1
|
Zouali M. Swaying the advantage: multifaceted functions of inflammasomes in adaptive immunity. FEBS J 2025; 292:1817-1832. [PMID: 38922787 DOI: 10.1111/febs.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Eukaryotic cells are equipped with cytoplasmic sensors that recognize diverse pathogen- or danger-associated molecular patterns. In cells of the myeloid lineage, activation of these sensors leads to the assembly of a multimeric protein complex, called the inflammasome, that culminates in the production of inflammatory cytokines and pyroptosis. Recently, investigation of the inflammasomes in lymphocytes led to the discovery of functional pathways that were initially believed to be confined to the innate arm of the immune system. Thus, the adapter protein apoptosis-associated speck-like protein containing a CARD (ASC) was documented to play a critical role in antigen uptake by dendritic cells, and regulation of T- and B-cell motility at several stages, and absent in melanoma 2 (AIM2) was found to act as a modulator of regulatory T-cell differentiation. Remarkably, NLRP3 was demonstrated to act as a transcription factor that controls Th2 cell polarization, and as a negative regulator of regulatory T-cell differentiation by limiting Foxp3 expression. In B lymphocytes, NLRP3 plays a role in the transcriptional network that regulates B-cell development and homing, and its activation is essential for germinal center formation and maturation of high-affinity antibody responses. Such recently discovered inflammasome-mediated functions in T and B lymphocytes offer multiple cross-talk opportunities for the innate and adaptive arms of the immune system. A better understanding of the dialog between inflammasomes and intracellular components could be beneficial for therapeutic purposes in restoring immune homeostasis and mitigating inflammation in a wide range of disorders.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Wang F, Zhao D, Xu WY, Liu Y, Sun H, Lu S, Ji Y, Jiang J, Chen Y, He Q, Gong C, Liu R, Su Z, Dong Y, Yan Z, Liu L. Blood leukocytes as a non-invasive diagnostic tool for thyroid nodules: a prospective cohort study. BMC Med 2024; 22:147. [PMID: 38561764 PMCID: PMC10986011 DOI: 10.1186/s12916-024-03368-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.
Collapse
Affiliation(s)
- Feihang Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Danyang Zhao
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wang-Yang Xu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Yiying Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Huiyi Sun
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shanshan Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yi Chen
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | | | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., Shanghai, 201203, China.
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhiping Yan
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
3
|
Zouali M. DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clin Immunol 2020; 222:108622. [PMID: 33188932 DOI: 10.1016/j.clim.2020.108622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022]
Abstract
B lymphocytes play key roles in adaptive and innate immunity. In autoimmune diseases, their participation in disease instigation and/or progression has been demonstrated in both experimental models and clinical trials. Recent epigenetic investigations of human B lymphocyte subsets revealed the importance of DNA methylation in exquisitely regulating the cellular activation and differentiation programs. This review discusses recent advances on the potential of DNA methylation to shape events that impart generation of plasma cells and memory B cells, providing novel insight into homeostatic regulation of the immune system. In parallel, epigenetic profiling of B cells from patients with systemic or organo-specific autoimmune diseases disclosed distinctive differential methylation regions that, in some cases, could stratify patients from controls. Development of tools for editing DNA methylation in the mammalian genome could be useful for future functional studies of epigenetic regulation by offering the possibility to edit locus-specific methylation, with potential translational applications.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Road, North District, Taichung City, Taïwan 404, Taichung, Taiwan.
| |
Collapse
|
4
|
Tan C, Noviski M, Huizar J, Zikherman J. Self-reactivity on a spectrum: A sliding scale of peripheral B cell tolerance. Immunol Rev 2019; 292:37-60. [PMID: 31631352 DOI: 10.1111/imr.12818] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Efficient mechanisms of central tolerance, including receptor editing and deletion, prevent highly self-reactive B cell receptors (BCRs) from populating the periphery. Despite this, modest self-reactivity persists in (and may even be actively selected into) the mature B cell repertoire. In this review, we discuss new insights into mechanisms of peripheral B cell tolerance that restrain mature B cells from mounting inappropriate responses to endogenous antigens, and place recent work into historical context. In particular, we discuss new findings that have arisen from application of a novel in vivo reporter of BCR signaling, Nur77-eGFP, expression of which scales with the degree of self-reactivity in both monoclonal and polyclonal B cell repertoires. We discuss new and historical evidence that self-reactivity is not just tolerated, but actively selected into the peripheral repertoire. We review recent progress in understanding how dual expression of the IgM and IgD BCR isotypes on mature naive follicular B cells tunes responsiveness to endogenous antigen recognition, and discuss how this may be integrated with other features of clonal anergy. Finally, we discuss how expression of Nur77 itself couples chronic antigen stimulation with B cell tolerance.
Collapse
Affiliation(s)
- Corey Tan
- Biomedical Sciences (BMS) Graduate Program, University of California, San Francisco, CA, USA
| | - Mark Noviski
- Biomedical Sciences (BMS) Graduate Program, University of California, San Francisco, CA, USA.,Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco, CA, USA
| | - John Huizar
- School of Medicine, HHMI Medical Fellows Program, University of California, San Francisco, CA, USA
| | - Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Kotb A, Ismail S, Kimito I, Mohamed W, Salman A, Mohammed AA. Increased CD5+ B-cells are associated with autoimmune phenomena in lepromatous leprosy patients. J Infect Public Health 2019; 12:656-659. [PMID: 30904499 DOI: 10.1016/j.jiph.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Leprosy is a chronic slowly progressive infection caused by Mycobacterium leprae that primarily affects the skin and peripheral nerves. Lepromatous leprosy is characterized by absence of T-cell responses to M. leprae and advanced clinical disease. It is frequently associated with the presence of autoantibodies, which might be related to CD19+CD5+ and CD19+CD5- B lymphocyte percentages. Therefore, the aim of this study was to evaluate the percentages of CD19+CD5+ and CD19+CD5- B cell subsets as well as the total B cells in lepromatous leprosy patients. MATERIALS AND METHODS Twenty lepromatous leprosy patients and ten healthy subjects served as control were included in this study. Venous blood samples were analyzed by flow cytometry to determine the B cell subsets and total B cell percentages. RESULTS Compared to healthy controls, the percentages of CD19+CD5+ B cell subset and total B cells were found to be significantly higher in the patient group. While, the percentage of CD19+CD5- B cell subset was found to be higher in the patient group than the control without any significantly difference. Regarding the eye affection, the percentage of total B cells was observed to be significantly higher in affected patients compared to the non-affected group. CONCLUSION The observed significant increases in CD19+CD5+ and total B cell percentages in patients with lepromatous leprosy suggests a possible role of these cells in the disorganized protective immune response as well as the development of eye complications in these patients.
