1
|
Hassan RM, Yehia H, El-Behairy MF, El-Azzouny AAS, Aboul-Enein MN. Design and synthesis of new quinazolinone derivatives: investigation of antimicrobial and biofilm inhibition effects. Mol Divers 2025; 29:21-42. [PMID: 38656598 PMCID: PMC11785708 DOI: 10.1007/s11030-024-10830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC50 values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Heba Yehia
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed F El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32897, Sadat City, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Rehman MU, Long S. Progress and challenges in the development of triazole antimicrobials. Future Med Chem 2024; 16:2451-2453. [PMID: 39560011 PMCID: PMC11622766 DOI: 10.1080/17568919.2024.2423596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1 Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| |
Collapse
|
3
|
Tahghighi A, Azerang P. Click chemistry beyond metal-catalyzed cycloaddition as a remarkable tool for green chemical synthesis of antifungal medications. Chem Biol Drug Des 2024; 103:e14555. [PMID: 38862260 DOI: 10.1111/cbdd.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Click chemistry is widely used for the efficient synthesis of 1,4-disubstituted-1,2,3-triazole, a well-known scaffold with widespread biological activity in the pharmaceutical sciences. In recent years, this magic ring has attracted the attention of scientists for its potential in designing and synthesizing new antifungal agents. Despite scientific and medical advances, fungal infections still account for more than 1.5 million deaths globally per year, especially in people with compromised immune function. This increasing trend is definitely related to a raise in the incidence of fungal infections and prevalence of antifungal drug resistance. In this condition, an urgent need for new alternative antifungals is undeniable. By focusing on the main aspects of reaction conditions in click chemistry, this review was conducted to classify antifungal 1,4-disubstituted-1,2,3-triazole hybrids based on their chemical structures and introduce the most effective triazole antifungal derivatives. It was notable that in all reactions studied, Cu(I) catalysts generated in situ by the reduction in Cu(II) salts or used copper(I) salts directly, as well as mixed solvents of t-BuOH/H2O and DMF/H2O had most application in the synthesis of triazole ring. The most effective antifungal activity was also observed in fluconazole analogs containing 1,2,3-triazole moiety and benzo-fused five/six-membered heterocyclic conjugates with a 1,2,3-triazole ring, even with better activity than fluconazole. The findings of structure-activity relationship and molecular docking of antifungal derivatives synthesized with copper-catalyzed azide-alkyne cycloaddition (CuAAC) could offer medicinal chemistry scientists valuable data on designing and synthesizing novel triazole antifungals with more potent biological activities in their future research.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024; 67:4298-4321. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
5
|
Deng C, Yan H, Wang J, Liu K, Liu BS, Shi YM. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem 2022; 244:114888. [DOI: 10.1016/j.ejmech.2022.114888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022]
|
6
|
Holzhauer L, Liagre C, Fuhr O, Jung N, Bräse S. Scope of tetrazolo[1,5- a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof. Beilstein J Org Chem 2022; 18:1088-1099. [PMID: 36105720 PMCID: PMC9443424 DOI: 10.3762/bjoc.18.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
The conversion of tetrazolo[1,5-a]quinoxalines to 1,2,3-triazoloquinoxalines and triazoloimidazoquinoxalines under typical conditions of a CuAAC reaction has been investigated. Derivatives of the novel compound class of triazoloimidazoquinoxalines (TIQ) and rhenium(I) triazoloquinoxaline complexes as well as a new TIQ rhenium complex were synthesized. As a result, a small 1,2,3-triazoloquinoxaline library was obtained and the method could be expanded towards 4-substituted tetrazoloquinoxalines. The compatibility of various aliphatic and aromatic alkynes towards the reaction was investigated and the denitrogenative annulation towards imidazoloquinoxalines could be observed as a competing reaction depending on the alkyne concentration and the substitutions at the quinoxaline.
Collapse
Affiliation(s)
- Laura Holzhauer
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chloé Liagre
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Novel orthodiphenyl five-member N-heteroaromatic compounds as potent anticancer cell agents. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02894-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Li Z, Zhao L, Bian Y, Li Y, Qu J, Song F. The antibacterial activity of quinazoline and quinazolinone hybrids. Curr Top Med Chem 2022; 22:1035-1044. [PMID: 35255796 DOI: 10.2174/1568026622666220307144015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
Bacterial infections cause substantial morbidity and mortality across the world and pose serious threats to humankind. Drug resistance, especially multidrug resistance resulting from different defensive mechanisms in bacteria, is the leading cause of failure the chemotherapy, making it an urgent need to develop more effective antibacterials. Quinazoline and quinazolinone frameworks have received considerable attention due to their diversified therapeutic potential. In particular, quinazoline/quinazolinone hybrids could exert antibacterial activity through various mechanisms and are useful scaffolds for the discovery of novel antibacterials. This review principally emphases on the antibacterial potential, structure-activity relationships (SARs), and mechanism of action of quinazoline and quinazolinone hybrids, covering articles published between 2017 and 2021.
