1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Ichinose K. The role of podocytes in lupus nephritis: Insights and implications. Clin Immunol 2024; 262:110180. [PMID: 38462157 DOI: 10.1016/j.clim.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus, with high mortality rates despite medical advancements. The complexity of its pathogenesis, including the pivotal role of podocytes - kidney-localized cells - remains a challenge, lacking effective treatments and biomarkers. Recent studies highlight the significant contribution of these cells to LN's development, particularly through their immune-related functions and interaction with other kidney cells. This new understanding opens possibilities for targeted therapies aimed at these cellular mechanisms. This review aims to summarize these recent developments, shedding light on the intricate involvement of podocytes in LN and potential avenues for innovative treatments.
Collapse
Affiliation(s)
- Kunihiro Ichinose
- Department of Rheumatology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan; Integrated Kidney Research and Advance, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo 693-8501, Japan.
| |
Collapse
|
3
|
Huang L, Dai Y, Geng Z, He H, Hong F. Granulin in renal tubular epithelia is associated with interstitial inflammation and activates the TLR9-IFN-α pathway in lupus nephritis. Lupus 2024; 33:439-449. [PMID: 38334360 DOI: 10.1177/09612033241232575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVE This study aimed to investigate the possible role of granulin (GRN) in activating the TLR9-IFN-α pathway in renal tubular epithelial cells (RTECs) and explore clues that RTECs regulate the micro-environment of inflammatory response in lupus nephritis (LN). METHODS Renal sections from 57 LN patients and 30 non-LN patients were sampled for histological study, and GRN overexpression RTECs were applied for cytological study. RESULTS In the histological study, GRN is highly expressed in LN RTECs with tubulointerstitial inflammation (TII) and well co-localized with TLR9. ROC analysis suggested a potential relationship between GRN expression in RTECs and therapeutic response. Moreover, IFN-α also highly expressed in LN RTECs with TII, and the intensity of IFN-α is positively correlated with the co-localization intensity of GRN and TLR9. In the cytological study, LN serum, especially serum from LN with TII, activates the expression of TLR9 in RTECs, and GRN engages the interaction of TLR9 to activate the expression of IFN-α in RTECs. While TLR9 inhibitors can suppress the expression of IFN-α in RTECs, the degree of inhibition is dose-dependent. CONCLUSION The expression of GRN in RTECs is associated with interstitial inflammation and therapeutic response. GRN may mediate the activation of the TLR9-IFN-α pathway in RTECs and involve in the micro-environment of inflammatory response in LN.
Collapse
Affiliation(s)
- Lanting Huang
- Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yijun Dai
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhenbo Geng
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Hongyan He
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Fuyuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Infante B, Mercuri S, Dello Strologo A, Franzin R, Catalano V, Troise D, Cataldo E, Pontrelli P, Alfieri C, Binda V, Frontini G, Netti GS, Ranieri E, Gesualdo L, Castellano G, Stallone G. Unraveling the Link between Interferon-α and Systemic Lupus Erythematosus: From the Molecular Mechanisms to Target Therapies. Int J Mol Sci 2022; 23:ijms232415998. [PMID: 36555640 PMCID: PMC9783870 DOI: 10.3390/ijms232415998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease with a wide range of clinical expressions. The kidney is often affected, usually within 5 years of the onset of SLE, and lupus nephropathy (LN) carries a high risk for increased morbidity. The clinical heterogeneity of the disease is accompanied by complex disturbances affecting the immune system with inflammation and tissue damage due to loss of tolerance to nuclear antigens and the deposition of immune complexes in tissues. Several studies have reported that in human SLE, there is an important role of the Type-I-interferons (INF) system suggested by the upregulation of INF-inducible genes observed in serial gene expression microarray studies. This review aims to describe the transduction pathways of Type-I-interferons, in particular INFα, and its immune-regulatory function in the pathogenesis of SLE and, in particular, in LN. In addition, recent novelties concerning biologic therapy in LN will be discussed.
Collapse
Affiliation(s)
- Barbara Infante
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Andrea Dello Strologo
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Dario Troise
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Emanuela Cataldo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Valentina Binda
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giulia Frontini
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Science, University of Foggia, 71122 Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0255034551; Fax: +39-0255034550
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
5
|
Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 2022; 18:575-590. [PMID: 36097207 DOI: 10.1038/s41584-022-00826-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
6
|
Hong S, Healy H, Kassianos AJ. The Emerging Role of Renal Tubular Epithelial Cells in the Immunological Pathophysiology of Lupus Nephritis. Front Immunol 2020; 11:578952. [PMID: 33072122 PMCID: PMC7538705 DOI: 10.3389/fimmu.2020.578952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic, autoimmune disease that can involve virtually any organ of the body. Lupus nephritis (LN), the clinical manifestation of this disease in the kidney, is one of the most common and severe outcomes of SLE. Although a key pathological hallmark of LN is glomerular inflammation and damage, tubulointerstitial lesions have been recognized as an important component in the pathology of LN. Renal tubular epithelial cells are resident cells in the tubulointerstitium that have been shown to play crucial roles in various acute and chronic kidney diseases. In this context, recent progress has been made in examining the functional role of tubular epithelial cells in LN pathogenesis. This review summarizes recent advances in our understanding of renal tubular epithelial cells in LN, the potential role of tubular epithelial cells as biomarkers in the diagnosis, prognosis, and treatment of LN, and the future therapeutic potential of targeting the tubulointerstitium for the treatment of patients with LN.