Collapse
Affiliation(s)
- Attia Kotb
- Genomic Department, Life Science College, Niigata University, 950-2181, Niigata, Japan; Department of Biology, University of Queensland, St Lucia, QLD, 4072, Australia; Center of Excellence in Biotechnology Research, Biochemistry Department, KSU, P.O. Box 2455, 11451, Saudi Arabia.
| | - Samia Ismail
- Dermatology Department, Medicine Collage, Tanta University, 33717, Tanta, Egypt
| | - Itoh Kimito
- Genomic Department, Life Science College, Niigata University, 950-2181, Niigata, Japan
| | - Waghi Mohamed
- Department of Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alamery Salman
- Center of Excellence in Biotechnology Research, Biochemistry Department, KSU, P.O. Box 2455, 11451, Saudi Arabia
| | - Arif A Mohammed
- Center of Excellence in Biotechnology Research, Biochemistry Department, KSU, P.O. Box 2455, 11451, Saudi Arabia
| |
Collapse
|
6
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Ebrahimie E, Moussavi Nik SH, Newman M, Van Der Hoek M, Lardelli M. The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. J Alzheimers Dis 2017; 52:581-608. [PMID: 27031468 DOI: 10.3233/jad-150678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase γ-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia.,School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia.,School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | - Seyyed Hani Moussavi Nik
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Van Der Hoek
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
9
|
Oner T, Ozdemir R, Genc DB, Kucuk M, Karadeniz C, Demirpence S, Yilmazer MM, Mese T, Tavli V, Genel F. Parameters indicative of persistence of valvular pathology at initial diagnosis in acute rheumatic carditis: the role of albumin and CD19 expression. J Pediatr (Rio J) 2016; 92:581-587. [PMID: 27553592 DOI: 10.1016/j.jped.2016.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE The aim of this study is to define the predictors of chronic carditis in patients with acute rheumatic carditis (ARC). METHODS Patients diagnosed with ARC between May 2010 and May 2011 were included in the study. Echocardiography, electrocardiography, lymphocyte subset analysis, acute phase reactants, plasma albumin levels, and antistreptolysin-O (ASO) tests were performed at initial presentation. The echocardiographic assessments were repeated at the sixth month of follow-up. The patients were divided into two groups according to persistence of valvular pathology at 6th month as Group 1 and Group 2, and all clinical and laboratory parameters at admission were compared between two groups of valvular involvement. RESULTS During the one-year study period, 22 patients had valvular disease. Seventeen (77.2%) patients showed regression in valvular pathology. An initial mild regurgitation disappeared in eight patients (36.3%). Among seven (31.8%) patients with moderate regurgitation initially, the regurgitation disappeared in three, and four patients improved to mild regurgitation. Two patients with a severe regurgitation initially improved to moderate regurgitation (9.1%). In five (22.8%) patients, the grade of regurgitation [moderate regurgitation in one (4.6%), and severe regurgitation in 4 (18.2%)] remained unchanged. The albumin level was significantly lower at diagnosis in Group 2 (2.6±0.48g/dL). Lymphocyte subset analysis showed a significant decrease in the CD8 percentage and a significant increase in CD19 percentage at diagnosis in Group 2 compared to Group 1. CONCLUSION The blood albumin level and the percentage of CD8 and CD19 (+) lymphocytes at diagnosis may help to predict chronic valvular disease risk in patients with acute rheumatic carditis.
Collapse
Affiliation(s)
- Taliha Oner
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | - Rahmi Ozdemir
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey.
| | - Dildar Bahar Genc
- Sisli Etfal Training and Research Hospital, Pediatric Oncology, Istanbul, Turkey
| | - Mehmet Kucuk
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | - Cem Karadeniz
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | - Savas Demirpence
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | | | - Timur Mese
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | - Vedide Tavli
- Izmir Dr. Behcet Uz Children's Hospital, Pediatric Cardiology, Izmir, Turkey
| | - Ferah Genel
- Izmir Dr. Behçet Uz Children's Hospital, Pediatric Immunology, Izmir, Turkey
| |
Collapse
|
10
|
Oner T, Ozdemir R, Genc DB, Kucuk M, Karadeniz C, Demirpence S, Yilmazer MM, Mese T, Tavli V, Genel F. Parameters indicative of persistence of valvular pathology at initial diagnosis in acute rheumatic carditis: the role of albumin and CD19 expression. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2016. [DOI: 10.1016/j.jpedp.2016.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Zouali M, Tsay G. Developing connections amongst B lymphocytes and deregulated pathways in autoimmunity. Mol Med 2016; 22:705-712. [PMID: 27730250 DOI: 10.2119/molmed.2016.00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
Immunologists have long investigated B lymphocytes as solely antibody producing cells. With further studies, it became clear that B cells are able to exert a variety of functions within the immune system, and beyond. As a result, B cells are considered promising targets for immunotherapy in a variety of disorders. Recently, experts in B cell biology and autoimmunity convened to discuss important stepping stones to decipher the complexity of B lymphocyte-mediated pathways in autoimmune diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm, U1132, Paris, F-75475, France.,Université Paris 7, Sorbonne Paris-Cité, Paris, F-75475, France
| | - Gregory Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Abstract
The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutation or lacking the cytoplasmic domain to uncouple the enzymatic and noncatalytic functions of CD45 in lymphocytes. Although these transgenes did not alter T-cell signaling or development irrespective of endogenous CD45 expression, both partially rescued the phenotype of CD45-deficient B cells. We identify a noncatalytic role for CD45 in regulating tonic, but not antigen-mediated, B-cell antigen receptor (BCR) signaling through modulation of the function of the inhibitory coreceptor CD22. This finding has important implications for understanding how naïve B cells maintain tonic BCR signaling while restraining inappropriate antigen-dependent activation to preserve clonal "ignorance."
