1
|
Medina HR, Rangel DEN. Metarhizium acridum exhibits a different conidial hydrophobicity than other insect-pathogenic fungi. Fungal Biol 2025; 129:101547. [PMID: 40023527 DOI: 10.1016/j.funbio.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
Metarhizium acridum is an insect-pathogenic fungus with a narrow host range that is used to control grasshoppers, locusts, and crickets. Its conidia show impressive resilience against UV-B radiation and heat compared to other insect pathogens. Despite this high tolerance, M. acridum is notably susceptible to various chemical stressors. The conidial surface is a monolayer formed by hydrophobins and the first barrier against stressors. However, little is known about the conidial surface properties of this fungus. This work aimed to evaluate the hydrophobic properties of the conidial surface in M. acridum ARSEF 324 and to compare them with those of other entomopathogen fungi. For this, drop profiles of water and diiodomethane on fungal cultures were analyzed, and the conidial hydrophobicity was estimated from a contact angle following the sessile drop method. The analysis of droplet profiles revealed distinct hydrophobic properties among the conidia of various insect-pathogenic fungi. The conidia of Beauveria bassiana, M. acridum, and Metarhizium robertsii exhibited high hydrophobicity, as indicated by water contact angles greater than 140°. In contrast, the conidia of Tolypocladium inflatum showed slightly lower hydrophobicity with a water contact angle below 130°. The behavior of diiodomethane further highlighted the variation in surface interactions, particularly for M. acridum, where the drop flattened instantly, indicating its low affinity for nonpolar compounds, which correlated with the extremely low tolerance of ARSEF 324 to chemicals. Overall, the study provides a deeper understanding of fungal surface properties, which could have implications for its tolerance to chemical stressors.
Collapse
Affiliation(s)
- Humberto R Medina
- Laboratory of Molecular Biology - LGO, Tecnológico Nacional de México, Celaya, Gto., 38010, Mexico
| | - Drauzio E N Rangel
- Inbioter - Institute of Biotechnology Rangel, Caixa Postal 5, Itatiba, SP, 13250-970, Brazil.
| |
Collapse
|
2
|
Iwanicki NSA, Gotti IA, Delalibera I, Licht HHDF. Host-specific patterns of virulence and gene expression profiles of the broad-host-range entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 2025; 209:108242. [PMID: 39631444 DOI: 10.1016/j.jip.2024.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Generalist pathogens with a broad host range encounter many different host environments. Such generalist pathogens are often highly versatile and adjust their expressed phenotype to the host being infected. Species in the fungal genus Metarhizium (Hypocreales: Clavicipitaceae) occupy various ecological niches, including plant rhizosphere symbionts, soil saprophytes, and insect pathogens with applications in biological control of pests. The species M. anisopliae is highly diverse combining the capability of association with plant roots and infection of a broad range of arachnid and insect hosts, from agricultural pests to vectors of human disease. It is among the most studied and applied biological control agents worldwide. Here, we investigate the phenotypic plasticity and differential gene expression of M. anisopliae blastospores during infection of different insect hosts. First, the virulence of M. anisopliae blastospores was evaluated against Tenebrio molitor (Coleoptera: Tenebrionidae), Spodoptera frugiperda (Lepidoptera: Noctuidae), Gryllus assimilis (Orthoptera: Gryllidae), and Apis mellifera (Hymenoptera: Apidae). Second, the percentage of appressorium formation on the membranous wings of the four hosts was determined, and third, the fungal transcriptome profile during penetration on the hosts was analyzed. Our findings reveal that M. anisopliae blastospores exhibit high virulence against Tenebrio molitor, with significantly higher appressorium formation on beetle wings compared to the other three tested insects. We also document distinct gene expression patterns in M. anisopliae blastospores during insect infection of T. molitor, S. frugiperda, and A. mellifera, with notable variations observed in G. assimilis. These differences are associated with the expression of enzymes involved in the degradation of specific compounds present in each insect wing, as well as hydrophobins, destruxins, and specialized metabolites related to virulence. The study emphasizes the differences in fungal gene expression during infection of the four insect orders and highlights the virulence-related genes specific to each infective process.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil.
| | - Isabella Alice Gotti
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Italo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Xu P, He Z, Gao X, Zeng X, Wei D, Long X, Yu Y. Research on the Expression of Immune-Related Genes at Different Stages in the Third-Instar Larvae of Spodoptera frugiperda Infected by Metarhizium rileyi. INSECTS 2025; 16:199. [PMID: 40003829 PMCID: PMC11856804 DOI: 10.3390/insects16020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Spodoptera frugiperda is a major migratory agricultural pest that poses a significant threat to global crop safety. Metarhizium rileyi has emerged as an effective biocontrol agent against lepidopteran pests. In this study, we examined the immune responses of third-instar S. frugiperda larvae at various stages of an M. rileyi infection. Using RNA-seq and microscopic observation, we identified the immune-related pathways enriched at different infection stages, which were further validated by a qRT-PCR. Our findings revealed the following immune responses during infection: During the stage when M. rileyi penetrated the host cuticle (0-48 h), the genes related to energy metabolism, detoxification, and melanization were upregulated. Meanwhile, the TOLL and IMD signaling pathways were activated to counter the infection. During the stage of M. rileyi's internal infection (48-96 h), which was the peak expression period of the immune-related genes, cellular immunity predominated. Hemocytes encapsulated and phagocytosed the hyphal bodies. Phagocytosis was enhanced through the upregulation of the genes related to ROS and the melanization-related genes, as well as the genes involved in insect hormone biosynthesis. During the stage when M. rileyi grew from the inside to the outside of the host (96-120 h), immune system paralysis resulted in host mortality. These findings deepen our understanding of the immune interactions between M. rileyi and S. frugiperda, support the potential of M. rileyi as an effective biocontrol agent, and provide a theoretical foundation for the development of targeted biopesticides for pests using biotechnological approaches.
Collapse
Affiliation(s)
- Pengfei Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhan He
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuyuan Gao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xianru Zeng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Dewei Wei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xiuzhen Long
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yonghao Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (P.X.); (Z.H.); (X.G.); (X.Z.); (D.W.)