Collapse
Affiliation(s)
- Seokchan Hong
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Helen Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Health Support Queensland, Herston, QLD, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Masum MA, Ichii O, Hosny Ali Elewa Y, Nakamura T, Otani Y, Hosotani M, Kon Y. Overexpression of toll-like receptor 9 correlates with podocyte injury in a murine model of autoimmune membranoproliferative glomerulonephritis. Autoimmunity 2018; 51:386-398. [PMID: 30592438 DOI: 10.1080/08916934.2018.1549234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptors (Tlrs) are sensors of danger signals which promote the activation of immune cells and intrinsic renal cells. Podocytes, the intrinsic cells of glomerulus, are continuously exposed to various plasma solutes and danger signals due to their unique location in the glomerulus. Herein, we show that Tlr9 is overexpressed in podocytes and the mechanisms which cause its injury and development of membranoproliferative glomerulonephritis (MPGN) in model BXSB/MpJ-Yaa (Yaa) mice. Yaa mice developed typical lesions of MPGN and showed strong expression of Tlr9 mRNA throughout the glomerulus particularly toward the periphery of the glomerulus. However, BXSB/MpJ (BXSB) mice showed no lesion for MPGN but a very weak expression of Tlr9 mRNA. Relative mRNA expression of Tlr9 and its downstream cytokines, including interleukin 1 beta (Il1b), Il6, interferon gamma (Ifng) and tumour necrosis factor alpha (Tnfa) was markedly increased in glomeruli isolated from Yaa mice. Tlr9 protein expression was almost absent in BXSB mice but intense expression was found in Yaa mice. Podocyte protein expression was normal in BXSB mice but decreased in Yaa mice and colocalized with Tlr9 protein. Furthermore, electron microscopy examination revealed podocyte injury and electron-dense materials in thickened glomerular basement membrane of Yaa mice. Glomerular Tlr9 mRNA expression was significantly correlated with anti-dsDNA antibody, proteinuria, renal function indices (sBUN and sCr), glomerular histopathology indices, downstream factors of Tlr family (Ilb and Tnfa), podocyte injury parameters (p < .05 and p < .01). In conclusion, overexpression of TLR9 correlates with podocyte injury and development of MPGN.
Collapse
Affiliation(s)
- Md Abdul Masum
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,b Faculty of Animal Science and Veterinary Medicine, Department of Anatomy, Histology and Physiology , Sher-e-Bangla Agricultural University , Dhaka , Bangladesh
| | - Osamu Ichii
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Yaser Hosny Ali Elewa
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,c Department of Histology, Faculty of Veterinary Medicine , Zagazig University , Zagazig , Egypt
| | - Teppei Nakamura
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan.,d Section of Biological Safety Research, Chitose Laboratory , Japan Food Research Laboratories , Chitose , Japan
| | - Yuki Otani
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Marina Hosotani
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| | - Yasuhiro Kon
- a Laboratory of Anatomy, Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences , Hokkaido University , Sapporo , Japan
| |
Collapse
|
9
|
Londoño Jimenez A, Mowrey WB, Putterman C, Buyon J, Goilav B, Broder A. Brief Report: Tubulointerstitial Damage in Lupus Nephritis: A Comparison of the Factors Associated With Tubulointerstitial Inflammation and Renal Scarring. Arthritis Rheumatol 2018; 70:1801-1806. [PMID: 29851285 DOI: 10.1002/art.40575] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/24/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To characterize and compare the factors associated with tubulointerstitial inflammation (TII) and tubulointerstitial scarring, defined as interstitial fibrosis and/or tubular atrophy (IF/TA), in patients with lupus nephritis (LN). METHODS We identified systemic lupus erythematosus patients who had renal biopsy results consistent with LN between 2005 and 2017. Clinical data were collected from medical records. Multivariable logistic regression models were fitted to assess factors associated with TII and with IF/TA (moderate-to-severe versus none/mild). RESULTS Of 203 LN patients included, 41 (20%) had moderate-to-severe TII, 45 (22%) had moderate-to-severe IF/TA, and 21 (10%) had both. Multivariable logistic regression models showed that moderate-to-severe TII was associated with a shorter disease duration, African American race, proliferative LN, and an estimated glomerular filtration rate (eGFR) of <60 ml/minute/1.73 m2 at the time of biopsy. Hydroxychloroquine use was associated with significantly lower odds of moderate-to-severe TII (odds ratio 0.27 [95% confidence interval 0.10-0.70], P = 0.008). Similar to TII, factors associated with moderate-to-severe IF/TA included proliferative LN and eGFR <60 ml/minute/1.73 m2 at the time of biopsy. In addition, the presence of moderate-to-severe TII and older age was associated with moderate-to-severe IF/TA. None of the routinely available serologic markers-including anti-double-stranded DNA antibodies, anti-Ro/La antibodies, and low complement-were associated with tubulointerstitial damage. CONCLUSION The use of hydroxychloroquine was strongly associated with less inflammation, while the presence of TII, proliferative LN, and low eGFR were major determinants of tubulointerstitial scarring. Identifying modifiable factors is critical for the development of better preventive and therapeutic strategies with the goal of improving survival in patients with lupus-related kidney disease.
Collapse
Affiliation(s)
| | | | | | - Jill Buyon
- New York University School of Medicine, New York, New York
| | - Beatrice Goilav
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Anna Broder
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
10
|
Abstract
The pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE) is based on the loss of self-tolerance against ubiquitous autoantigens involving all mechanisms of adaptive immunity. However, data accumulating over the last decade imply an important role also for numerous elements of innate immunity, namely the Toll-like receptors in the pathogenesis of SLE. Here we discuss their role in the most common organ complication of SLE, i.e. lupus nephritis. We summarize experimental and clinical data on the expression and functional contribution of the Toll-like receptors in immune complex glomerulonephritis, and intrarenal inflammation. Based on these discoveries Toll-like receptors are evolving as therapeutic targets for the treatment of SLE and lupus nephritis.