Collapse
|
14
|
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine; Tuen Mun Hospital; Hong Kong China
| |
Collapse
|
15
|
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by flares and remission, leading to accrual of organ damage over time as a result of persistent tissue inflammation and treatment-related complications. Novel therapies aiming at better treatment response and fewer adverse effects are being tested in the pipeline. AREAS COVERED This review summarizes the B-cell abnormalities observed in patients with SLE, and updates recent data on the efficacy and safety of B-cell targeted therapies in the treatment of SLE. The pitfalls of clinical trial design and future directions of the development of SLE therapeutics are discussed. EXPERT OPINION The variability of clinical response to treatment in SLE reflects the clinical and immunological heterogeneity of the disease. The treatment plan for patients with SLE should be individualized with the aim of eradicating disease activity, preventing flares and minimizing treatment-related complications. Despite the disappointment of recent clinical trials, B-cell remains the promising target of future SLE therapies. Results from ongoing clinical trials on B-cell targeted biological agents are eagerly awaited.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Tuen Mun Hospital, Department of Medicine , Tsing Chung Koon Road, New Territories, Hong Kong, SAR , China +852 2468 5386 ; +852 2456 9100 ;
| |
Collapse
|
16
|
Chapman NM, Connolly SF, Reinl EL, Houtman JCD. Focal adhesion kinase negatively regulates Lck function downstream of the T cell antigen receptor. THE JOURNAL OF IMMUNOLOGY 2013; 191:6208-21. [PMID: 24227778 DOI: 10.4049/jimmunol.1301587] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Focal adhesion kinase (FAK) is a critical regulator of signal transduction in multiple cell types. Although this protein is activated upon TCR engagement, the cellular function that FAK plays in mature human T cells is unknown. By suppressing the function of FAK, we revealed that FAK inhibits TCR-mediated signaling by recruiting C-terminal Src kinase to the membrane and/or receptor complex following TCR activation. Thus, in the absence of FAK, the inhibitory phosphorylation of Lck and/or Fyn is impaired. Together, these data highlight a novel role for FAK as a negative regulator TCR function in human T cells. These results also suggest that changes in FAK expression could modulate sensitivity to TCR stimulation and contribute to the progression of T cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242
| | | | | | | |
Collapse
|
17
|
Taher TE, Muhammad HA, Rahim A, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. Aberrant B-lymphocyte responses in lupus: inherent or induced and potential therapeutic targets. Eur J Clin Invest 2013; 43:866-80. [PMID: 23701475 DOI: 10.1111/eci.12111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lupus is a prototype autoimmune disease of unknown aetiology. The disease is complex; manifest diverse clinical symptoms and disease mechanisms. This complexity has provided many leads to explore: from disease mechanisms to approaches for therapy. B-lymphocytes play a central role in the pathogenesis of the disease. However, the cause of aberrant B-lymphocyte responses in patients and, indeed, its causal relationship with the disease remain unclear. DESIGN This article provides a synopsis of current knowledge of immunological abnormalities in lupus with an emphasis on abnormalities in the B-lymphocyte compartment. RESULTS There is evidence for abnormalities in most compartments of the immune system in animal models and patients with lupus including an ever expanding list of abnormalities within the B-lymphocyte compartment. In addition, recent genome-wide linkage analyses in large cohorts of patients have identified new sets of genetic association factors some with potential links with defective B-lymphocyte responses although their full pathophysiological effects remain to be determined. The accumulating knowledge may help in the identification and application of new targeted therapies for treating lupus disease. CONCLUSIONS Cellular, molecular and genetic studies have provided significant insights into potential causes of immunological defects associated with lupus. Most of this insight relate to defects in B- and T-lymphocyte tolerance, signalling and responses. For B-lymphocytes, there is evidence for altered regulation of inter and intracellular signalling pathways at multiple levels. Some of these abnormalities will be discussed within the context of potential implications for disease pathogenesis and targeted therapies.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Epratuzumab, a humanized anti-CD22 antibody, is currently in clinical trials of B-cell lymphomas and autoimmune diseases, demonstrating therapeutic activity in non-Hodgkin lymphoma (NHL) and systemic lupus erythematosus (SLE). Thus, epratuzumab offers a promising option for CD22-targeted immunotherapy, yet its mechanism of action remains poorly understood. Here we report for the first time that epratuzumab promptly induces a marked decrease of CD22 (>80%), CD19 (>50%), CD21 (>50%), and CD79b (>30%) on the surface of B cells in peripheral blood mononuclear cells (PBMCs) obtained from normal donors or SLE patients, and of NHL cells (Daudi and Raji) spiked into normal PBMCs. Although some Fc-independent loss of CD22 is expected from internalization by epratuzumab, the concurrent and prominent reduction of CD19, CD21, and CD79b is Fc dependent and results from their transfer from epratuzumab-opsonized B cells to FcγR-expressing monocytes, natural killer cells, and granulocytes via trogocytosis. The findings of reduced levels of CD19 are implicative for the efficacy of epratuzumab in autoimmune diseases because elevated CD19 has been correlated with susceptibility to SLE in animal models as well as in patients. This was confirmed herein by the finding that SLE patients receiving epratuzumab immunotherapy had significantly reduced CD19 compared with treatment-naïve patients.
Collapse
|
19
|
Taher TE, Muhammad HA, Bariller E, Flores-Borja F, Renaudineau Y, Isenberg DA, Mageed RA. B-lymphocyte signalling abnormalities and lupus immunopathology. Int Rev Immunol 2013; 32:428-44. [PMID: 23768155 DOI: 10.3109/08830185.2013.788648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lupus is a complex autoimmune rheumatic disease of unknown aetiology. The disease is associated with diverse features of immunological abnormality in which B-lymphocytes play a central role. However, the cause of atypical B-lymphocyte responses remains unclear. In this article, we provide a synopsis of current knowledge on intracellular signalling abnormalities in B-lymphocytes in lupus and their potential effects on the response of these cells in mouse models and in patients. There are numerous reported defects in the regulation of intracellular signalling proteins and pathways in B-lymphocytes in lupus that, potentially, affect critical biological responses. Most of the evidence for these defects comes from studies of disease models and genetically engineered mice. However, there is also increasing evidence from studying B-lymphocytes from patients and from genome-wide linkage analyses for parallel defects to those observed in mice. These studies provide molecular and genetic explanations for the key immunological abnormalities associated with lupus. Most of the new information appears to relate to defects in intracellular signalling that impact B-lymphocyte tolerance, cytokine production and responses to infections. Some of these abnormalities will be discussed within the context of disease pathogenesis.
Collapse
Affiliation(s)
- Taher E Taher
- Bone & Joint Research Unit, William Harvey Research Institute, Barts
| | | | | | | | | | | | | |
Collapse
|
20
|
The epigenetic landscape of B lymphocyte tolerance to self. FEBS Lett 2013; 587:2067-73. [PMID: 23684644 DOI: 10.1016/j.febslet.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Despite frequent exposures to a variety of potential triggers, including antigens produced by pathogens or commensal microbiota, B-lymphocytes are able to mount highly protective responses to a variety of threats, while remaining tolerant to self-components. A number of cytokines, signaling pathways and transcription factors have been characterized to elucidate the mechanisms underlying B cell tolerance to self. It is, however, unclear how the signals received by B-lymphocytes are converted into complex and sustained patterns of gene expression that can allow production of protective antibodies and maintain immune tolerance to self-components. Mounting evidence now suggests an important role for epigenetic mechanisms in modulating and transmitting signals for B lymphocyte tolerization to self-antigens. It is likely that a better insight into epigenetic regulation of B cell tolerance will lead to development of gene-specific therapeutic approaches that optimize host defense mechanisms to exogenous threats, while preventing development and/or progression of autoimmune inflammatory diseases.