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning 530007, China
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Medina HR, Rangel DEN. Light enhances the production of conidia and influences their hydrophobicity in Tolypocladium inflatum. Fungal Biol 2025; 129:101483. [PMID: 39826973 DOI: 10.1016/j.funbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 01/22/2025]
Abstract
Insect fungal pathogens such as Beauveria bassiana, Metarhizium robertsii, and Tolypocladium inflatum have been used as insect biocontrol agents. Their infection mechanism involves non-specific adhesion to the host cuticle, which is controlled by hydrophobins, small proteins that form an amphipathic monolayer with rodlet morphology on diverse fungal structures. Light is an abiotic factor that may influence a wide range of cellular processes, including conidiogenesis, stress tolerance, and metabolite biosynthesis. Although its effects have been studied in many fungi, little is known about the effects of light on the hydrophobic properties of conidia. The aim of this work was to investigate the influence of visible light on the conidial hydrophobicity of three entomopathogenic fungal species. For this, conidia of B. bassiana, M. robertsii, and T. inflatum were grown either under light or in the dark, drop profiles of water and diiodomethane on conidial surfaces were analyzed, and conidial hydrophobicity was estimated from contact angle measurements. Moreover, conidial production was determined, and their genome was screened with sequences for hydrophobins. Conidia of B. bassiana and M. robertsii are more hydrophobic than conidia of T. inflatum. The light modified the surface tension of T. inflatum; therefore, conidia of T. inflatum became hydrophilic. However, light did not affect the conidial hydrophobicity of B. bassiana and M. robertsii. In addition, light modified the conidial production of B. bassiana and T. inflatum cultures, but it had no effect on the conidial production of M. robertsii. The T. inflatum genome contains two predicted proteins whose sequence is akin to that of proven class II hydrophobins from other ascomycetes. Presumably, these proteins are responsible for the conidial hydrophobicity properties in this fungus. Our study helps elucidate how light affects the conidial hydrophobicity of entomopathogenic fungi.
Collapse
Affiliation(s)
- Humberto R Medina
- Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil; Laboratory of Molecular Biology, Tecnológico Nacional de México, Celaya, Gto, 38010, Mexico
| | - Drauzio E N Rangel
- Fungal Stress Laboratory, Universidade Tecnológica Federal Do Paraná, Dois Vizinhos, PR, 85660-000, Brazil.
| |
Collapse
|
5
|
Kato T, Inagaki S, Shibata C, Takayanagi K, Uehara H, Nishimura K, Park EY. Topical Infection of Cordyceps militaris in Silkworm Larvae Through the Cuticle has Lower Infectivity Compared to Beauveria bassiana and Metarhizium anisopliae. Curr Microbiol 2024; 82:26. [PMID: 39621154 DOI: 10.1007/s00284-024-03989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025]
Abstract
Topical infection of entomopathogenic fungi in insects occurs when the fungal conidia attach to the insect's surface (cuticle), germinate, and then form appressoria that penetrate the cuticle and enter their bodies. In this study, we inoculated silkworm larvae with three entomopathogenic fungi, Cordyceps militaris, Beauveria bassiana, and Metarhizium anisopliae, and investigated their mechanisms of infection. Attachment of the conidia of the three entomopathogenic fungi to the surface of silkworm larvae was observed under a microscope. We counted the number of conidia attached to the surface of the silkworm larvae and the number of conidia detached from the surface was counted. The number of C. militaris conidia that attached to the surface was less than that of B. bassiana and M. anisopliae; however, it germinated and formed appressoria on hydrophobic surfaces, similar to the other two strains. Mycelial growth of C. militaris was inhibited compared to that of B. bassiana in PDA medium containing 0.1% linoleic and linolenic acids. The germination of C. militaris conidia was also inhibited in PD medium containing 0.1% linoleic or linolenic acids. These results suggest that the attachment of low numbers of C. militaris conidia on the surface of silkworm larvae and presence of inhibitory linoleic or linolenic acids in the silkworm cuticles may cause low topical infectivity by C. militaris. This study improves the efficacy of topically infecting silkworms with C. militaris to produce fungal fruiting bodies for use in traditional Chinese medicine and dietary supplement production.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Sota Inagaki
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Chisato Shibata
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Keito Takayanagi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hiroki Uehara
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Konomi Nishimura
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Enoch Y Park
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
6
|
Song Y, Liu X, Zhao K, Ma R, Wu W, Zhang Y, Duan L, Li X, Xu H, Cheng M, Qin B, Qi Z. A new endophytic Penicillium oxalicum with aphicidal activity and its infection mechanism. PEST MANAGEMENT SCIENCE 2024; 80:5706-5717. [PMID: 38958097 DOI: 10.1002/ps.8288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Aphid infestation adversely affects the yield and quality of crops. Rapid reproduction and insecticidal resistance have made controlling aphids in the field challenging. Therefore, the present study investigated the insecticidal property of Penicillium oxalicum (QLhf-1) and its mechanism of action against aphids, Hyalopterus arundimis Fabricius. RESULTS Bioassay revealed that the control efficacy of the spores against aphids (86.30% and 89.05% on the third day and fifth day after infection, respectively) were higher than other components, such as the mycelium. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that QLhf-1 invaded the aphid cuticle through spores and used the aphid tissues as a nutrient source for growth and reproduction, causing stiffness and atrophy and a final death. Three extracellular enzymes, lipase, protease, and chitinase had a synergistic effect with spores, and they acted together to complete the infection process by degrading the aphid body wall and accelerating the infection process. CONCLUSION The newly discovered endophytic penicillin strain P. oxalicum 'QLhf-1' can effectively kill aphids. The results provided strong evidence for the biological control of aphids, and lay a foundation for the development and utilization of QLhf-1. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Song
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoli Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kangbo Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ruyi Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuanyuan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Longfei Duan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xinnuo Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Cheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhijun Qi
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
7
|