Collapse
Affiliation(s)
- Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yu Li
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Jie Qu
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
9
|
Bhukta S, Samal SK, Vasudevan S, Sarveswari HB, Shanmugam K, Princy SA, Dandela R. A Prospective Diversity of Antibacterial Small Peptidomimetic and Quorum Sensing Mediated Drug: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Swadhapriya Bhukta
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies Indian Council of Medical Research-Regional Medical Research Center Bhubaneswar 751013 Odisha India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - S. Adline Princy
- Quorum Sensing Laboratory Centre for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA University Thanjavur 613401 Tamil Nadu India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Odisha Campus Department of Industrial and Engineering Chemistry Bhubaneswar 751013 Odisha India
| |
Collapse
|
10
|
1,3-Phenylene-based symmetrical bis(urea-1,2,3-triazole) hybrids: Synthesis, antimicrobial and in silico studies as 14α-sterol demethylase inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Borgolte M, Riester O, Kacerova T, Rentschler S, Schmidt MS, Jacksch S, Egert M, Laufer S, Csuk R, Deigner HP. Methacryloyl-GlcNAc Derivatives Copolymerized with Dimethacrylamide as a Novel Antibacterial and Biocompatible Coating. Pharmaceutics 2021; 13:pharmaceutics13101647. [PMID: 34683942 PMCID: PMC8541365 DOI: 10.3390/pharmaceutics13101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
Improving medical implants with functional polymer coatings is an effective way to further improve the level of medical care. Antibacterial and biofilm-preventing properties are particularly desirable in the area of wound healing, since there is a generally high risk of infection, often with a chronic course in the case of biofilm formation. To prevent this we here report a polymeric design of polymer-bound N-acetyl-glucosamine-oligoethylene glycol residues that mimic a cationic, antibacterial, and biocompatible chitosan surface. The combination of easy to use, crosslinkable, thin, potentially 3D-printable polymethacrylate layering with antibacterial and biocompatible functional components will be particularly advantageous in the medical field to support a wide range of implants as well as wound dressings. Different polymers containing a N-acetylglucosamine-methacryloyl residue with oligoethylene glycol linkers and a methacryloyl benzophenone crosslinker were synthesized by free radical polymerization. The functional monomers and corresponding polymers were characterized by 1H, 13C NMR, and infrared (IR) spectroscopy. The polymers showed no cytotoxic or antiadhesive effects on fibroblasts as demonstrated by extract and direct contact cell culture methods. Biofilm formation was reduced by up to 70% and antibacterial growth by 1.2 log, particularly for the 5% GlcNAc-4EG polymer, as observed for Escherichia coli and Staphylococcus aureus as clinically relevant Gram-negative and Gram-positive model pathogens.
Collapse
Affiliation(s)
- Max Borgolte
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tereza Kacerova
- Department of Chemistry, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic;
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Magnus S. Schmidt
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Susanne Jacksch
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Markus Egert
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
12
|
Haroun M, Tratrat C, Kochkar H, Nair AB. CDATA[Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase. Curr Top Med Chem 2021; 21:462-506. [PMID: 33319673 DOI: 10.2174/1568026621999201214232018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
13
|
Bitla S, Gayatri AA, Puchakayala MR, Kumar Bhukya V, Vannada J, Dhanavath R, Kuthati B, Kothula D, Sagurthi SR, Atcha KR. Design and synthesis, biological evaluation of bis-(1,2,3- and 1,2,4)-triazole derivatives as potential antimicrobial and antifungal agents. Bioorg Med Chem Lett 2021; 41:128004. [PMID: 33811989 DOI: 10.1016/j.bmcl.2021.128004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
A new series of bis-1,2,3- and 1,2,4-triazoles (10a-m) were designed and efficiently synthesized using methyl salicylate as potential antimicrobial agents. All compounds were characterized by their proton & 13C NMR, IR, Mass spectral data, and elemental analysis. The final compounds 10a-m were in vitro screened for antimicrobial and antifungal activity against gram negative Pseudomonas aeruginosa, Escherichia coli, gram positive Bacillus subtilis, Staphylococcus aureus strains and Aspergillus niger & Saccharomyces cerevisiae. Majority of the synthesized compounds exhibited potent antimicrobial activity (MIC 3.9 µg/mL) and promising antifungal activity with the zone of inhibition (ZOI) 1.5-8.2 mm. Compounds like 10d and 10f exhibited best antimicrobial activity against S. aureus. The molecular docking analysis revealed that all the synthesized derivatives shown better binding affinities. Among all, compound 10f exhibited best scores. Hence, there was an assumption that introduction of para-chloro and bromo-phenyl aromatic groups on triazole moiety could result excellent antimicrobial activity. This substantial growth inhibitory activity of bis-1,2,3- and 1,2,4-triazole derivatives suggested these compounds could assist a new way in the development of lead molecules against microbial infection and antimicrobial resistance investigations.
