 23:2331216519857267. [PMID: 31213143 PMCID: PMC6585256 DOI: 10.1177/2331216519857267] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Age-related hearing loss has been associated with varied auditory cortex morphology in human neuroimaging studies. These findings have suggested that peripheral auditory system declines cause changes in brain morphology but could also be due to latent variables that affect the auditory periphery and brain. The current longitudinal study was designed to evaluate these explanations for pure-tone threshold and brain morphology associations. Thirty adults (mean age at Time 1 = 64.12 ± 10.32 years) were studied at two time points (average duration between visits = 2.62 ± 0.81 years). Small- to medium-effect size associations were observed between high-frequency pure-tone thresholds and auditory cortex gray matter volume at each time point. Although there were significant longitudinal changes in low- and high-frequency hearing measures and brain morphology, those longitudinal changes were not significantly correlated across participants. High-frequency hearing measures at Time 1 were significantly related to more lateral ventricle expansion, such that participants with higher measures exhibited larger increases in ventricle size. This ventricle effect was statistically independent of high-frequency hearing associations with auditory cortex morphology. Together, these results indicate that there are at least two mechanisms for associations between age-related hearing loss and brain morphology. Potential explanations for a direct hearing loss effect on brain morphology, as well as latent variables that likely affect both the inner ear and brain, are discussed.
Collapse
Affiliation(s)
- Mark A. Eckert
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth I. Vaden
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Judy R. Dubno
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|