Li J, Li J, Cao L, Chen Q, Ding D, Kang L. An iron-binding protein of entomopathogenic fungus suppresses the proliferation of host symbiotic bacteria. MICROBIOME 2024; 12:202. [PMID: 39407320 PMCID: PMC11481751 DOI: 10.1186/s40168-024-01928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Entomopathogenic fungal infection-induced dysbiosis of host microbiota offers a window into understanding the complex interactions between pathogenic fungi and host symbionts. Such insights are critical for enhancing the efficacy of mycoinsecticides. However, the utilization of these interactions in pest control remains largely unexplored. RESULTS Here, we found that infection by the host-specialist fungus Metarhizium acridum alters the composition of the symbiotic microbiota and increases the dominance of some bacterial symbionts in locusts. Meanwhile, M. acridum also effectively limits the overgrowth of the predominant bacteria. Comparative transcriptomic screening revealed that the fungus upregulates the production of MaCFEM1, an iron-binding protein, in the presence of bacteria. This protein sequesters iron, thereby limiting its availability. Functionally, overexpression of MaCFEM1 in the fungus induces iron deprivation, which significantly suppresses bacterial growth. Conversely, MaCFEM1 knockout relieves the restriction on bacterial iron availability, resulting in iron reallocation. Upon ΔMaCFEM1 infection, some host bacterial symbionts proliferate uncontrollably, turning into opportunistic pathogens and significantly accelerating host death. CONCLUSIONS This study elucidates the critical role of pathogenic fungal-dominated iron allocation in mediating the shift of host microbes from symbiosis to pathogenicity. It also highlights a unique biocontrol strategy that jointly exploits pathogenic fungi and bacterial symbionts to increase host mortality. Video Abstract.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiujie Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lili Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Wang G, Chen B, Zhang X, Du G, Han G, Liu J, Peng Y. The basic leucine zipper domain (bZIP) transcription factor BbYap1 promotes evasion of host humoral immunity and regulates lipid homeostasis contributing to fungal virulence in Beauveria bassiana. mSphere 2024; 9:e0035124. [PMID: 38926907 PMCID: PMC11288043 DOI: 10.1128/msphere.00351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of β-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host's expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. IMPORTANCE Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangyu Han
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, School of Life Science, Yunnan Normal University, Kunming, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| |
Collapse
|
10
|
Wang G, Zhang X, Du G, Wang W, Yao Y, Jin S, Cai H, Peng Y, Chen B. Oleic Acid and Linoleic Acid Enhances the Biocontrol Potential of Metarhizium rileyi. J Fungi (Basel) 2024; 10:521. [PMID: 39194847 DOI: 10.3390/jof10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metarhizium rileyi is a wide spread insect fungi with a good biocontrol potentiality to various pests, particularly noctuid insects. However, it is characterized by its slow growth, its sensitivity to abiotic stress, and the slow speed of kill to pests, which hinder its use compared with other entomopathogenic fungi. In this study, the responses of M. rileyi to eight types of lipids were observed; among the lipids, oleic acid and linoleic acid significantly promoted the growth and development of M. rileyi and enhanced its stress tolerances and virulence. An additional mechanistic study demonstrated that exogenous oleic acid and linoleic acid significantly improved the conidial germination, appressorium formation, cuticle degradation, and cuticle infection, which appear to be largely dependent on the up-regulation of gene expression in growth, development, protective, and cuticle-degrading enzymes. In conclusion, exogenous oleic acid and linoleic acid enhanced the stress tolerances and virulence of M. rileyi via protecting conidial germination and promoting cuticle infection. These results provide new insights for the biopesticide development of M. rileyi.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Wenqian Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yunhao Yao
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Sitong Jin
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Haosheng Cai
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Liu Q. Editorial: Reviews in insect immune responses: 2022. Front Immunol 2024; 15:1414382. [PMID: 38975348 PMCID: PMC11224509 DOI: 10.3389/fimmu.2024.1414382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| |
Collapse
|
12
|
Wang J, Hu H, Pang S, Yin X, Cao B, Huang J, Xu X, Weng Q, Hu Q. Destruxin A inhibits the hemocytin-mediated hemolymph immunity of host insects to facilitate Metarhizium infection. Cell Rep 2024; 43:113686. [PMID: 38219149 DOI: 10.1016/j.celrep.2024.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Insects have an effective innate immune system to protect themselves against fungal invasion. Metarhizium employs a toxin-based strategy using a nonribosomal peptide called destruxin A (DA) to counteract the host immune response. However, the mechanism by which DA inhibits insect immunity is still unclear. Here, we identified 48 DA-binding proteins in silkworm hemolymph, with the binding affinity (KD) ranging from 2 to 420 μM. Among these proteins, hemocytin, an important immune factor, was determined to be the strongest DA-binding protein. DA binds to hemocytin and regulates its conformation in a multisite manner. Furthermore, DA exerts a significant inhibitory effect on hemocytin-mediated hemocyte aggregation. By disrupting the interaction between hemocytin, actin A3, and gelsolin, DA prevents the transformation of granules into vesicles in hemocytes. These vesicles are responsible for storing, maturing, and exocytosing hemocytin. Therefore, hemocytin secretion is reduced, and the formation of structures that promote aggregation in outer hemocytes is inhibited.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China; College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Hongwang Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Suyun Pang
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xuyu Yin
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Bihao Cao
- College of Horticulture, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Jilei Huang
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Xiaoli Xu
- Instrumental Analytical and Research Center, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qunfang Weng
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China
| | - Qiongbo Hu
- College of Plant Protection, South China Agricultural University, Wushan RD483, Tianhe, Guangzhou, China.
| |
Collapse
|
13
|
Zhang Z, Jin F, Huang J, Mandal SD, Zeng L, Zafar J, Xu X. MicroRNA Targets PAP1 to Mediate Melanization in Plutella xylostella (Linnaeus) Infected by Metarhizium anisopliae. Int J Mol Sci 2024; 25:1140. [PMID: 38256210 PMCID: PMC10816858 DOI: 10.3390/ijms25021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (F.J.); (J.H.); (S.D.M.); (L.Z.); (J.Z.)