Collapse
|
11
|
Cai F, Han F, Wang H, Han H, Le J, Lan L, Xu Y, Chen J. The Crescentic Implication of Renal Outcomes in Proliferative Lupus Nephritis. J Rheumatol 2018; 45:513-520. [DOI: 10.3899/jrheum.170553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Objective.To determine the association between crescents and renal outcomes, and the implications on therapeutic choices.Methods.There were 231 patients with biopsy-proven proliferative lupus nephritis (PLN) who were divided into 4 groups: 59 patients were in the noncrescent group (NC); 59 patients exclusively with segmental crescents were in the segmental crescent group (SC); patients with circumferential crescents were categorized into 2 groups according to the crescentic ratio (C1 had 64 patients with ≤ 25%, and C2 had 49 patients with > 25%). Their baseline laboratory tests, histopathological manifestations, and outcomes were compared.Results.Remission rates in NC, SC, C1, and C2 groups were 92.1%, 85.4%, 95.0%, and 76.1%, respectively. Fewer patients in the C2 group achieved complete remission than the other 3 groups. For longterm outcomes evaluated by serum creatinine (SCr) doubling or endstage renal disease (ESRD), the renal survival rate was lowest in the C2 group (p = 0.003). Including clinical and pathological variables in the Cox proportional hazard regression model separately, the multivariate analysis revealed that these were independent risk factors for SCr doubling or ESRD: baseline SCr (with every 1 mg/dl increase: HR = 1.834, 95% CI 1.465–2.296; p < 0.001), hemoglobin (with every 1 g/l increase: HR = 0.970, 95% CI 0.947–0.992; p = 0.009), the proportions of cellular crescents (with every 1% increase: HR = 1.040, 95% CI 1.015–1.066; p = 0.002) and fibrocellular crescents (with every 1% increase: HR = 1.085, 95% CI 1.013–1.163; p = 0.020), and severe renal tubular atrophy (HR = 5.348, 95% CI 1.278–22.373; p = 0.022).Conclusion.PLN with crescents > 25% had worse renal outcomes both in short and long terms. Proportions of cellular and fibrocellular crescents were independent risk factors for poor renal survival.
Collapse
|
12
|
Elloumi N, Fakhfakh R, Abida O, Ayadi L, Marzouk S, Hachicha H, Fourati M, Bahloul Z, Mhiri MN, Kammoun K, Masmoudi H. Relevant genetic polymorphisms and kidney expression of Toll-like receptor (TLR)-5 and TLR-9 in lupus nephritis. Clin Exp Immunol 2017; 190:328-339. [PMID: 28763101 PMCID: PMC5680057 DOI: 10.1111/cei.13022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2017] [Indexed: 12/07/2022] Open
Abstract
Toll-like receptor (TLR) genetic polymorphisms may modify their expression causing inflammatory disorders and influencing both susceptibility and severity of lupus erythematosus. We aim to determine whether TLR-5 and TLR-9 gene polymorphisms are implicated in the susceptibility to systemic lupus erythematosus (SLE) and lupus nephritis (LN) and to evaluate their expressions and distributions in renal LN patients' biopsies. The frequencies of two SNP in the TLR-9 gene and one in the TLR-5 gene was examined in 106 SLE patients (among them 37 LN patients) and in 200 matched controls by polymerase chain reaction-restriction fragment-length polymorphisms (PCR-RFLP) analysis. TLR-9 and TLR-5 expressions were assessed by reverse transcription (RT)-PCR and immunohistochemistry carried on LN renal biopsies compared to healthy renal tissue. A significant genotypic and allelic association was revealed between TLR-9-rs352140 and both SLE and LN (P < 0·05). The TLR-9 transcript level was significantly higher in LN biopsies compared to control (P < 0·05). This increase was observed histochemically in the tubulointerstitial compartment. TLR-9 was detectable in LN glomeruli patients but not in normal control glomeruli. No allelic nor genotype association was found with TLR-5-rs5744168 in SLE. but the T allele and the TT genotype were raised significantly in the LN group (P < 0·05). A significant increase in TLR-5 gene expression in LN biopsies, which contrasted with normal kidneys (P < 0·05), was confirmed by an intense and diffuse staining for TLR-5 only in LN tubules (P < 0·05). Our data show that TLR-5 and TLR-9 are susceptible genes to LN and that their expression is dysregulated in LN patients' kidneys, supporting a role of these mediators in the pathogenesis of LN.