Collapse
|
21
|
|
22
|
Zikherman J, Parameswaran R, Hermiston M, Weiss A. The structural wedge domain of the receptor-like tyrosine phosphatase CD45 enforces B cell tolerance by regulating substrate specificity. THE JOURNAL OF IMMUNOLOGY 2013; 190:2527-35. [PMID: 23396948 DOI: 10.4049/jimmunol.1202928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD45 is a receptor-like tyrosine phosphatase that positively regulates BCR signaling by dephosphorylating the inhibitory tyrosine of the Src family kinases. We showed previously that a single point mutation, E613R, introduced into the cytoplasmic membrane-proximal "wedge" domain of CD45 is sufficient to drive a lupus-like autoimmune disease on a susceptible genetic background. To clarify the molecular mechanism of this disease, we took advantage of a unique allelic series of mice in which the expression of CD45 is varied across a broad range. Although both E613R B cells and those with supraphysiologic CD45 expression exhibited hyperresponsive BCR signaling, they did so by opposite regulation of the Src family kinase Lyn. We demonstrated that the E613R allele of CD45 does not function as a hyper- or hypomorphic allele but rather alters the substrate specificity of CD45 for Lyn. Despite similarly enhancing BCR signaling, only B cells with supraphysiologic CD45 expression became anergic, whereas only mice harboring the E613R mutation developed frank autoimmunity on a susceptible genetic background. We showed that selective impairment of a Lyn-dependent negative-regulatory circuit in E613R B cells drove autoimmunity in E613R mice. This demonstrates that relaxing negative regulation of BCR signaling, rather than enhancing positive regulation, is critical for driving autoimmunity in this system.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Department of Medicine, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
23
|
Tan SL, Liao C, Lucas MC, Stevenson C, DeMartino JA. Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 2013; 138:294-309. [PMID: 23396081 DOI: 10.1016/j.pharmthera.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Spleen Tyrosine Kinase (SYK) and Bruton's Tyrosine Kinase (BTK) are non-receptor cytoplasmic tyrosine kinases that are primarily expressed in cells of hematopoietic lineage. Both are key mediators in coupling activated immunoreceptors to downstream signaling events that affect diverse biological functions, from cellular proliferation, differentiation and adhesion to innate and adaptive immune responses. As such, pharmacological inhibitors of SYK or BTK are being actively pursued as potential immunomodulatory agents for the treatment of autoimmune and inflammatory disorders. Deregulation of SYK or BTK activity has also been implicated in certain hematological malignancies. To date, from a clinical perspective, pharmacological inhibition of SYK activity has demonstrated encouraging efficacy in patients with rheumatoid arthritis (RA), while patients with relapsed or refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) have benefited from covalent inhibitors of BTK in early clinical studies. Here, we review and discuss recent insights into the emerging role of the SYK-BTK axis in innate immune cell function as well as in the maintenance of survival and homing signals for tumor cell progression. The current progress on the clinical development of SYK and BTK inhibitors is also highlighted.
Collapse
Affiliation(s)
- Seng-Lai Tan
- Inflammation Discovery and Therapeutic Area, Hoffmann-La Roche, Nutley, NJ 07110, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Primary B-cell disorders comprise a heterogeneous group of inherited immunodeficiencies, often associated with autoimmunity causing significant morbidity. The underlying genetic etiology remains elusive in the majority of patients. In this study, we investigated a patient from a consanguineous family suffering from recurrent infections and severe lupuslike autoimmunity. Immunophenotyping revealed progressive decrease of CD19(+) B cells, a defective class switch indicated by low numbers of IgM- and IgG-memory B cells, as well as increased numbers of CD21(low) B cells. Combined homozygosity mapping and exome sequencing identified a biallelic splice-site mutation in protein C kinase δ (PRKCD), causing the absence of the corresponding protein product. Consequently, phosphorylation of myristoylated alanine-rich C kinase substrate was decreased, and mRNA levels of nuclear factor interleukin (IL)-6 and IL-6 were increased. Our study uncovers human PRKCD deficiency as a novel cause of common variable immunodeficiency-like B-cell deficiency with severe autoimmunity.
Collapse
|
25
|
K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis. Proc Natl Acad Sci U S A 2012; 109:E1629-37. [PMID: 22615393 DOI: 10.1073/pnas.1117640109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.
Collapse
|
26
|
Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proc Natl Acad Sci U S A 2011; 109:E3-12. [PMID: 22135465 DOI: 10.1073/pnas.1117374108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The receptor-like tyrosine phosphatase CD45 positively regulates antigen receptor signaling by dephosphorylating the inhibitory tyrosine of the src family kinases. CD45-deficient mice fail to fully unmask the role of CD45 in B cells because of the expression of a partially redundant tyrosine phosphatase, CD148. However, mice that are doubly deficient in CD45 and CD148 exhibit a very early block in B-cell development, thereby obscuring later roles for CD45. To overcome these limitations, here we take advantage of an allelic series of mice in which CD45 expression is titrated broadly (0-180%). Although high expression of CD45 inhibits T-cell receptor (TCR) signaling, we show that CD45 plays a purely positive regulatory role during B-cell receptor (BCR) signaling. In concert with exaggerated BCR signaling, increasing CD45 expression drives enhanced receptor editing in the bone marrow and profound loss of follicular and marginal zone B cells in the spleen. In the context of the IgHEL/sHEL model of B-cell tolerance, such high CD45 expression transforms anergy into deletion. Unexpectedly, elimination of the autoantigen sHEL in this model system in order to block clonal deletion fails to rescue survival of mature B cells. Rather, high CD45 expression reduces B-cell activating factor receptor (BAFFR) expression and inhibits B-cell activating factor (BAFF)-induced B-cell survival in a cell-intrinsic manner. Taken together, our findings reveal how CD45 function diverges in T cells and B cells, as well as how autoreactive B cells are censored as they transit development.
Collapse
|
27
|
|
28
|
Taher TE, Parikh K, Flores-Borja F, Mletzko S, Isenberg DA, Peppelenbosch MP, Mageed RA. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:2412-23. [PMID: 20506108 DOI: 10.1002/art.27505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The cause of B lymphocyte hyperactivity and autoantibody production in systemic lupus erythematosus (SLE) remains unclear. Previously, we identified abnormalities in the level and translocation of signaling molecules in B cells in SLE patients. The present study was undertaken to examine the extent of signaling abnormalities that relate to altered B cell responses in SLE. METHODS B lymphocytes from 88 SLE patients and 72 healthy controls were isolated from blood by negative selection. Protein tyrosine phosphorylation and cellular kinase levels were analyzed by Western blotting, flow cytometry, and a kinome array protocol. Changes in protein phosphorylation were determined in ex vivo B cells and following B cell receptor engagement. RESULTS Differences in tyrosine phosphorylation in B cells from patients with SLE, compared with matched controls, were demonstrated. Further, the kinome array analysis identified changes in the activation of key kinases, i.e., the activity of phosphatidylinositol 3-kinase, which regulates survival and differentiation, was up-regulated and the activity of Rac and Rho kinases, which regulate the cytoskeleton and migration, was increased. In contrast, the activity of ATR, which regulates the cell cycle, was down-regulated in SLE patients compared with controls. Differences in signaling pathways were seen in all SLE B lymphocyte subsets that manifested phenotypic features of immature, mature, and memory cells. CONCLUSION This study revealed dysregulation in multiple signaling pathways that control key responses in B cells of SLE patients. Data generated in this study provide a molecular basis for further analysis of the altered B lymphocyte responses in SLE.