| |
Collapse
|
14
|
Ma M, Luo J, Li C, Eleftherianos I, Zhang W, Xu L. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Front Immunol 2024; 14:1329843. [PMID: 38259477 PMCID: PMC10800808 DOI: 10.3389/fimmu.2023.1329843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Insects constitute approximately 75% of the world's recognized fauna, with the majority of species considered as pests. Entomopathogenic fungi (EPF) are parasitic microorganisms capable of efficiently infecting insects, rendering them potent biopesticides. In response to infections, insects have evolved diverse defense mechanisms, prompting EPF to develop a variety of strategies to overcome or circumvent host defenses. While the interaction mechanisms between EPF and insects is well established, recent findings underscore that their interplay is more intricate than previously thought, especially evident across different stages of EPF infection. This review primarily focuses on the interplay between EPF and the insect defense strategies, centered around three infection stages: (1) Early infection stage: involving the pre-contact detection and avoidance behavior of EPF in insects, along with the induction of behavioral responses upon contact with the host cuticle; (2) Penetration and intra-hemolymph growth stage: involving the initiation of intricate cellular and humoral immune functions in insects, while symbiotic microbes can further contribute to host resistance; (3) Host insect's death stage: involving the ultimate confrontation between pathogens and insects. Infected insects strive to separate themselves from the healthy population, while pathogens rely on the infected insects to spread to new hosts. Also, we discuss a novel pest management strategy underlying the cooperation between EPF infection and disturbing the insect immune system. By enhancing our understanding of the intricate interplay between EPF and the insect, this review provides novel perspectives for EPF-mediated pest management and developing effective fungal insecticides.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Fan L, Li X, Li H, Li B, Wang J, He L, Wang Z, Lin Y. Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi. Curr Genet 2023; 69:253-265. [PMID: 37726495 DOI: 10.1007/s00294-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Insect pathogenic fungi, also known as entomopathogenic fungi, are one of the largest insect pathogenic microorganism communities, represented by Beauveria spp. and Metarhizium spp. Entomopathogenic fungi have been proved to be a great substitute for chemical pesticide in agriculture. In fact, a lot of functional genes were also already characterized in entomopathogenic fungi, but more depth of exploration is still needed to reveal their complicated pathogenic mechanism to insects. Metarhizium rileyi (Nomuraea rileyi) is a great potential biocontrol fungus that can parasitize more than 40 distinct species (mainly Lepidoptera: Noctuidae) to cause large-scale infectious diseases within insect population. In this study, a comparative analysis of transcriptome profile was performed with topical inoculation and hemolymph injection to character the infectious pattern of M. rileyi. Appressorium and multiple hydrolases are indispensable constituents to break the insect host primary cuticle defense in entomopathogenic fungi. Within our transcriptome data, numerous transcripts related to destruction of insect cuticle rather growth regulations were obtained. Most importantly, some unreported ribosomal protein genes and novel unannotated protein (hypothetical protein) genes were proved to participate in the course of pathogenic regulation. Our current data provide a higher efficiency gene library for virulence factors screen in M. rileyi, and this library may be also useful for furnishing valuable information on entomopathogenic fungal pathogenic mechanisms to host.
Collapse
Affiliation(s)
- Liqin Fan
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xinxin Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Hongli Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Bingjie Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Jiahui Wang
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Le He
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing, People's Republic of China
| | - Yunlong Lin
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, People's Republic of China.
| |
Collapse
|
16
|
Wu H, Xu Y, Zafar J, Mandal SD, Lin L, Lu Y, Jin F, Pang R, Xu X. Transcriptomic Analysis Reveals the Impact of the Biopesticide Metarhizium anisopliae on the Immune System of Major Workers in Solenopsis invicta. INSECTS 2023; 14:701. [PMID: 37623411 PMCID: PMC10455567 DOI: 10.3390/insects14080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, has been used to control S. invicta populations. However, the interaction between M. anisopliae and the immune system of the social insect S. invicta remains poorly understood. In this study, we employed RNA-seq to investigate the effects of M. anisopliae on the immune systems of S. invicta at different time points (0, 6, 24, and 48 h). A total of 1313 differentially expressed genes (DEGs) were identified and classified into 12 expression profiles using short time-series expression miner (STEM) for analysis. Weighted gene co-expression network analysis (WGCNA) was employed to partition all genes into 21 gene modules. Upon analyzing the statistically significant WGCNA model and conducting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the modules, we identified key immune pathways, including the Toll and Imd signaling pathways, lysosomes, autophagy, and phagosomes, which may collectively contribute to S. invicta defense against M. anisopliae infection. Subsequently, we conducted a comprehensive scan of all differentially expressed genes and identified 33 immune-related genes, encompassing various aspects such as recognition, signal transduction, and effector gene expression. Furthermore, by integrating the significant gene modules derived from the WGCNA analysis, we constructed illustrative pathway diagrams depicting the Toll and Imd signaling pathways. Overall, our research findings demonstrated that M. anisopliae suppressed the immune response of S. invicta during the early stages while stimulating its immune response at later stages, making it a potential biopesticide for controlling S. invicta populations. These discoveries lay the foundation for further understanding the immune mechanisms of S. invicta and the molecular mechanisms underlying its response to M. anisopliae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Pang
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (H.W.); (Y.X.); (J.Z.); (S.D.M.); (L.L.); (Y.L.); (F.J.)