Collapse
Affiliation(s)
- N. Elloumi
- Immunology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - R. Fakhfakh
- Immunology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - O. Abida
- Immunology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - L. Ayadi
- Anatomopathology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - S. Marzouk
- Internal Medicine DepartmentHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - H. Hachicha
- Immunology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - M. Fourati
- Urology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - Z. Bahloul
- Internal Medicine DepartmentHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - M. N. Mhiri
- Urology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| | - K. Kammoun
- Nephrology DepartmentHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - H. Masmoudi
- Immunology DepartmentHabib Bourguiba Hospital, University of SfaxSfaxTunisia
| |
Collapse
|
13
|
Primary Human Renal-Derived Tubular Epithelial Cells Fail to Recognize and Suppress BK Virus Infection. Transplantation 2017; 101:1820-1829. [PMID: 27755502 DOI: 10.1097/tp.0000000000001521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND BK polyomavirus (BKV)-associated nephropathy is a threat to kidney allograft survival affecting up to 15% of renal transplant patients. Previous studies revealed that tubular epithelial cells (TEC) show a limited response towards BKV infection. Here we investigated the interplay between BKV and TEC in more detail. In particular, we questioned whether BKV suppresses and/or evades antiviral responses. METHODS Human primary TEC and peripheral blood mononuclear cells were infected with BKV Dunlop strain or other viruses. Moreover, TEC were stimulated with genomic double-stranded (ds)DNA or IFN. Viral replication and cellular responses were measured using quantitative real time PCR and multiplex assay. RESULTS BKV infection of primary human TEC did not induce an antiviral response, whereas infection with influenza A virus, herpes simplex virus 1, or cytomegalovirus induced a strong antiviral response measured by upregulation of interferon-stimulated genes, such as CXCL10 and DAI. In addition, intracellular delivery of dsDNA or stimulation with IFN did elicit a rapid and pronounced response. However, BKV infection did not affect dsDNA-induced gene expression, indicating BKV did not modulate the antiviral response. Prestimulation of primary TEC with IFNα or dsDNA did not hamper replication of BKV, whereas influenza and herpes simplex virus 1 replication were clearly reduced. In contrast, BKV infection of leukocytes did elicit an antiviral response. CONCLUSIONS BKV specifically evades innate immunity in TEC and is not susceptible to an intrinsic interferon response, which may facilitate latent presence of the virus in this cell type.
Collapse
|
14
|
Pagni F, Galimberti S, Galbiati E, Rebora P, Pietropaolo V, Pieruzzi F, Smith AJ, Ferrario F. Tubulointerstitial lesions in lupus nephritis: International multicentre study in a large cohort of patients with repeat biopsy. Nephrology (Carlton) 2016; 21:35-45. [PMID: 26132414 DOI: 10.1111/nep.12555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The glomerulocentric International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification is the gold standard for the evaluation of lupus nephritis, while tubulointerstitial (TIN) parameters are often under-recognized in pathological reports. METHODS Renal biopsies from 142 patients who underwent repeat biopsy (RB) were evaluated for the following histological parameters: (i) inflammatory interstitial infiltrates; (ii) interstitial fibrosis; (iii) tubulitis; and (iv) tubular atrophy. The inter-relationships between the four TIN variables were explored by multivariate analysis. A linear mixed model was used to investigate the potential impact of TIN variables on eGFR and proteinuria at the two biopsy occasions. RESULTS The study showed that moderate-severe lesions were not so frequent at the reference biopsy, but more extensively represented upon RB. A strong association was found between the two inflammatory indices and between those related to chronic damage, while the relationship with the ISN/RPS classification was present at RB. If class IV-G was the most related with TIN (especially at RB), the existence of primary TIN in class II patients was also confirmed. Finally, our results support the hypothesis that tubulitis is an independent predictive factor for eGFR. CONCLUSIONS We recommend that the standard histological evaluation of SLE nephritis also includes TIN features.
Collapse
Affiliation(s)
- Fabio Pagni
- Department of Surgery and Translational Medicine, Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Stefania Galimberti
- Department of Health Sciences, Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | | | - Paola Rebora
- Department of Health Sciences, Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | | | - Federico Pieruzzi
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Andrew James Smith
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Franco Ferrario
- Department of Pathology, Nephropathology Centre, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Ischemia as a factor affecting innate immune responses in kidney transplantation. Curr Opin Nephrol Hypertens 2016; 25:3-11. [PMID: 26625866 DOI: 10.1097/mnh.0000000000000190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Ischemic injury inevitably occurs during the procurement of organs for transplantation, and the injury is worsened by inflammation following reperfusion. The purpose of this review is to describe the role of the innate immune system in ischemia-induced renal injury in kidneys procured for transplantation. The key role of pattern recognition receptors in immune responses to ischemia is described. Innate immune receptors are emerging novel targets for the amelioration of ischemic injury of donor kidneys. RECENT FINDINGS Several families of pattern recognition receptors are direct mediators of early injurious events during kidney procurement, and also innate and adaptive immune responses after transplantation. The deleterious events associated with the activation of the innate immune system in donor kidneys significantly contribute to short and long-term allograft outcomes. SUMMARY Although a number of therapies have been proposed to decrease ischemic donor kidney injury, targeting the innate immune system is an exciting new area that is gaining significant interest in transplantation. As we learn more about how these important receptors are regulated by ischemia, strategies will likely evolve to allow their modulation in ischemic renal injury.
Collapse
|
16
|
Abstract
Finding better treatments for lupus nephritis requires an understanding of the pathogenesis of the causative systemic disease, how this leads to kidney disease, and how lupus nephritis progresses to end-stage kidney disease. Here, we provide a brief conceptual overview on the related pathomechanisms. As a main focus we discuss in detail the roles of neutrophils, dendritic cells, Toll-like receptors, and interferon-α in the pathogenesis of lupus nephritis by separately reviewing their roles in extrarenal systemic autoimmunity and in intrarenal inflammation and immunopathology.