Collapse
Affiliation(s)
- Taher E Taher
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5382-92. [PMID: 19380785 PMCID: PMC2840041 DOI: 10.4049/jimmunol.0803941] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Gene Expression Regulation, Developmental/physiology
- Immune Tolerance/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2/genetics
- Sialic Acid Binding Ig-like Lectin 2/metabolism
- Sialic Acid Binding Ig-like Lectin 2/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/enzymology
- Spleen/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Andrew J Gross
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
30
|
Zikherman J, Hermiston M, Steiner D, Hasegawa K, Chan A, Weiss A. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:4093-106. [PMID: 19299707 PMCID: PMC2765978 DOI: 10.4049/jimmunol.0803317] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pep and CD45 are tyrosine phosphatases whose targets include the Src-family kinases, critical mediators of Ag receptor signaling. A polymorphism in PTPN22, the gene that encodes the human Pep orthologue Lyp, confers susceptibility to multiple human autoimmune diseases in the context of complex genetic backgrounds. However, the functional significance of the R620W risk allele is not clear. We report that misexpression of wild-type or R620W Pep/Lyp in Jurkat cells, in the context of its binding partner Csk, unmasks the risk allele as a hypomorph. It has been shown previously that although Pep-deficient mice on the B6 background have hyperresponsive memory T cells, autoimmunity does not develop. Mice containing a point mutation in the CD45 juxtamembrane wedge domain (E613R) develop a B cell-driven, lupus-like disease on the mixed 129/B6 background, but not on the B6 background. We studied the ability of Pep deficiency to act as a genetic modifier of the CD45 E613R mutation on the nonautoimmune B6 background to understand how complex susceptibility loci might interact in autoimmunity. In this study we report that double mutant mice develop a lupus-like disease as well as lymphadenopathy, polyclonal lymphocyte activation, and accelerated memory T cell formation. Following Ag receptor stimulation, peripheral B cells in the double mutant mice phenocopy hyperresponsive CD45 E613R B cells, whereas peripheral T cells respond like Pep(-/-) T cells. These studies suggest that Pep(-/-) T cells in the context of a susceptible microenvironment can drive hyperresponsive CD45 E613R B cells to break tolerance.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, UCSF, San Francisco, CA
| | | | - David Steiner
- Medical Scientist Training Program, UCSF, San Francisco, CA
| | | | - Andrew Chan
- Department of Immunology, Genentech, Inc., South San Francisco, CA
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, Howard Hughes Medical Institute, UCSF, San Francisco, CA
| |
Collapse
|
31
|
Abstract
Antigen receptor signaling in lymphocytes has been clearly implicated in the pathogenesis of the rheumatic diseases. Here, we review evidence from mouse models in which B-cell and T-cell signaling machinery is perturbed as well as data from functional studies of primary human lymphocytes and recent advances in human genetics. B-cell receptor hyper-responsiveness is identified as a nearly universal characteristic of systemic lupus erythema-tosus in mice and humans. Impaired and enhanced T-cell receptor signaling are both associated with distinct inflammatory diseases in mice. Mechanisms by which these pathways contribute to disease in mouse models and patients are under active investigation.
Collapse
Affiliation(s)
- Julie Zikherman
- Division of Rheumatology, Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue San Francisco, CA 94143, USA.
| | | |
Collapse
|
32
|
Komura K, Yanaba K, Horikawa M, Ogawa F, Fujimoto M, Tedder TF, Sato S. CD19 regulates the development of bleomycin-induced pulmonary fibrosis in a mouse model. ACTA ACUST UNITED AC 2009; 58:3574-84. [PMID: 18975313 DOI: 10.1002/art.23995] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The contribution of CD19 and B lymphocytes to pulmonary fibrosis is controversial. The aim of this study was to address the role of CD19 during the development of pulmonary fibrosis. METHODS Mice lacking or overexpressing the B cell surface molecule CD19, which is known as a positive regulator of B cell activation, were used in a model of bleomycin-induced pulmonary fibrosis. Ten or sixteen days after intratracheal injection of bleomycin, lung sections from mice were evaluated by histologic analysis. Seven days after instillation, the total leukocyte count and the number of B cells in bronchoalveolar lavage fluid (BALF) were determined, using a hemocytometer and flow cytometry. Bleomycin was also administered into selectin-deficient or intercellular adhesion molecule 1-deficient mouse strains. The level of CXCR3 expression on B cells was determined by flow cytometry. RESULTS CD19 deficiency significantly reduced susceptibility to intratracheal bleomycin challenge on day 16, while CD19 overexpression augmented fibrosis even on day 10. Furthermore, the survival rate and number of B cells in BALF also correlated with CD19 expression levels. The accumulation of B cells in BALF was dependent on CD19 levels, whereas there was no association with the levels of selectins or intercellular adhesion molecule 1. Additionally, CXCR3 was up-regulated in BALF B cells, while it was rarely expressed on circulating B cells. Furthermore, CD19 signaling facilitated B cell CXCR3 up-regulation in response to stimulation in vitro. CONCLUSION These results suggest that CD19 signaling is associated with the development of pulmonary fibrosis by controlling B cell infiltration into lung tissue, which may be associated with CXCR3 up-regulation.
Collapse
Affiliation(s)
- Kazuhiro Komura
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Wu HJ, Bondada S. CD72, a coreceptor with both positive and negative effects on B lymphocyte development and function. J Clin Immunol 2008; 29:12-21. [PMID: 19067131 DOI: 10.1007/s10875-008-9264-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION B lymphocytes remain in a resting state until activated by antigenic stimuli through interaction with the B cell receptor (BCR). Coreceptors on B cells can modulate the thresholds for signaling through the BCR for growth and differentiation. CD72 is a B cell coreceptor that has been shown to interact with CD100, a semaphorin, and to enhance BCR signaling. DISCUSSION CD72 ligation induces a variety of early signaling events such as activation of the Src kinases Blk and Lyn and the non-src kinase Btk leading to activation of the mitogen-activated protein (MAP) kinases, events usually associated with positive signaling. CD72 signals can enable Btk-deficient B cells to overcome their unresponsiveness to BCR signaling. On the other hand, BCR-mediated signals are enhanced in CD72-deficient cells but are reduced in CD100 null cells. The dual effects of CD72 on B cells can be explained by its association with positive and negative signaling molecules. Thus, CD72 interacts with SHP-1, an SH2-domain containing protein tyrosine phosphatase, a negative regulator of signaling, and Grb2, an adaptor protein associated with the Ras/MAPK pathway. Ligation of CD72 also triggered its association with CD19, a positive modulator of B cell receptor signaling. We propose a dual signaling hypothesis to explain the growth and differentiation promoting properties of CD72. Deficiency in either CD72 or CD100 leads to autoimmunity in mouse models. CD72 expression and polymorphisms exhibit some association with autoimmune diseases such as lupus, Sjogren's syndrome, and type 1 diabetes.
Collapse
Affiliation(s)
- Hsin-Jung Wu
- Section on Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Albert D, Dunham J, Khan S, Stansberry J, Kolasinski S, Tsai D, Pullman-Mooar S, Barnack F, Striebich C, Looney RJ, Prak ETL, Kimberly R, Zhang Y, Eisenberg R. Variability in the biological response to anti-CD20 B cell depletion in systemic lupus erythaematosus. Ann Rheum Dis 2008; 67:1724-31. [PMID: 18250115 DOI: 10.1136/ard.2007.083162] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To study the effects in systemic lupus erythaematosus (SLE) of B cell directed therapy with rituximab, a chimeric monoclonal antibody directed at CD20+ B cells, without concomitant immunosuppressive therapy in mild to moderate SLE. METHODS Patients (n=24) with active SLE and failure of >or=1 immunosuppressive were recruited from three university centres into this phase I/II prospective open-label study. Patients were followed for 1 year to assess safety, efficacy and biological effects. RESULTS In total, 18 of the patients scheduled to receive the full lymphoma dose of rituximab were evaluable for B cell levels in peripheral blood. Of these, 17 had effective CD19+ B cell depletion (<5 cells/microl). However, six of the depleted patients showed B cell return before 24 weeks. A total of 70% of patients improved by week 55, as defined by an SLE Disease Activity Index (SLEDAI) score improvement of >or=2 units from baseline. The degree of CD19+ B cell depletion was correlated with SLEDAI improvement at week 15 (r=0.84). In general, rituximab infusions were well tolerated. Approximately a third of the patients developed human anti-chimeric antibody (HACA) titres, which correlated with poor B cell depletion. Most patients (9 of 14) did not respond to immunisations with Pneumovax and tetanus toxoid. CONCLUSIONS Rituximab is a promising new therapy for SLE. The variability of responses in patients with SLE may be related to HACA formation. The failure to respond to immunisations is surprising, in view of the apparently low risk of infections. Better biological markers are necessary to follow these patients during treatment.