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (H.W.); (Y.X.); (J.Z.); (S.D.M.); (L.L.); (Y.L.); (F.J.)
| |
Collapse
|
17
|
Qiao L, Liu J, Zhou Z, Li Z, Zhou Y, Xu S, Yang Z, Qu J, Zou X. Positive effects of Cordyceps cateniannulata colonization in tobacco: Growth promotion and resistance to abiotic stress. Front Microbiol 2023; 14:1131184. [PMID: 37125180 PMCID: PMC10140308 DOI: 10.3389/fmicb.2023.1131184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background Entomopathogenic fungi can live in insects to cause disease and death and are the largest group of entomopathogenic microorganisms. Therefore, these fungi are best known for their microbial control potential. Importantly, they also have other beneficial effects, including promoting plant growth and development by colonizing plant. Here, the study sought to identify specific strains of the entomopathogenic fungus, Cordyceps cateniannulata that would form endophytic associations with tobacco, thus benefiting plant growth and resistance to abiotic stresses, thereby highlighting the application of entomopathogenic fungi in tobacco. Methods The C. cateniannulata-tobacco symbiont was constructed by root irrigation. The effects of C. cateniannulata on tobacco growth were evaluated by measuring the maximum leaf length, maximum leaf width, number of leaves, plant height, stem thickness, stem circumference, dry and fresh shoot weight 7, 14, 21, and 28 days after colonization. The peroxidase, catalase, superoxide dismutase, and malondialdehyde were measured to observe the impact of C. cateniannulata on tobacco defense enzyme activity. Finally, high-throughput sequencing was used to access microbial communities in the rhizosphere, with data subsequently linked to growth indicators. Results After tobacco was inoculated with C. cateniannulata X8, which significantly promoted growth and related enzyme activity, malondialdehyde was decreased. The most significant impact was on peroxidase, with its activity being upregulated by 98.20, 154.42, 180.65, and 170.38% in the four time periods, respectively. The high throughput sequencing results indicated that C. cateniannulata had changed the rhizosphere microbial relative abundances, such as increasing Acidobacteria and Ascomycetes, and decreasing Actinomycetes and Basidiomycetes. The redundancy analysis showed that C. cateniannulata significantly boosted tobacco growth by reducing the abundance of specific dominant genera such as Stachybotrys, Cephalotrichum, Streptomyces, Isoptericola, and Microbacterium. Conclusion Specific strains of C. cateniannulata can be introduced into host plants as endophytes, resulting in promotion of host plant growth and increased resistance to abiotic stress and microbial pathogens. The study provides a foundation for future studies of C. cateniannulata as an ecological agent.
Collapse
Affiliation(s)
- Lu Qiao
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Jing Liu
- Zunyi Tobacco Company of Guizhou Province, Zunyi, China
| | | | - Zhimo Li
- Zunyi Tobacco Company of Guizhou Province, Zunyi, China
| | - Yeming Zhou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Shaohuan Xu
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Zhengkai Yang
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Miranda-Calixto A, Loera-Corral O, López-Pérez M, Figueroa-Martínez F. Improvement of Akanthomyces lecanii resistance to tebuconazole through UV-C radiation and selective pressure on microbial evolution and growth arenas. J Invertebr Pathol 2023; 198:107914. [PMID: 36958641 DOI: 10.1016/j.jip.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Tebuconazole (TEB) is a fungicide widely used in agriculture; however, its constant application has increased the emergence of resistant plant pathogenic fungal strains and reduced the effectiveness of fungi as biological control agents; for instance, the entomopathogenic and hyperparasitic fungus Akanthomyces lecanii, suitable for simultaneous biological control of insect pest and plant pathogenic fungi, is highly sensitive to fungicides. We carried out the induction of resistance to TEB in two wild type strains of A. lecanii by UV radiation and selective pressure in increasing fungicide gradients using a modified Microbial Evolution and Growth Arena (MEGA), to produce A. lecanii strains that can be used as biological control agent in the presence of tebuconazole. Nine UV-induced and three naturally adapted A. lecanii strains were resistant to TEB at the agriculturally recommended dose, and three irradiated strains were resistant to TEB concentration ten times higher; moreover, growth, sporulation rates, production of hydrolytic enzymes, and virulence against the hemipteran Coccus viridis, a major pest of coffee crops, were not affected in the TEB-resistant strains. These A. lecanii TEB-resistant strains would have a greater opportunity to develop and to establish themselves in fields where the fungicide is present and can be used in a combined biological-chemical strategy to improve insect and plant pathogenic fungal control in agriculture. Also, the selective pressure through modified MEGA plate methodology can be used for the adaptation of entomopathogenic filamentous fungi to withstand other chemical or abiotic stresses that limits its effectiveness for pest control.
Collapse
Affiliation(s)
- Arturo Miranda-Calixto
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Octavio Loera-Corral
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico
| | - Marcos López-Pérez
- Universidad Autónoma Metropolitana-Lerma Departamento de Ciencias Ambientales, Av. de las Garzas 10, El panteón, C. P. 52005 Lerma de Villada, Mexico
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow - Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340 CDMX, Mexico.