Collapse
Affiliation(s)
- Sampath Bitla
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana 500001, India
| | - Akkiraju Anjini Gayatri
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana 500007, India
| | | | - Vijaya Kumar Bhukya
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana 500001, India
| | - Jagadeshwar Vannada
- Department of Chemistry, University College of Science, Saifabad, Osmania University, Hyderabad, Telangana 500004, India
| | - Ramulu Dhanavath
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana 500001, India
| | - Bhaskar Kuthati
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana 500007, India
| | - Devender Kothula
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana 500001, India
| | - Someswar Rao Sagurthi
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana 500007, India.
| | - Krisham Raju Atcha
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana 500001, India.
| |
Collapse
|
14
|
Abdulwahab MK, Tan KH, Dzulkeflee R, Leong KH, Heh CH, Ariffin A. In-silico Studies of the Antiproliferative Activity of New Anilinoquinazoline Derivatives Against NSCLC Cells. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Saini P, Sonika, Singh G, Kaur G, Singh J, Singh H. Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
17
|
Poonia N, Lal K, Kumar A. Design, synthesis, antimicrobial evaluation and in silico studies of symmetrical bis (urea-1,2,3-triazole) hybrids. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04318-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Taia A, Essaber M, Aatif A, Chkirate K, Hökelek T, Mague JT, Sebbar NK. Crystal structure, Hirshfeld surface analysis, inter-action energy and DFT studies of 4-[(4-allyl-2-meth-oxy-phen-oxy)meth-yl]-1-(4-meth-oxy-phen-yl)-1 H-1,2,3-triazole. Acta Crystallogr E Crystallogr Commun 2020; 76:962-966. [PMID: 32523773 PMCID: PMC7273996 DOI: 10.1107/s2056989020006994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 11/14/2022]
Abstract
In the title mol-ecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C-HMthphn⋯OMthphn (Mthphn = meth-oxy-phen-yl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C-H⋯π(ring) inter-actions, together with π-π stacking inter-actions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) inter-actions. Computational chemistry reveals that the C-HMthphn⋯OMthphn hydrogen bond energy is 47.1 kJ mol-1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6-311 G(d,p) level, is compared with the experimentally determined mol-ecular structure. The HOMO-LUMO behaviour was elucidated to determine the energy gap.
Collapse
Affiliation(s)
- Abdelmaoujoud Taia
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, 40001 Marrakech, Morocco
| | - Mohamed Essaber
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, 40001 Marrakech, Morocco
| | - Abdeljalil Aatif
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, BP 2390, 40001 Marrakech, Morocco
| | - Karim Chkirate
- Laboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Nada Kheira Sebbar
- Laboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
- Laboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
19
|
Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020; 11:327-348. [PMID: 33479639 PMCID: PMC7580775 DOI: 10.1039/c9md00458k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
- Chemistry Department , Faculty of Science , Assiut University , 71516 Assiut , Egypt
| | - Ismail I Althagafi
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Mohammed Azam Ansari
- Department of Epidemic Disease Research , Institute of Research and Medical Consultation , Imam AbdurRahman Bin Faisal University , 34212 Dammam , Saudi Arabia
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi-110062 , India . ; ; Tel: +91 11 26059665
| |
Collapse
|
20
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
21
|
Verma NK, Mondal D, Bera S. Pharmacological and Cellular Significance of Triazole-Surrogated Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191021114906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
:
Heterocyclic compounds have been at the hierarchy position in academia, and
industrial arena, particularly the compounds containing triazole-core are found to be potent
with a broad range of biological activities. The resistance of triazole ring towards
chemical (acid and base) hydrolysis, oxidative and reductive reaction conditions, metabolic
degradation and its higher aromatic stabilization energy makes it a better heterocyclic
core as therapeutic agents. These triazole-linked compounds are used for clinical purposes
for antifungal, anti-mycobacterium, anticancer, anti-migraine and antidepressant
drugs. Triazole scaffolds are also found to act as a spacer for the sake of covalent attachment
of the high molecular weight bio-macromolecules with an experimental building
blocks to explore structure-function relationships. Herein, several methods and strategies
for the synthesis of compounds with 1,2,3-triazole moiety exploring Hüisgen, Meldal and Sharpless 1,3-dipolar
cycloaddition reaction between azide and alkyne derivatives have been deliberated for a series of representative
compounds. Moreover, this review article highlights in-depth applications of the [3+2]-cycloaddition reaction
for the advances of triazole-containing antibacterial as well as metabolic labelling agents for the in vitro and in
vivo studies on cellular level.
Collapse
Affiliation(s)
- Naimish Kumar Verma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
22
|
El Malah T, Abdel Mageid RE, Awad HM, Nour HF. Copper( i)-catalysed azide–alkyne cycloaddition and antiproliferative activity of mono- and bis-1,2,3-triazole derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj04308g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of mono- and bis-1,2,3-triazole derivatives were prepared via the copper(i)-catalysed azide–alkyne cycloaddition between substituted aromatic derivatives, comprising one or two terminal alkyne groups and a selection of aromatic azides.
Collapse
Affiliation(s)
- Tamer El Malah
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - Randa E. Abdel Mageid
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| | - Hanem M. Awad
- Department of Tanning Materials and Leather Technology
- National Research Centre
- Cairo
- Egypt
| | - Hany F. Nour
- Photochemistry Department
- Chemical Industries Research Division
- National Research Centre
- Cairo
- Egypt
| |
Collapse
|