Collapse
|
17
|
Kidney Expression of Toll Like Receptors in Lupus Nephritis: Quantification and Clinicopathological Correlations. Mediators Inflamm 2016; 2016:7697592. [PMID: 27635115 PMCID: PMC5011205 DOI: 10.1155/2016/7697592] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 12/02/2022] Open
Abstract
Objective. The study aimed at locating and quantifying Toll Like Receptor (TLR) 3, 7, 8, and 9 expression in kidney of patients with lupus nephritis (LN) and correlating them with clinicopathological features. Methods. Kidney sections from 26 LN patients and 4 controls were analyzed by immunohistochemistry using anti-human TLR3, TLR7, TLR8, and TLR9 polyclonal antibodies; the number of TLR-positive nuclei/mm2 was evaluated on digitalized images. Results. Compared to controls, LN showed a significantly higher amount of glomerular and tubulointerstitial TLR9 (p = 0.003 and p = 0.007), whole and tubulointerstitial TLR3 (p = 0.026 and p = 0.031), and a higher tubulointerstitial TLR7 (p = 0.022). TLR9 positively correlated with activity index (p = 0.0063) and tubular TLR7 with chronicity index (p = 0.026). TLR9 positively correlated with Renal-SLEDAI (p = 0.01). Conclusions. This is the first study quantifying kidney expressions of TLRs in LN patients; the results show an overexpression of TLR3, TLR7, and TLR9 and demonstrate a correlation with clinicopathological indices supporting a role of these mediators in the pathogenesis of LN.
Collapse
|
18
|
Lorenz G, Lech M, Anders HJ. Toll-like receptor activation in the pathogenesis of lupus nephritis. Clin Immunol 2016; 185:86-94. [PMID: 27423476 DOI: 10.1016/j.clim.2016.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis is complex but no longer enigmatic. Much progress has been made to on the polygenetic origin of lupus in identifying gene variants that permit the loss of tolerance against nuclear autoantigens. Along the same line in about 50% of lupus patients additional genetic weaknesses promote immune complex glomerulonephritis and filtration barrier dysfunction. Here we briefly summarize the pathogenesis of SLE with a focus on loss of tolerance and the role of toll-like receptors in the "pseudo"-antiviral immunity concept of systemic lupus. In addition, we discuss the local role of Toll-like receptors in intrarenal inflammation and kidney remodeling.
Collapse
Affiliation(s)
- Georg Lorenz
- Abteilung für Nephrologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
19
|
Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat Cell Biol 2016; 18:839-850. [PMID: 27398910 PMCID: PMC5040511 DOI: 10.1038/ncb3386] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
Phosphoinositides (PtdIns) control fundamental cell processes, and inherited defects of PtdIns kinases or phosphatases cause severe human diseases, including Lowe syndrome due to mutations in OCRL, which encodes a PtdIns(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of autophagosomal cargo in which OCRL plays a key part. We identify mitochondrial DNA and TLR9 as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-cargo response is required to sustain the autophagic flux and involves a local increase in PtdIns(4,5)P2 that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an accumulation of lysosomal PtdIns(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome patients.
Collapse
|
20
|
Pang Y, Tan Y, Li Y, Zhang J, Guo Y, Guo Z, Zhang C, Yu F, Zhao MH. Pentraxin 3 Is Closely Associated With Tubulointerstitial Injury in Lupus Nephritis: A Large Multicenter Cross-Sectional Study. Medicine (Baltimore) 2016; 95:e2520. [PMID: 26817892 PMCID: PMC4998266 DOI: 10.1097/md.0000000000002520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lupus nephritis always elicits immune inflammatory tissue damages in kidney. Pentraxin 3 (PTX3), mainly produced at inflammatory sites, is known to be involved in the regulation of the innate immunity system. The aim of this study was to investigate the serum and urine levels of PTX3, and the expression of PTX3 in renal tissues in lupus nephritis patients from a large Chinese cohort.The study used cross-sectional survey and 288 active lupus nephritis patients, including discovery cohort and validation cohort, 115 systemic lupus erythematosus (SLE) patients without clinical renal involvement and 46 healthy controls were enrolled. Serum and urine PTX3 were screened by enzyme-linked immunosorbent assay (ELISA). The renal deposition of PTX3 was detected by immunohistochemistry and immunofluorescence.The average level of serum PTX3 in the discovery cohort of lupus nephritis was significantly higher than that in nonrenal involvement SLE group and normal controls (P < 0.001, P < 0.001, respectively), which was confirmed by the validation cohort. Serum PTX3 levels of 15 lupus nephritis patients in remission decreased significantly compared with that in active phase. Serum PTX3 levels were significantly higher in patients with hematuria (P = 0.014), leucocyturia (P = 0.002), acute renal failure (P = 0.001), and nephrotic syndrome (P = 0.036). There were significant correlations between serum PTX3 levels and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores, serum creatinine value, renal pathological activity indices, and serum complement 3 (C3) in active lupus nephritis patients. The urinary PTX3 levels were significantly higher in active lupus nephritis patients compared with patients in remission and normal controls (P = 0.011, P = 0.008, respectively). There were significant associations between urinary PTX3 levels and multiple indices of tubulointerstitial lesions, including urinary KIM-1 (r = 0.368, P = 0.016), neutrophil gelatinase-associated lipocalin (NGAL) (r = 0.320, P = 0.039), microalbumin (r = 0.621, P = 0.003), transferring (r = 0.451, P = 0.040) levels and renal pathological indices scores, especially interstitial inflammation (r = 0.349, P = 0.025) in active lupus nephritis patients. A significant correlation was found between serum and urine PTX3 levels (r = 0.431, P = 0.006). PTX3 staining was mainly observed in tubulointerstitial areas of patients with lupus nephritis, and immunofluorescence study showed that PTX3 could colocalize with fibroblast in interstitium.Circulating and local PTX3 levels were significantly increased in patients with active lupus nephritis and might be a biomarker for the disease progression, especially of tubulointerstitial injury.