| |
Collapse
|
19
|
Sun YX, Zhang BX, Zhang WT, Wang Q, Toufeeq S, Rao XJ. UV-induced mutagenesis of Beauveria bassiana (Hypocreales: Clavicipitaceae) yields two hypervirulent isolates with different transcriptomic profiles. PEST MANAGEMENT SCIENCE 2023. [PMID: 36914429 DOI: 10.1002/ps.7452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) can infest over 300 plant species and cause huge economic losses. Beauveria bassiana (Hypocreales: Clavicipitaceae) is one of the most widely used entomopathogenic fungi (EPF). Unfortunately, the efficacy of B. bassiana against S. frugiperda is quite low. Hypervirulent EPF isolates can be obtained by ultraviolet (UV)-irradiation. Here we report on the UV-induced mutagenesis and transcriptomic analysis of B. bassiana. RESULTS The wild-type (WT) B. bassiana (ARSEF2860) was exposed to UV light to induce mutagenesis. Two mutants (named 6M and 8M) showed higher growth rates, conidial yields, and germination rates compared to the WT strain. The mutants showed higher levels of tolerance to osmotic, oxidative, and UV stresses. The mutants showed higher protease, chitinase, cellulose, and chitinase activities than WT. Both WT and mutants were compatible with the insecticides matrine, spinetoram, and chlorantraniliprole, but incompatible with emamectin benzoate. Insect bioassays showed that both mutants were more virulent against S. frugiperda and the greater wax moth Galleria mellonella. Transcriptomic profiles of the WT and mutants were determined by RNA-sequencing. The differentially expressed genes (DEGs) were identified. The gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, and hub gene analysis revealed virulence-related genes. CONCLUSION Our data demonstrate that UV-irradiation is a very efficient and economical technique to improve the virulence and stress resistance of B. bassiana. Comparative transcriptomic profiles of the mutants provide insights into virulence genes. These results provide new ideas for improving the genetic engineering and field efficacy of EPF. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Department of Science and Technology, Chuzhou University, Chuzhou, China
| | - Wen-Ting Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Qian Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Development and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| |
Collapse
|
20
|
Vidhate RP, Dawkar VV, Punekar SA, Giri AP. Genomic Determinants of Entomopathogenic Fungi and Their Involvement in Pathogenesis. MICROBIAL ECOLOGY 2023; 85:49-60. [PMID: 34977966 DOI: 10.1007/s00248-021-01936-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Entomopathogenic fungi offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. The evolutionary history of selected entomopathogenic fungi indicates their ancestral relationship with plant endophytes. During this host shifting, entomopathogenic fungi must have acquired multiple mechanisms, including a combination of various biomolecules that make them distinguishable from other fungi. In this review, we focus on understanding various biochemical and molecular mechanisms involved in entomopathogenesis. In particular, we attempt to explain the indispensable role of enlarged gene families of various virulent factors, viz. chitinases, proteases, lipases, specialized metabolites, and cytochrome P450, in entomopathogenesis. Our analysis suggests that entomopathogenic fungi recruit a different set of gene products during the progression of pathogenesis. Knowledge of these bio-molecular interactions between fungi and insect hosts will allow researchers to execute pointed efforts towards the development of improved entomopathogenic fungal strains.
Collapse
Affiliation(s)
- Ravindra P Vidhate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Sachin A Punekar
- Biospheres, Eshwari, 52/403, Lakshminagar, Parvati, Pune, 411009, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Evaluation of the Potential Entomopathogenic Fungi Purpureocillium lilacinum and Fusarium verticillioides for Biological Control of Forcipomyia taiwana (Shiraki). J Fungi (Basel) 2022; 8:jof8080861. [PMID: 36012849 PMCID: PMC9410248 DOI: 10.3390/jof8080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Forcipomyia taiwana (Diptera: Ceratopogonidae) is a nuisance blood-sucking pest to humans in Taiwan. An F. taiwana bite causes itching and redness and usually causes serious harassment to human outdoor activity. In terms of F. taiwana control, chemical pesticides are ineffective. Therefore, other efforts are needed. Fungal mycosis in the larvae, pupae, and emerging F. taiwana adults was found during the rearing of F. taiwana. In this study, six fungal isolates were isolated from infected cadavers and subjected to molecular identification. In addition, their biocontrol potential was evaluated against different life stages of F. taiwana. Based on the pathogenicity screening, two fungal isolates, NCHU-NPUST-175 and -178, which caused higher mortality on the fourth instar larvae of F. taiwana, were selected for virulence tests against different life stages of F. taiwana larvae. The results of the phylogenetic analysis indicated that the NCHU-NPUST-175 and -178 belonged to Purpureocillium lilacinum and Fusarium verticillioides, respectively. Bioassay against different life stages of F. taiwana with different spore concentrations (5 × 105 to 5 × 107 conidia/mL) revealed a dose-dependent effect on larvae for both fungal isolates, while only 38% and 50% mortality was found in highest concentration (5 × 107 conidia/mL) at fourth instar larvae by Pl-NCHU-NPUST-175 and Fv-NCHU-NPUST-178, respectively. Moreover, reductions in egg-hatching rate and adult emergence rate were found, when the last stage of F. taiwana was inoculated with both fungal isolates, indicating the ovicidal potential and the impact of entomopathogenic fungi on the development of F. taiwana. In conclusion, Pl-NCHU-NPUST-175 and Fv-NCHU-NPUST-178 showed larvicidal activity, ovicidal activity, and impact on adult emergence on F. taiwana.
Collapse
|
22
|
Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop 2022; 234:106627. [DOI: 10.1016/j.actatropica.2022.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
23
|
Im Y, Park SE, Lee SY, Kim JC, Kim JS. Early-Stage Defense Mechanism of the Cotton Aphid Aphis gossypii Against Infection With the Insect-Killing Fungus Beauveria bassiana JEF-544. Front Immunol 2022; 13:907088. [PMID: 35720408 PMCID: PMC9201107 DOI: 10.3389/fimmu.2022.907088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Aphis gossypii, commonly known as the cotton aphid, is a widely distributed pest of agricultural crops and acts as a vector for many serious plant viruses. Cotton aphid shows high resistance to chemical insecticides due to rapid rates of genetic diversity as a result of its short life cycle, seasonal migration, and host alteration. As an alternative, entomopathogenic fungi can be used to control cotton aphids in an environmentally sound manner. However, little is known about how cotton aphids respond to fungal infection. In this work, a new Beauveria bassiana strain JEF-544 (Bb JEF-544) was selected and isolated through bioassays with high virulence against cotton aphid. Early response of cotton aphid to Bb JEF-544 infection was analyzed at the transcriptome level. Infected aphids were collected two days after treatment at 25% lethal time (LT25), and total RNA of non-infected and Bb JEF-544-infected aphids was independently subjected to sequencing. Infected aphids showed significant up-regulation of the insect hormone biosynthesis pathway. Bursicon (Burs) and crustacean cardioactive peptide (CCAP) receptors involved in molting along with ecdysone synthesis were also strongly up-regulated in the aphid response to the fungal infection. In the immune response, melanization in the hemocoel was significantly up-regulated, while phagocytosis was less actively transcribed. In conclusion, cotton aphids protect themselves from Bb JEF-544 infection by activating the immune response including melanization and insect molting hormones to shed infected cuticles. In addition to describing the initial stages of Bb JEF-544 infection at the transcriptome level, this work provides potential treatment targets and insight into how fungal isolates can effectively be used to control this serious aphid species.
