1
|
Kim-Wang SY, Holt AG, McGowan AM, Danyluk ST, Goode AP, Lau BC, Toth AP, Wittstein JR, DeFrate LE, Yi JS, McNulty AL. Immune cell profiles in synovial fluid after anterior cruciate ligament and meniscus injuries. Arthritis Res Ther 2021; 23:280. [PMID: 34736523 PMCID: PMC8567695 DOI: 10.1186/s13075-021-02661-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/17/2021] [Indexed: 01/18/2023] Open
Abstract
Background Anterior cruciate ligament (ACL) and meniscus tears are common knee injuries. Despite the high rate of post-traumatic osteoarthritis (PTOA) following these injuries, the contributing factors remain unclear. In this study, we characterized the immune cell profiles of normal and injured joints at the time of ACL and meniscal surgeries. Methods Twenty-nine patients (14 meniscus-injured and 15 ACL-injured) undergoing ACL and/or meniscus surgery but with a normal contralateral knee were recruited. During surgery, synovial fluid was aspirated from both normal and injured knees. Synovial fluid cells were pelleted, washed, and stained with an antibody cocktail consisting of fluorescent antibodies for cell surface proteins. Analysis of immune cells in the synovial fluid was performed by polychromatic flow cytometry. A broad spectrum immune cell panel was used in the first 10 subjects. Based on these results, a T cell-specific panel was used in the subsequent 19 subjects. Results Using the broad spectrum immune cell panel, we detected significantly more total viable cells and CD3 T cells in the injured compared to the paired normal knees. In addition, there were significantly more injured knees with T cells above a 500-cell threshold. Within the injured knees, CD4 and CD8 T cells were able to be differentiated into subsets. The frequency of total CD4 T cells was significantly different among injury types, but no statistical differences were detected among CD4 and CD8 T cell subsets by injury type. Conclusions Our findings provide foundational data showing that ACL and meniscus injuries induce an immune cell-rich microenvironment that consists primarily of T cells with multiple T helper phenotypes. Future studies investigating the relationship between immune cells and joint degeneration may provide an enhanced understanding of the pathophysiology of PTOA following joint injury.
Collapse
Affiliation(s)
- Sophia Y Kim-Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Abigail G Holt
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa M McGowan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie T Danyluk
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Adam P Goode
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian C Lau
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alison P Toth
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jocelyn R Wittstein
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Louis E DeFrate
- Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA. .,Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - John S Yi
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol 2020; 85:106607. [DOI: 10.1016/j.intimp.2020.106607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
|
3
|
Li YS, Luo W, Zhu SA, Lei GH. T Cells in Osteoarthritis: Alterations and Beyond. Front Immunol 2017; 8:356. [PMID: 28424692 PMCID: PMC5371609 DOI: 10.3389/fimmu.2017.00356] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Although osteoarthritis (OA) has been traditionally regarded as a non-inflammatory disease, reports increasingly suggest that it is inflammatory, at least in certain patients. OA patients often exhibit inflammatory infiltration of synovial membranes by macrophages, T cells, mast cells, B cells, plasma cells, natural killer cells, dendritic cells, granulocytes, etc. Although previous reviews have summarized the knowledge of inflammation in the pathogenesis of OA, as far as we know, no report review our current understanding about T cells, especially, each T cell subtype, in the biology of OA. This review highlights the current understanding of the role of T cells in the pathogenesis of OA, with attention to Th1 cells, Th2 cells, Th9 cells, Th17 cells, Th22 cells, regulatory T cells, follicular helper T cells, cytotoxic T cells, T memory cells, and even unconventional T cells (e.g., γδ T cells and cluster of differentiation 1 restricted T cells). The findings highlight the importance of T cells to the development and progression of OA and suggest new therapeutic approaches for OA patients based on the manipulation of T-cell responses.
Collapse
Affiliation(s)
- Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Shou-An Zhu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Guang-Hua Lei
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Therapeutic Effects of Ribunucleinate (Ribonucleotides) in Immuno-Inflammatory and Arthritic Diseases. ACTA ACUST UNITED AC 2015; 70:35-89. [PMID: 26462364 DOI: 10.1007/978-3-0348-0927-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ribonucleic acids from different organs and from yeast have been used for the treatment of chronic and degenerative diseases in the context of naturopathic medicine in the last 60 years. This chapter provides general information about ribonucleinates as therapeutic agents. Past and present pharmacological and clinical investigations are discussed in the field of the central nervous system, sensory organs, cancer and degenerative diseases of joints and vertebra.