Collapse
Affiliation(s)
- Yun Pang
- From the Renal Division, Department of Medicine, Peking University First Hospital, Beijing, P.R. China (YP, YT, FY, M-HZ); Institute of Nephrology, Peking University, Beijing, P.R. China (YP, YT, FY, M-HZ); Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, P.R. China (YP, YT, FY, M-HZ); Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, P.R. China (YP, YT, FY, M-HZ); Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, P.R. China (YL); Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China (YL); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, P.R. China (YL); Renal Division, Jing Dong Yu Mei Traditional Chinese Medicine and Western Medicine Integrative Kidney Disease Hospital, Hebei, P.R. China (JZ); Department of Nephrology, Anyang District Hospital, Henan, P.R. China (YG); Department of Nephrology, First Affiliated Hospital of Henan University of Science and Technology, Henan, P.R. China (ZG); Department of Nephrology, Beijing General Hospital of Armed Police Forces, Beijing, P.R. China (CZ); Department of Nephrology, Peking University International Hospital, Beijing, P.R. China (FY); and Peking-Tsinghua Center for Life Sciences, Beijing, P.R. China ( M-HZ)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Krasoudaki E, Banos A, Stagakis E, Loupasakis K, Drakos E, Sinatkas V, Zampoulaki A, Papagianni A, Iliopoulos D, Boumpas DT, Bertsias GK. Micro-RNA analysis of renal biopsies in human lupus nephritis demonstrates up-regulated miR-422a driving reduction of kallikrein-related peptidase 4. Nephrol Dial Transplant 2015; 31:1676-86. [DOI: 10.1093/ndt/gfv374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
|
22
|
Bakker PJ, Scantlebery AM, Butter LM, Claessen N, Teske GJD, van der Poll T, Florquin S, Leemans JC. TLR9 Mediates Remote Liver Injury following Severe Renal Ischemia Reperfusion. PLoS One 2015; 10:e0137511. [PMID: 26361210 PMCID: PMC4567139 DOI: 10.1371/journal.pone.0137511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 08/18/2015] [Indexed: 12/12/2022] Open
Abstract
Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury.
Collapse
Affiliation(s)
- Pieter J. Bakker
- Department of Pathology, Academic Medical Centre, Amsterdam, Netherlands
- * E-mail:
| | | | - Loes M. Butter
- Department of Pathology, Academic Medical Centre, Amsterdam, Netherlands
| | - Nike Claessen
- Department of Pathology, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Academic Medical Centre, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Centre, Amsterdam, Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Jaklien C. Leemans
- Department of Pathology, Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
23
|
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder that has a broad spectrum of effects on the majority of organs, including the kidneys. Approximately 40-70% of patients with SLE will develop lupus nephritis. Renal assault during SLE is initiated by genes that breach immune tolerance and promote autoantibody production. These genes might act in concert with other genetic factors that augment innate immune signalling and IFN-I production, which in turn can generate an influx of effector leucocytes, inflammatory mediators and autoantibodies into end organs, such as the kidneys. The presence of cognate antigens in the glomerular matrix, together with intrinsic molecular abnormalities in resident renal cells, might further accentuate disease progression. This Review discusses the genetic insights and molecular mechanisms for key pathogenic contributors in SLE and lupus nephritis. We have categorized the genes identified in human studies of SLE into one of four pathogenic events that lead to lupus nephritis. We selected these categories on the basis of the cell types in which these genes are expressed, and the emerging paradigms of SLE pathogenesis arising from murine models. Deciphering the molecular basis of SLE and/or lupus nephritis in each patient will help physicians to tailor specific therapies.
Collapse
|
24
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
25
|
Yuan F, Tabor DE, Nelson RK, Yuan H, Zhang Y, Nuxoll J, Bynoté KK, Lele SM, Wang D, Gould KA. A dexamethasone prodrug reduces the renal macrophage response and provides enhanced resolution of established murine lupus nephritis. PLoS One 2013; 8:e81483. [PMID: 24312306 PMCID: PMC3842961 DOI: 10.1371/journal.pone.0081483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/03/2022] Open
Abstract
We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dana E. Tabor
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Richard K. Nelson
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hongjiang Yuan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Yijia Zhang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jenny Nuxoll
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kimberly K. Bynoté
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * (DW); (KAG)
| | - Karen A. Gould
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * (DW); (KAG)
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Ischaemic kidney injury occurs during organ procurement and can lead to delayed graft function or nonviable grafts. The innate immune system is a key trigger of inflammation in renal ischaemia. This review discusses the components of innate immunity known to be involved in renal ischaemic reperfusion injury (IRI). Understanding how inflammatory damage is initiated in renal IRI is important for the development of targeted therapies aimed at preserving the donor organ. RECENT FINDINGS Much remains to be determined about the role of innate immune signalling in renal ischaemia/reperfusion injury. Recently, discoveries about complement receptors, Toll-like receptors (TLRs), NOD-like receptors (NLRs) and inflammasomes have opened new avenues of exploration. We are also now learning that macrophages, complement and TLR activation may have additional roles in renal repair following IRI. SUMMARY A greater understanding of the mechanisms that contribute to innate immune-mediated renal ischaemic damage will allow for the development of therapeutics targeted to the donor organ. New data suggest that treatment limited to specific receptors on specific cells, or localized to specific regions within the kidney, may provide novel approaches to maximize our use of donor organs, particularly those that may have been discarded due to prolonged preimplantation ischaemia.