Collapse
Affiliation(s)
- D Albert
- Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tsay GJ, Zouali M. Toxicogenomics — A novel opportunity to probe lupus susceptibility and pathogenesis. Int Immunopharmacol 2008; 8:1330-7. [DOI: 10.1016/j.intimp.2008.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 12/19/2022]
|
36
|
Wiesendanger M, Stanevsky A, Kovsky S, Diamond B. Novel therapeutics for systemic lupus erythematosus. Curr Opin Rheumatol 2008; 18:227-35. [PMID: 16582684 DOI: 10.1097/01.bor.0000218941.04613.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This review provides an update on recently explored therapies in systemic lupus erythematosus and introduces novel therapeutic approaches under consideration. Recent advances in our understanding of systemic lupus are highlighted as well, as these must now inform consideration of therapeutics. RECENT FINDINGS Many therapeutic strategies have been shown to be beneficial in murine models of lupus. Compounds that inhibit cellular signaling in response to autoantigens or other triggers and protocols that reconstitute the immune repertoire to diminish autoreactivity are now entering clinical trials. SUMMARY Requirements for novel approaches in lupus include improved efficacy and lower toxicity than current therapies, with the goal to reduce tissue damage while preserving immunocompetence.
Collapse
Affiliation(s)
- Margrit Wiesendanger
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
37
|
Taher TE, Tulone C, Fatah R, D’Acquisto F, Gould DJ, Mageed RA. Repopulation of B-lymphocytes with restricted gene expression using haematopoietic stem cells engineered with lentiviral vectors. Gene Ther 2008; 15:998-1006. [PMID: 18356817 PMCID: PMC2679983 DOI: 10.1038/gt.2008.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 12/21/2007] [Accepted: 01/23/2008] [Indexed: 11/09/2022]
Abstract
B-lymphocytes play a key role in the pathogenesis of many immune-mediated diseases, such as autoimmune and atopic diseases. Therefore, targeting B-lymphocytes provides a rationale for refining strategies to treat such diseases for long-term clinical benefits and minimal side effects. In this study we describe a protocol for repopulating irradiated mice with B-lymphocytes engineered for restricted expression of transgenes using haematopoietic stem cells. A self-inactivating lentiviral vector, which encodes enhanced green fluorescence protein (EGFP) from the spleen focus-forming virus (SFFV) promoter, was used to generate new vectors that permit restricted EGFP expression in B-lymphocytes. To achieve this, the SFFV promoter was replaced with the B-lymphocyte-restricted CD19 promoter. Further, an immunoglobulin heavy chain enhancer (Emu) flanked by the associated matrix attachment regions (MARs) was inserted upstream of the CD19 promoter. Incorporation of the Emu-MAR elements upstream of the CD19 promoter resulted in enhanced, stable and selective transgene expression in human and murine B-cell lines. In addition, this modification permitted enhanced selective EGFP expression in B-lymphocytes in vivo in irradiated mice repopulated with transduced bone marrow haematopoietic stem cells (BMHSCs). The study provides evidence for the feasibility of targeting B-lymphocytes for therapeutic restoration of normal B-lymphocyte functions in patients with B-cell-related diseases.
Collapse
Affiliation(s)
- TE Taher
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, London, uK
| | - C Tulone
- Department of Immunology and Molecular Pathology, University College London, London, uK
| | - R Fatah
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, London, uK
| | - F D’Acquisto
- Biochemical Pharmacology, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, London, uK
| | - DJ Gould
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, London, uK
| | - RA Mageed
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine and Dentistry, University of London, London, uK
| |
Collapse
|
38
|
Affiliation(s)
- M Zouali
- Inserm U606 and University of Paris Diderot-Paris, Paris, France
| | - RA Mageed
- Bone and Joint Unit, William Harvey Institute, London, UK
| |
Collapse
|
39
|
Ferraccioli G, Tolusso B. Infections, B cell receptor activation and autoimmunity: Different check-point impairments lead to autoimmunity, clonal B cell expansion and fibrosis in different immunological settings. Autoimmun Rev 2007; 7:109-13. [DOI: 10.1016/j.autrev.2007.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Souto-Carneiro MM, Zouali M. Highlights of Mediterranean clinical immunology. Immunol Lett 2007; 110:18-22. [PMID: 17466384 DOI: 10.1016/j.imlet.2007.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/17/2007] [Indexed: 11/19/2022]
Abstract
The immune system continues to fascinate by the complexity of its intricacies. At the First Mediterranean Workshop on Clinical Immunology held in Evora (Portugal), recently identified mechanisms of immune defense and immunoregulation were put under a magnifying glass by an international cast of immunologists. Studies of Bacillus anthracis revealed that this anaerobic bacterium can inhibit type-II A phospholipase synthesis and secretion by alveolar macrophages, thereby subverting the pulmonary host immune response. Investigation of the mode of action of regulatory T cells indicated that FOXP3 binds the heterodimeric transcription factor AML1 and suppresses AML1-enhanced IL-2 production. In an experimental autoimmune model of prostatitis, a non-hypercalcemic vitamin D receptor agonist was able to interfere with key pathogenic events in already established disease. Other studies in the rat suggest that treating arthritis with oxidants, like phytol, may correct the deficient redox level and prevent T cell autoreactivity. With a number of other observations, the sparkling discussions opened new doors for medical immunology around the Mediterranean, but also elsewhere.
Collapse
|
41
|
Zouali M. Exploitation of host signaling pathways by B cell superantigens--potential strategies for developing targeted therapies in systemic autoimmunity. Ann N Y Acad Sci 2007; 1095:342-54. [PMID: 17404047 DOI: 10.1196/annals.1397.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Some infectious agents produce molecules capable of interacting specifically with the immunoglobulin heavy- or light-chain variable regions, independently of the conventional-binding site. They are referred to as B cell superantigens (SAgs) and include protein A of Staphylococcus aureus (S. aureus), gp120 of HIV-1, and protein L of Peptostreptococcus magnus (P. magnus). In contrast to conventional antigens, B cell superantigens interact with conserved framework regions of immunoglobulins and can target a large proportion of B cells. In experimental models, they have been demonstrated to deplete B cell subsets responsible for innate functions, namely B-1a and marginal zone (MZ) B cells. As a result, the interactions of these superantigens with host cells impair the humoral immune response. In addition to providing clues toward understanding host-pathogen interactions and microbial pathogenesis, B cell superantigens represent potential therapeutic agents that could be used to specifically modulate expansion of B cell subsets in diseased subjects. In systemic autoimmune diseases, for example, there is activation and expansion of B cells that secrete pathogenic autoantibodies. Their depletion results in clinical improvement in both experimental animals and patients. Currently, attempts are being made to specifically deplete pathogenic autoantibody-producing B cells. Since B-1a and MZ B cells have been found to be expanded in autoimmune disorders, B cell superantigens, used alone or in combination with other biological agents, may have beneficial effects in autoimmune disease management.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm U606, Centre Viggo Petersen, Hôpital Lariboisière, 2, rue Ambroise Paré, F-75475 Paris Cedex 10, France.