Collapse
|
5
|
Cantley MD, Rainsford KD, Haynes DR. Effects of Osteochondrin S and select connective tissue ribonucleinate components on human osteoclasts in vitro. J Pharm Pharmacol 2013; 65:1214-22. [DOI: 10.1111/jphp.12088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
Osteochondrin S, a natural product derived from connective tissues and yeast, is used to treat osteoarthritis. The aim of this study was to determine the effect of Osteochondrin S on human osteoclast activity in vitro.
Methods
Osteoclasts were derived from human peripheral blood mononuclear cells stimulated with macrophage colony-stimulating factor and receptor activator of nuclear factor kappa B (RANK) ligand. Cells were treated with 23.5–587.2 ng/ml Osteochondrin S or 0.2–5 mg/ml of RNA components (synovia, placenta, intervertebral disc or cartilage). The effects on osteoclast formation and resorptive activity were assessed. Real-time polymerase chain reaction was conducted to assess the expression of key osteoclast genes.
Key findings
Osteochondrin S and the individual RNA extracts resulted in a concentration-dependent inhibition of human osteoclast activity. Osteochondrin S did not affect RANK, nuclear factor of activated T cells (NFATc1), osteoclast-associated receptor or cathepsin K expression. However, there was a significant (P < 0.05) reduction in mRNA expression of calcitonin receptor. Osteochondrin S treatment also significantly increased the expression of osteoclast inhibitory factor interferon-β and, interestingly, increased the expression of tumour necrosis-α-like weak inducer of apoptosis (TWEAK).
Conclusions
Osteochondrin S inhibited the resorptive ability of osteoclasts. These actions are likely to occur at a late stage during osteoclast formation, downstream of NFATc1. Overall, the findings show that Osteochondrin S inhibition of osteoclast activity may be responsible for its beneficial effects on diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Melissa D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - K D Rainsford
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - David R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
van der Windt AE, Jahr H, Farrell E, Verhaar JAN, Weinans H, van Osch GJVM. Calcineurin inhibitors promote chondrogenic marker expression of dedifferentiated human adult chondrocytes via stimulation of endogenous TGFbeta1 production. Tissue Eng Part A 2010; 16:1-10. [PMID: 19604038 DOI: 10.1089/ten.tea.2009.0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro chondrocyte expansion is required for several cell-based approaches for the repair of chondral lesions. During expansion, loss of chondrogenic phenotype takes place (dedifferentiation). The objective of this study was to investigate calcineurin (Cn) as a potential target to improve chondrocyte phenotype for cartilage repair purposes. Cn activity in human articular chondrocytes was significantly increased during dedifferentiation and decreased during redifferentiation in vitro. Inhibition of Cn activity by FK506 increased the expression of chondrogenic markers collagen type 2, aggrecan, and SOX9 in culture-expanded cells. Addition of FK506 increased endogenous transforming growth factor 2 (TGF) beta1 expression on both mRNA and protein level. The effect of FK506 on chondrogenic markers was abolished by addition of anti-TGFbeta1 antibody, indicating that the endogenous TGFbeta1 was necessary to increase chondrogenic marker expression. We also showed that chondrocyte redifferentiation by TGFbeta requires calcium influx and does not depend on changes in Cn activity. In conclusion, inhibition of Cn activity by FK506 increases the expression of chondrogenic markers via endogenous TGFbeta1 production in human articular chondrocytes. Cn inhibitors might be an alternative for the application of (recombinant) TGFbeta, to promote chondrocyte phenotype for cell-based cartilage repair procedures.