Collapse
Affiliation(s)
- Yeram Im
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Sue Yeon Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
24
|
Cisneros J, Wendel J, Jaronski S, Vitek C, Ciomperlik M, Flores D. Assessment of Two Novel Host-Derived Beauveria bassiana (Hypocreales: Cordycipitaceae) Isolates Against the Citrus Pest, Diaphorina citri (Hemiptera: Liviidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:56-64. [PMID: 34875693 DOI: 10.1093/jee/toab229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), vectors 'Candidatus Liberibacter spp.', the causative agent of Citrus Greening Disease (CGD) or Huanglongbing (HLB). Managing populations of psyllids in the Lower Rio Grande Valley (LRGV), TX, United States is imperative given a continuous increase in HLB-positive trees. A component of integrated pest management (IPM) program is the use of strains of entomopathogenic fungi for the biological control of D. citri. In an attempt to find endemic strains of entomopathogenic fungi that grow favorably under LRGV environmental conditions and naturally infect D. citri, psyllids were collected from local residential areas, surface sterilized, and plated on a semi-selective agar medium. Collection of over 9,300 samples from 278 sites throughout the LRGV led to the positive identification of two Beauveria bassiana (Balsamo-Crivellii) Vuillemin (Hypocreales: Cordycipitaceae) isolates, ACP18001 and ACP18002. Chi-square analysis of primary and secondary acquisition bioassays revealed that both field isolated strains outperformed Cordyceps (Isaria) fumosorosea (Wize) (Hypocreales: Cordycipitaceae) Apopka97 under both primary (direct spray) and secondary acquisition (adult exposure to sprayed foliage) bioassays with ACP18002 marginally outperforming ACP18001 under secondary acquisition. Slopes of the dose response regression lines for the three fungi were not significantly different. In addition, the thermal profiles for vegetative growth of each isolate indicated that the field isolates grew at higher rates than the standard at higher temperatures. The new isolates may prove to be good candidates for the management of D. citri populations in the LRGV.
Collapse
Affiliation(s)
- Jonathan Cisneros
- USDA APHIS PPQ S&T Insect Management & Molecular Diagnostics Laboratory, Edinburg, TX, USA
| | - Justin Wendel
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, Edinburg, TX, USA
| | | | - Christopher Vitek
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, Edinburg, TX, USA
| | - Matthew Ciomperlik
- USDA APHIS PPQ S&T Insect Management & Molecular Diagnostics Laboratory, Edinburg, TX, USA
| | - Daniel Flores
- USDA APHIS PPQ S&T Insect Management & Molecular Diagnostics Laboratory, Edinburg, TX, USA
| |
Collapse
|
25
|
Abstract
The entomopathogenic fungus Beauveria bassiana is a typical filamentous fungus and has been used for pest biocontrol. Conidia are the main active agents of fungal pesticides; however, we know little about conidial developmental mechanisms and less about maturation mechanisms. We found that a Zn2Cys6 transcription factor of B. bassiana (named BbCmr1) was mainly expressed in late-stage conidia and was involved in conidium maturation regulation. Deletion of Bbcmr1 impaired the conidial cell wall and resulted in a lower conidial germination rate under UV (UV), heat shock, H2O2, Congo red (CR) and SDS stresses compared to the wild type. Transcription levels of the genes associated with conidial wall components and trehalose synthase were significantly reduced in the ΔBbcmr1 mutant. Further analysis found that BbCmr1 functions by upregulating BbWetA, a well-known transcription factor in the central development of BrlA-AbaA-WetA. The expression of Bbcmr1 was positively regulated by BbBrlA. These results indicated that BbCmr1 played important roles in conidium maturation by interacting with the central development pathway, which provided insight into the conidial development networks in B. bassiana. IMPORTANCE Conidium maturation is a pivotal event in conidial development and affects fungal survival ability under various biotic/abiotic stresses. Although many transcription factors have been reported to regulate conidial development, we know little about the molecular mechanism of conidium maturation. Here, we demonstrated that the transcription factor BbCmr1 of B. bassiana was involved in conidium maturation, regulating cell wall structure, the expression of cell wall-related proteins, and trehalose synthesis. BbCmr1 orchestrated conidium maturation by interplaying with the central development pathway BrlA-AbaA-WetA. BbBrlA positively regulated the expression of Bbcmr1, and the latter positively regulated BbwetA expression, which forms a regulatory network mediating conidial development. This finding was critical to understand the molecular regulatory networks of conidial development in B. bassiana and provided avenues to engineer insect fungal pathogens with high-quality conidia.
Collapse
|
26
|
Zafar J, Zhang Y, Huang J, Freed S, Shoukat RF, Xu X, Jin F. Spatio-Temporal Profiling of Metarhizium anisopliae-Responsive microRNAs Involved in Modulation of Plutella xylostella Immunity and Development. J Fungi (Basel) 2021; 7:942. [PMID: 34829229 PMCID: PMC8620415 DOI: 10.3390/jof7110942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Metarhizium anisopliae, a ubiquitous pathogenic fungus, regulates a wide array of the insect pest population. The fungus has been employed to control Plutella xylostella, an insecticide-resistant destructive lepidopteran pest, which causes substantial economic losses in crops worldwide. Integration of modern gene-silencing technologies in pest control strategies has become more crucial to counter pesticide-resistant insects. MicroRNAs (miRNA) play essential roles in the various biological process via post-transcriptional gene regulation. In the present study, RNA-seq analysis of control (CK36h, CK72h) and fungal-infected (T36h, T72h) midguts was performed to reveal underlying molecular mechanisms occurring in larval midgut at different time courses. We aimed at exploring M. anisopliae-responsive miRNAs and their target genes involved in development and immunity. After data filtration, a combined set of 170 miRNAs were identified from all libraries. Interestingly, miR-281, miR-263, miR-1, miR-6094 and miR-8 were listed among the most abundantly expressed conserved miRNAs. Furthermore, we experimentally studied the role of differentially expressed miR-11912-5p in regulating corresponding target trypsin-like serine proteinase (Px_TLSP). The luciferase assay (in vitro) revealed that miRNA-11912-5p significantly downregulated its target gene, suggesting it might play a crucial role in defense mechanism of P. xylostella against M.+ anisopliae infection. We used synthetic miRNA mimic/inhibitor (in vivo), to overexpress/silence miRNA, which showed harmful effects on larval duration, survival and adult fecundity. Additionally, fungal application in the presence of mimics revealed enhanced sensitivity of P. xylostella to infection. Our finding provides an insight into the relatively obscure molecular mechanisms involved in insect midgut during the fungal infection.