Collapse
Affiliation(s)
- Kitty P Cheung
- Division of Nephrology and Hypertension, Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
27
|
Yuan F, Nelson RK, Tabor DE, Zhang Y, Akhter MP, Gould KA, Wang D. Dexamethasone prodrug treatment prevents nephritis in lupus-prone (NZB × NZW)F1 mice without causing systemic side effects. ACTA ACUST UNITED AC 2013; 64:4029-39. [PMID: 22886616 DOI: 10.1002/art.34667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/02/2012] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the potentially improved therapeutic efficacy and safety of nephrotropic macromolecular prodrugs of glucocorticoids (GCs) for the treatment of lupus nephritis. METHODS Lupus-prone female (NZB × NZW)F1 mice received monthly injections of N-(2-hydroxypropyl) methacrylamide copolymer-based dexamethasone prodrug (P-Dex) or daily injections of dexamethasone phosphate sodium (Dex; overall dose equivalent to that of P-Dex) for 2 months. During treatment, the mice were monitored for albuminuria, mean arterial pressure, and serum autoantibody levels. Nephritis, renal immune complex levels, and macrophage infiltration were evaluated histologically. Bone quality was analyzed using peripheral dual x-ray absorptiometry and micro-computed tomography. The in vivo distribution of P-Dex was investigated using optical imaging, immunohistochemistry, and fluorescence-activated cell sorting (FACS). The antiinflammatory effect of P-Dex was validated using lipopolysaccharide-activated human proximal tubule epithelial (HK-2) cells. RESULTS Monthly P-Dex injections completely abolished albuminuria in the (NZB × NZW)F1 mice; this approach was significantly more efficacious than daily Dex treatment. P-Dex treatment did not reduce serum levels of anti-double-stranded DNA antibodies or renal immune complexes but did decrease macrophage infiltration, which is a marker of chronic inflammation. Immunohistochemical and FACS analyses revealed that P-Dex was primarily sequestered by proximal tubule epithelial cells, and that it could attenuate the inflammatory response in HK-2 cell culture. In contrast to Dex treatment, P-Dex treatment did not lead to any significant deterioration of bone quality or reduction in the level of total serum IgG. CONCLUSION Macromolecularization of GCs renders them nephrotropic. Protracted retention, subcellular processing, and activation of GC prodrugs by kidney cells would potentiate nephritis resolution, with a reduced risk of systemic toxicities.
Collapse
Affiliation(s)
- Fang Yuan
- University of Nebraska Medical Center, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu L, Li Y, Hu Z, Su J, Huo Y, Tan B, Wang X, Liu Y. Small interfering RNA targeting Toll-like receptor 9 protects mice against polymicrobial septic acute kidney injury. Nephron Clin Pract 2013; 122:51-61. [PMID: 23548820 DOI: 10.1159/000346953] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/08/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/AIMS Although recent reports suggest that Toll-like receptor (TLR) 9 is associated with the pathogenesis of polymicrobial septic acute kidney injury (AKI), it is still unclear whether and how renal TLR9 is involved in the development of polymicrobial septic AKI. This study aimed to determine whether the expression of TLR9 in mouse renal cells is related to the development of polymicrobial septic AKI. METHODS The efficacy of small interfering RNA (siRNA) targeting TLR9 was tested in a cultured murine macrophage cell line (RAW264.7 cells). The most potent siRNA was transfected into mice using the hydrodynamic method prior to the induction of polymicrobial septic AKI being induced by cecal ligation and puncture (CLP). TLR9 knockdown was determined by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting in RAW264.7 cells and kidney tissues. The levels of serum creatinine and blood urea nitrogen (BUN) and the renal histopathology assessment were determined at 6-, 12-, and 24-hour time points after CLP, and renal cell apoptosis was studied at 24 h. The 4- and 7-day survival rates of mice were also observed. RESULTS We found that mice developed AKI in our model of polymicrobial sepsis, despite fluid and antibiotic resuscitation, which resembles human sepsis. siRNA to TLR9 successfully silenced the induction of renal TLR9 gene and protein expression following CLP. Effective silencing of renal TLR9 expression decreased renal cell apoptosis, mitigated the severity of AKI, and increased the survival of mice. CONCLUSIONS Our data demonstrates the induction of TLR9 expression in mouse kidney tissue following CLP. Renal cell apoptosis and AKI in our model of polymicrobial sepsis are dependent on TLR9. Thus, TLR9 may play a critical role in the pathophysiology of polymicrobial septic AKI.
Collapse
Affiliation(s)
- Lixia Liu
- Department of Intensive Care Unit, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Disteldorf EM, Panzer U. Is there a role for proximal tubular cells in regulating dendritic cell maturation and function in renal disease? Nephrol Dial Transplant 2012; 28:239-41. [PMID: 23036900 DOI: 10.1093/ndt/gfs444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erik M Disteldorf
- Department of Nephrology, III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
30
|
Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME. Lupus nephritis: a critical review. Autoimmun Rev 2012; 12:174-94. [PMID: 22982174 DOI: 10.1016/j.autrev.2012.08.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2012] [Indexed: 01/18/2023]
Abstract
Lupus nephritis remains one of the most severe manifestations of systemic lupus erythematosus associated with considerable morbidity and mortality. A better understanding of the pathogenesis of lupus nephritis is an important step in identifying more targeted and less toxic therapeutic approaches. Substantial research has helped define the pathogenetic mechanisms of renal manifestations and, in particular, the complex role of type I interferons is increasingly recognized; new insights have been gained into the contribution of immune complexes containing endogenous RNA and DNA in triggering the production of type I interferons by dendritic cells via activation of endosomal toll-like receptors. At the same time, there have been considerable advances in the treatment of lupus nephritis. Corticosteroids have long been the cornerstone of therapy, and the addition of cyclophosphamide has contributed to renal function preservation in patients with severe proliferative glomerulonephritis, though at the cost of serious adverse events. More recently, in an effort to minimize drug toxicity and achieve equal effectiveness, other immunosuppressive agents, including mycophenolate mofetil, have been introduced. Herein, we provide a detailed review of the trials that established the equivalency of these agents in the induction and/or maintenance therapy of lupus nephritis, culminating in the recent publication of new treatment guidelines by the American College of Rheumatology. Although newer biologics have been approved and continue to be a focus of research, they have, for the most part, been relatively disappointing compared to the effectiveness of biologics in other autoimmune diseases. Early diagnosis and treatment are essential for renal preservation.