| |
Collapse
|
42
|
Mazari L, Ouarzane M, Zouali M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci U S A 2007; 104:6317-22. [PMID: 17404230 PMCID: PMC1851062 DOI: 10.1073/pnas.0610434104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that epigenetic alterations contribute to exacerbated activation or deregulation of the mechanisms that maintain tolerance to self-antigens in patients with lupus, a systemic autoimmune disease that can be triggered by medications taken to treat a variety of conditions. Here, we tested the effect of hydralazine, an antihypertensive drug that triggers lupus, on receptor editing, a chief mechanism of B lymphocyte tolerance to self-antigens. Using mice expressing transgenic human Igs, we found that hydralazine impairs up-regulation of RAG-2 gene expression and reduces secondary Ig gene rearrangements. Receptor editing was also partially abolished in a dose-dependent manner by a specific inhibitor of MEK1/2. Adoptive transfer of bone marrow B cells pretreated with hydralazine or with a MEK inhibitor to naïve syngeneic mice resulted in autoantibody production. We conclude that, by disrupting receptor editing, hydralazine subverts B lymphocyte tolerance to self and contributes to generation of pathogenic autoreactivity. We also postulate that inhibition of the Erk signaling pathway contributes to the pathogenesis of hydralazine-induced lupus and idiopathic human lupus.
Collapse
Affiliation(s)
- Lynda Mazari
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Meryem Ouarzane
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Moncef Zouali
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
- *To whom correspondence should be addressed at:
Institut National de la Santé et de la Recherche Médicale U606, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75475 Paris Cedex 10, France. E-mail:
| |
Collapse
|
43
|
Hasler P, Zouali M. B lymphocytes as therapeutic targets in systemic lupus erythematosus. Expert Opin Ther Targets 2006; 10:803-15. [PMID: 17105369 DOI: 10.1517/14728222.10.6.803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, experimental evidence supporting a major role of B cells in the pathogenesis of autoimmune diseases has grown. This includes the discovery of novel mechanisms of autoantibody pathogenicity and the potential of B cells to mediate inflammation and tissue injury. In some instances, engagement of the B cell receptor and other surface receptors is sufficient to stimulate B cells to produce antibody. As a result, B cells have become targets for immunointervention. In lupus, targeting B cell activation factor (BAFF, BLys) indicates that specific blockade of this longevity factor might be sufficient to suppress systemic autoimmunity. Targeting CD20 represents another promising avenue for the treatment of refractory lupus in both adults and children. Although the clinical data add weight to the importance of B cells in the pathogenesis of lupus, new targets for B cell depletion therapy are being investigated. In experimental models, combining CD19 and CD20 antibodies was more effective than either treatment alone.
Collapse
Affiliation(s)
- Paul Hasler
- Rheumaklinik und Institut für Physikalische Medizin und Rehabilitation, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | | |
Collapse
|
44
|
Tsay GJ, Zouali M. Unscrambling the role of human parvovirus B19 signaling in systemic autoimmunity. Biochem Pharmacol 2006; 72:1453-9. [PMID: 16764828 DOI: 10.1016/j.bcp.2006.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/25/2006] [Accepted: 04/27/2006] [Indexed: 11/21/2022]
Abstract
Despite enormous progress in understanding how the immune system works, the pathogenesis of autoimmune diseases still remains unclear. Growing evidence indicates that infectious agents can be potent initial triggers, subverting and exploiting host cell signaling pathways. This role is exemplified by the association of parvovirus B19 (B19) with human autoimmune disease. Infection with this common virus exhibits striking similarities with systemic autoimmune diseases, and can be associated with elevated serum autoantibody titers. The B19 virus produces proline-rich, 11-kDa proteins that have been implicated in modulation of host signaling cascades involved in virulence and pathogenesis. Additionally, B19 produces a non-structural protein (NS1) that functions as a transcription regulator by directly binding the p6 promoter and the Sp1/Sp3 transcription factors. The protein is also involved in DNA replication, cell cycle arrest and initiation of apoptotic damage, particularly in erythroid cells. When transfected to non-permissive cells, NS1 recruits the mitochondria cell death pathway. It is even more remarkable that NS1 functions as a trans-acting transcription activator for the IL6 promoter, up-regulating IL6 expression in host cells. Hence, B19 infection may play a pivotal role in triggering inflammatory disorders. By promoting apoptotic damage and trans-activating pro-inflammatory cytokine promoters, B19 may break the delicate balance between cell survival and apoptosis, and may contribute to immune deregulation. Understanding the mechanisms used by B19 to alter the cell signaling machinery may provide further insight into the mechanism by which autoimmune diseases develop.
Collapse
Affiliation(s)
- Gregory J Tsay
- Department of Medicine and Institute of Immunology, Chung Shan Medical University, 110 Sec. 1 Chien Kuo N. Road, Taichung 402, Taiwan
| | | |
Collapse
|
45
|
Sigal LH. Basic science for the clinician 38: B cells, factories, and immunomodulators. J Clin Rheumatol 2006; 12:152-7. [PMID: 16755249 DOI: 10.1097/01.rhu.0000222134.73360.ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a previous article in this series, we explored how developing pre-T cells learn how to be well-behaved T cells that recognize and honor the "self versus nonself" dichotomy of the universe. B cells do much of the same sort of thing, with multipotent stem cells becoming committed to ultimately becoming B cells within the bone marrow and then, after judicious culling of the flock, going off to the spleen to learn the final lessons needed to become "well-behaved" B cells. Like with T cells, there are a large number of things that can, and do, go wrong. If there is a failure of the system and B cells do not develop properly, hypogammaglobulinemia may develop as a result of a number of immune deficiency syndromes that can be quite devastating. If autoreactive cells survive to emerge into the periphery, autoimmunity, either organ-specific or more global, may occur. If B cells in the periphery proliferate in an uncontrolled fashion, a variety of B cell lymphoproliferative syndromes may develop, recognizable by the phenotypic markers of their originating B cell lineage level of differentiation. The full details of how autoreactive B cells survive and thrive, only to cause disease, are not yet clear, but identification of many of the phenotypic surface markers and circulating growth factors identified to this point have borne therapeutic fruit.