Collapse
Affiliation(s)
- Junaid Zafar
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Yuxin Zhang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Junlin Huang
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Shoaib Freed
- Laboratory of Insect Microbiology and Biotechnology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Rana Fartab Shoukat
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Xiaoxia Xu
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (Y.Z.); (J.H.); (R.F.S.)
| |
Collapse
|
27
|
Lee MR, Kim JC, Park SE, Lee SJ, Kim WJ, Lee DH, Kim JS. Interactive Gene Expression Between Metarhizium anisopliae JEF-290 and Longhorned Tick Haemaphysalis longicornis at Early Stage of Infection. Front Physiol 2021; 12:643389. [PMID: 34093222 PMCID: PMC8170561 DOI: 10.3389/fphys.2021.643389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The longhorned tick, Haemaphysalis longicornis (Acari: Ixodidae), is a hard tick and a vector for severe fever with thrombocytopenia syndrome (SFTS) virus. The number of patients infected with SFTS is rapidly increasing. Recently, the invertebrate pathogen Metarhizium anisopliae JEF-290 was reported to be useful to control the tick as an alternative to chemical acaricides, which are not easily applicable in human living areas where the tick is widely spread. In this study, we analyzed how the tick and the fungal pathogen interact at the transcriptional level. Field-collected tick nymphs were treated with JEF-290 conidia at 1 × 108 conidia/ml. In the early stage of infection with 2.5% mortality, the infected ticks were subjected to RNA sequencing, and non-infected ticks and fungal masses served as controls. Fungus and tick genes were mostly up-regulated at the early stage of infection. In the gene set enrichment analysis of the infecting fungus, catabolic processes that included lipids, phospholipids, and detoxification processes, the response to oxidative stress, and toxic substances were significantly up-regulated. In this fungal up-regulation, various lipase, antioxidant enzyme, and hydrolase genes were highly transcribed. The gene set enrichment analysis of the infected tick showed that many peptide synthesis processes including translation, peptide metabolism, ribonucleotide metabolism, and energy production processes that included ATP generation and ADP metabolism were significantly up-regulated. Structurally, mitochondria and ribosome subunit genes in ticks were highly transcribed to upregulate these processes. Together these results indicate that JEF-290 initiates process that infects the tick while the tick actively defends against the fungal attack. This work provides background to improve our understanding of the early stage of fungal infection in longhorned tick.
Collapse
Affiliation(s)
- Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Se Jin Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Woo Jin Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Doo-Hyung Lee
- Department of Life Sciences, College of Bionano, Gachon University, Seongnam, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
28
|
Shin TY, Lee MR, Lee SJ, Kim JC, Kim S, Park SE, Kim WJ, Kim JS. Gene-disruption of the entomopathogenic fungus Beauveria bassiana incubated with dsRNA. J Basic Microbiol 2021; 61:642-651. [PMID: 33983639 DOI: 10.1002/jobm.202100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/11/2022]
Abstract
The species of Beauveria bassiana is widely used for the management of agricultural insect pests. In this study, we integrated egfp-double-stranded RNA (dsRNA) to a previously generated egfp-expressing B. bassiana transformant (Bb-egfp#3) using a protoplast integration method. The Bb-egfp#3 protoplast was mixed with the dsRNA under PEG/CaCl2 conditions and liquid-cultured in Sabouraud dextrose broth for 5 days. A control culture followed the same procedure without dsRNA. Bb-egfp#3/egfp-dsRNA cultures showed very low fungal growth (OD630 = 0.2) compared to the control culture, Bb-egfp#3 only (OD630 = 1.1). Screening of possible transformants on Sabouraud dextrose agar revealed a transformant T3, without egfp signal. T3 was confirmed as B. bassiana through sequencing of conserved genes and insect bioassays. Interestingly, the genomic egfp fragment of T3 was disrupted, and the egfp signal was not detected over four subcultures, which was also confirmed by RNA-seq of Bb-egfp#3 and T3. This study provides an interesting observation that protoplast integration with dsRNA could possibly generate significantly reduced gene expression in B. bassiana and it is stable across several generations.
Collapse
Affiliation(s)
- Tae Young Shin
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jong Cheol Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - Sihyeon Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - So Eun Park
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - Woo Jin Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
29
|
Yang Z, Wu Q, Fan J, Huang J, Wu Z, Lin J, Bin S, Shu B. Effects of the entomopathogenic fungus Clonostachys rosea on mortality rates and gene expression profiles in Diaphorina citri adults. J Invertebr Pathol 2021; 179:107539. [PMID: 33508316 DOI: 10.1016/j.jip.2021.107539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022]
Abstract
Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a serious pest of citrus. The insect also transmits Candidatus Liberibacter asiaticus, the pathogen of a devastating citrus disease called Huanglongbing. Clonostachys rosea is a versatile fungus that possesses nematicidal and insecticidal activities. The effect of C. rosea against D. citri remains unclear. Here we examined the pathogenicity of C. rosea against D. citri adults. A mortality rate of 46.67% was observed in adults treated with 1 × 108 conidia/mL spore suspension. Comparative transcriptomic analyses identified 259 differentially-expressed genes (DEGs) between controls and samples treated with fungi. Among the DEGs, 183 were up-regulated and 76 down-regulated. Genes with altered expression included those involved in immunity, apoptosis and cuticle formation. Our preliminary observation indicated that C. rosea is virulent against ACP adults and has the potential as a biological control agent for ACP management in the field.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qijing Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jinlan Fan
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jierong Huang
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhongzhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuying Bin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|