Collapse
Affiliation(s)
- Anna E van der Windt
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Human autoimmune diseases are specific antigen-driven T-cell diseases: identification of the antigens. Immunol Res 2007; 38:359-72. [DOI: 10.1007/s12026-007-0044-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
|
8
|
Sakkas LI, Platsoucas CD. The role of T cells in the pathogenesis of osteoarthritis. ACTA ACUST UNITED AC 2007; 56:409-24. [PMID: 17265476 DOI: 10.1002/art.22369] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lazaros I Sakkas
- Temple University School of Medicine, Philadelphia, PA, USA and Thessaly University School of Medicine, Larisa, Greece
| | | |
Collapse
|
9
|
Henrotin Y, Sanchez C, Balligand M. Pharmaceutical and nutraceutical management of canine osteoarthritis: present and future perspectives. Vet J 2005; 170:113-23. [PMID: 15993795 DOI: 10.1016/j.tvjl.2004.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2004] [Indexed: 12/01/2022]
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases and causes of lameness in the dogs. The osteoarthritic disease process involves the entire synovial joint, encompassing the synovium, cartilage and underlying bone. Joint failure results from an abnormal mechanical strain causing damage to normal tissue or failure of pathologically impaired articular cartilage and bone under the influence of normal physiological strain or a combination of both. In both cases, the end point is cartilage loss and joint impairment. Osteoarthritic chondrocytes show an altered phenotype characterised by an excess production of catabolic factors, including metalloproteinases and reactive oxygen species. These factors constitute potential therapeutic targets and some new drugs and nutraceuticals have been proposed to promote the return to homeostasis. Until now, the therapeutic management of OA in dogs has been dominated by nonsteroidal anti-inflammatory drugs, but some new compounds, including diacerhein, with potential structure-modifying effects, are already used to treat OA in humans and could be helpful to manage OA in the dog. In addition, novel nutraceuticals, such as avocado/soybean unsaponifiable substances, have shown symptomatic effects in knee OA in humans, and could offer an alternative to prevent OA progression. This paper provides an overview of recent discoveries in the pathophysiology and in the therapeutic management of osteoarthritis in dogs.
Collapse
Affiliation(s)
- Yves Henrotin
- Bone and Cartilage Research Unit, Institute of Pathology, Level +5, CHU Sart-Tilman, 4000 Liège, Belgium.
| | | | | |
Collapse
|
10
|
Sakkas LI, Koussidis G, Avgerinos E, Gaughan J, Platsoucas CD. Decreased expression of the CD3zeta chain in T cells infiltrating the synovial membrane of patients with osteoarthritis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:195-202. [PMID: 14715568 PMCID: PMC321327 DOI: 10.1128/cdli.11.1.195-202.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 07/16/2003] [Accepted: 10/02/2003] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is a heterogeneous disease which rheumatologists consider to be noninflammatory. However, recent studies suggest that, at least in certain patients, OA is an inflammatory disease and that patients often exhibit inflammatory infiltrates in the synovial membranes (SMs) of macrophages and activated T cells expressing proinflammatory cytokines. We report here that the expression of CD3zeta is significantly decreased in T cells infiltrating the SMs of patients with OA. The CD3zeta chain is involved in the T-cell signal transduction cascade, which is initiated by the engagement of the T-cell antigen receptor and which culminates in T-cell activation. Double immunofluorescence of single-cell suspensions derived from the SMs from nine patients with OA revealed significantly increased proportions of CD3epsilon-positive (CD3epsilon+) cells compared with the proportions of CD3zeta-positive (CD3zeta+) T cells (means +/- standard errors of the means, 80.48% +/- 3.92% and 69.02% +/- 6.51%, respectively; P = 0.0096), whereas there were no differences in the proportions of these cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (94.73% +/- 1.39% and 93.79% +/- 1.08%, respectively; not significant). The CD3zeta+ cell/CD3epsilon+ cell ratio was also significantly decreased for T cells from the SMs of patients with OA compared with that for T cells from the PBMCs of healthy donors (0.84 +/- 0.17 and 0.99 +/- 0.01, respectively; P = 0.0302). The proportions of CD3epsilon+ CD3zeta+ cells were lower in the SMs of patients with OA than in the PBMCs of healthy donors (65.04% +/- 6.7% and 90.81% +/- 1.99%, respectively; P = 0.0047). Substantial proportions (about 15%) of CD3epsilon+ CD3zeta-negative (CD3zeta-) and CD3epsilon-negative (CD3epsilon-) CD3zeta- cells were found in the SMs of patients with OA. Amplification of the CD3zeta and CD3delta transcripts from the SMs of patients with OA by reverse transcriptase PCR consistently exhibited stronger bands for CD3delta cDNA than for CD3zeta cDNA The CD3zeta/CD3delta transcript ratio in the SMs of patients with OA was significantly lower than that in PBMCs from healthy controls (P < 0.0001). These results were confirmed by competitive MIMIC PCR. Immunoreactivities for the CD3zeta protein were detected in the SMs of 10 of 19 patients with OA, and they were of various intensities, whereas SMs from all patients were CD3epsilon+ (P = 0.0023). The decreased expression of the CD3zeta transcript and protein in T cells from the SMs of patients with OA relative to that of the CD3epsilon transcript is suggestive of chronic T-cell stimulation and supports the concept of T-cell involvement in OA.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|