Collapse
Affiliation(s)
- Leonard H Sigal
- Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, USA.
| |
Collapse
|
46
|
Lim PL, Zouali M. Pathogenic autoantibodies: emerging insights into tissue injury. Immunol Lett 2005; 103:17-26. [PMID: 16325269 DOI: 10.1016/j.imlet.2005.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 11/25/2022]
Abstract
Accumulating evidence is emerging that B lymphocytes and autoantibodies are critical in the development of autoimmune disease. Even in certain disorders initially thought to be T cell-mediated, these immune components are now considered key players in the disease pathogenesis, and new autoantibody specificities have been added to the growing list of targets including cell surface receptors and ion channels that may be involved in a variety of neuropsychiatric and cardiovascular disorders. Studies of autoantibodies penetrating living cells suggest a dosage effect in generating a biological outcome in vivo. Some autoantibodies, such as those directed to double-stranded DNA, can bind to a variety of surrogate antigens located in different cellular compartments, and this may have different biological consequences. This polyreactive behavior could be related to their conformational diversity, or to the fact that the epitope recognized is distributed among other macromolecular antigens. In addition, recent studies revealed unsuspected mechanisms of pathogenesis, wherein autoantibodies have been described that can activate neuronal, endothelial cells or B lymphocytes. Other autoantibodies inactivate the target antigens, or exhibit a catalytic activity, releasing toxic oxygen products that may be linked to arthritic or atherosclerotic injury.
Collapse
Affiliation(s)
- Pak-Leong Lim
- Clinical Immunology Unit, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | |
Collapse
|
47
|
Peeva E, Zouali M. Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett 2005; 101:123-43. [PMID: 16061292 DOI: 10.1016/j.imlet.2005.05.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 05/27/2005] [Accepted: 05/27/2005] [Indexed: 12/16/2022]
Abstract
Pathogenic autoimmunity requires a combination of inherited and acquired factors. In as much as hormones influence the sexual dimorphism of the immune system, it is possible that they can initiate or accelerate an autoimmune process, and contribute to gender-biased autoimmune disorders. Not only natural hormones, but also endocrine disruptors, such as environmental estrogens, may act in conjunction with other factors to override immune tolerance to self-antigens. In lupus, murine and human studies demonstrate that female sex hormones are implicated in disease pathogenesis. In the B cell compartment, both prolactin and estrogen are immunomodulators that affect maturation, selection and antibody secretion. Their impact may be based on their capacity to allow autoreactive B cells to escape the normal mechanisms of tolerance and to accumulate in sufficient numbers to cause clinically apparent disease. Both hormones lead to the survival and activation of autoreactive B cells, but they skew B cell maturation towards different directions, with prolactin inducing T cell-dependent autoreactive follicular B cells and estrogen eliciting T cell-independent autoreactive marginal zone B cells. Differential modulation of the cytokine milieu by hormones may also affect the development and activation of specific mature B cell subsets. This novel insight suggests that targeted manipulation of these pathways may represent a promising avenue in the treatment of lupus and other gender-biased autoimmune diseases.
Collapse
Affiliation(s)
- Elena Peeva
- Albert Einstein College of Medicine, Department of Medicine, Microbiology and Immunology, 1300 Morris Park Avenue, F717, Bronx, NY 10461, USA
| | | |
Collapse
|
48
|
Hasler P, Zouali M. Immune receptor signaling, aging, and autoimmunity. Cell Immunol 2005; 233:102-8. [PMID: 15936745 DOI: 10.1016/j.cellimm.2005.04.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 01/19/2023]
Abstract
With advancing age, the immune system undergoes changes that predispose to autoimmune reactivity. Aging reduces the efficiency of physical barriers, decreasing protection against invasive pathogens, and exposing previously hidden antigens in the body's own tissues. Self-antigens acquire alterations that increase their immunogenicity. In addition, the ability of innate immunity to eliminate infectious agents deteriorates, resulting in inappropriate persistence of immune stimulation and antigen levels exceeding the threshold for the activation of B or T cells. B cell turnover is reduced and numbers of naïve T cells decline to the advantage of increasing numbers of memory T cells. In parallel, the loss of co-stimulatory T cell molecules may increase reactivity of T cells, and render them less susceptible to downregulation. Since optimal immune reactivity requires a tight balance of transduction pathways in both T and B lymphocytes, and because these pathways are altered in systemic autoimmune diseases, we would like to propose that, with age, alterations of the immune receptor signaling machinery underlie the higher incidence of autoimmune phenomena in the elderly. Consistently, aging is associated with alterations in several components of the signaling complex in B cells, memory and naïve T cells, and a reduced activation of several lipid rafts-associated proteins. Because the coincidence of autoimmune disease with other ailments increases the burden of disease and limits therapeutic options in the aged, further investigation of these pathways in the elderly represents a challenge that will need to be addressed in order to devise effective preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Paul Hasler
- Institut National de Santé et de Recherche Médicale, INSERM U430, Immunopathologie Humaine, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | |
Collapse
|
49
|
Mourad W, Lipsky PE, Zouali M. B cells and autoimmunity 2004: new concepts and therapeutic perspectives. Expert Opin Ther Targets 2005; 9:195-200. [PMID: 15757491 DOI: 10.1517/14728222.9.1.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recently, studies of B-cell physiology have continued to provide new and surprising insights into the nature of autoimmunity, highlighting novel potential immunointervention strategies. The meeting on 'B cells and autoimmunity: new concepts and therapeutic perspectives' brought together basic scientists and clinicians with research interests in a range of autoimmune diseases. Recent advances in different facets of B-cell biology were discussed in the prospect of understanding autoimmunity, and significant advances in our understanding of the mechanisms that regulate the autoimmune response at the B cell-level were described. Even though no single message emerged, it is clear that the B lymphocyte is truly destined to become a therapeutic target for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Walid Mourad
- Centre de Recherche en Rhumatologie et Immunologie, CHUQ, Pavillon CHUL, 2705 Blvd Laurier, Ste-Foy, Québec, G1V 4G, Canada
| | | | | |
Collapse
|
50
|
Viau M, Zouali M. B-lymphocytes, innate immunity, and autoimmunity. Clin Immunol 2005; 114:17-26. [PMID: 15596405 DOI: 10.1016/j.clim.2004.08.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 08/30/2004] [Indexed: 12/14/2022]
Abstract
Having evolved to generate a huge Ag-specific repertoire and to mount T cell-dependent responses and long-term memory, the B lymphocyte is a central player in the adaptive branch of immune defense. However, accumulating evidence indicates that B-1 cells of the peritoneal cavity and marginal zone (MZ) B cells of the spleen also can play innate-like immune functions. Their anatomical locations allow frequent Ag encounter. Secreting essentially germline-encoded, polyreactive Abs, and responding rapidly and vigorously to stimulation, these two B cell subsets have evolved to impart potentially protective responses. With their additional capacities to secrete factors that can directly mediate microbial destruction and to express Toll-like receptors (TLR), B cells provide an important link between the innate and adaptive branches of the immune system. Currently, the relevance of these innate-like B cells to the pathogenesis of autoimmune disease is the focus of investigation. In experimental models of autoimmunity, the sequestration of autoreactive B cells in the MZ has been proposed to be essential for the maintenance of self-tolerance. The low activation threshold of MZ B cells makes them particularly reactive to high loads and/or altered self-Ags, potentially exacerbating autoimmune disease. Their expansion in autoimmune models and their association with autoantibody secretion indicate that they may participate in tissue damage. The demonstration that B cell depletion therapies may represent a highly beneficial therapeutic goal in autoimmune disorders suggests that specific elimination of B-1 and MZ B cells may represent a more efficient immunointervention strategy in systemic autoimmunity.
Collapse
Affiliation(s)
- Muriel Viau
- Institut National de Santé et de Recherche Médicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France
| | | |
Collapse
|