Collapse
Affiliation(s)
- Andrea T Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, United States
| | | | | | | | | | | |
Collapse
|
31
|
Autoantibodies and resident renal cells in the pathogenesis of lupus nephritis: getting to know the unknown. Clin Dev Immunol 2012; 2012:139365. [PMID: 22761629 PMCID: PMC3386553 DOI: 10.1155/2012/139365] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/26/2012] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus is characterized by a breakdown of self-tolerance and production of autoantibodies. Kidney involvement (i.e., lupus nephritis) is both common and severe and can result in permanent damage within the glomerular, vascular, and tubulo-interstitial compartments of the kidney, leading to acute or chronic renal failure. Accumulating evidence shows that anti-dsDNA antibodies play a critical role in the pathogenesis of lupus nephritis through their binding to cell surface proteins of resident kidney cells, thereby triggering the downstream activation of signaling pathways and the release of mediators of inflammation and fibrosis. This paper describes the mechanisms through which autoantibodies interact with resident renal cells and how this interaction plays a part in disease pathogenesis that ultimately leads to structural and functional alterations in lupus nephritis.
Collapse
|
32
|
Thiyagarajan D, Fismen S, Seredkina N, Jacobsen S, Elung-Jensen T, Kamper AL, Fenton CG, Rekvig OP, Mortensen ES. Silencing of renal DNaseI in murine lupus nephritis imposes exposure of large chromatin fragments and activation of Toll like receptors and the Clec4e. PLoS One 2012; 7:e34080. [PMID: 22479529 PMCID: PMC3316608 DOI: 10.1371/journal.pone.0034080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/21/2012] [Indexed: 11/25/2022] Open
Abstract
Recent studies demonstrate that transformation of mild lupus nephritis into end-stage disease is imposed by silencing of renal DNaseI gene expression in (NZBxNZW)F1 mice. Down-regulation of DNaseI results in reduced chromatin fragmentation, and in deposition of extracellular chromatin-IgG complexes in glomerular basement membranes in individuals that produce IgG anti-chromatin antibodies. The main focus of the present study is to describe the biological consequences of renal DNaseI shut-down and reduced chromatin fragmentation with a particular focus on whether exposed large chromatin fragments activate Toll like receptors and the necrosis-related Clec4e receptor in murine and human lupus nephritis. Furthermore, analyses where performed to determine if matrix metalloproteases are up-regulated as a consequence of chromatin-mediated Toll like receptors/Clec4e stimulation. Mouse and human mRNA expression levels of DNaseI, Toll like receptors 7–9, Clec4e, pro-inflammatory cytokines and MMP2/MMP9 were determined and compared with in situ protein expression profiles and clinical data. We demonstrate that exposure of chromatin significantly up-regulate Toll like receptors and Clec4e in mice, and also but less pronounced in patients with lupus nephritis treated with immunosuppresants. In conclusion, silencing of renal DNaseI gene expression initiates a cascade of inflammatory signals leading to progression of both murine and human lupus nephritis. Principal component analyses biplot of data from murine and human lupus nephrits demonstrate the importance of DNaseI gene shut down for progression of the organ disease.
Collapse
Affiliation(s)
- Dhivya Thiyagarajan
- Molecular Pathology Research Group, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| | - Silje Fismen
- Molecular Pathology Research Group, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| | - Natalya Seredkina
- Molecular Pathology Research Group, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| | - Søren Jacobsen
- Department of Rheumatology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Elung-Jensen
- Department of Nephrology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne-Lise Kamper
- Department of Nephrology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ole Petter Rekvig
- Molecular Pathology Research Group, Faculty of Medicine, University of Tromsø, Tromsø, Norway
- * E-mail:
| | - Elin Synnøve Mortensen
- Molecular Pathology Research Group, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
33
|
Schreiber A, Theilig F, Schweda F, Höcherl K. Acute endotoxemia in mice induces downregulation of megalin and cubilin in the kidney. Kidney Int 2012; 82:53-9. [PMID: 22437417 DOI: 10.1038/ki.2012.62] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe sepsis is often accompanied by acute renal failure with renal tubular dysfunction. Albuminuria is a common finding in septic patients and we studied whether it was due to an impairment of proximal tubular endocytosis of filtered albumin. We studied the regulation of megalin and cubilin, the two critical multiligand receptors responsible for albumin absorption, during severe experimental endotoxemia. Lipopolysaccharide (LPS) caused a time- and dose-dependent suppression of megalin and cubilin expression that was paralleled by a decrease in plasma albumin levels and an increase in the urine concentration of albumin in mice. Incubation of rat renal cortical slices with LPS also reduced the mRNA expression of megalin and cubilin. Further, LPS suppressed megalin and cubilin mRNA expression in murine primary proximal tubule cells and decreased the uptake of FITC albumin in these cells. In addition, the increase in urine levels of albumin in response to ischemia/reperfusion-induced acute renal failure was paralleled by a decrease in the expression of megalin and cubilin. Thus, our data indicate that the expression of megalin and cubilin is decreased during experimental endotoxemia and in response to renal ischemia/reperfusion injury. This downregulation may contribute, in part, to an increase in urine levels of albumin during acute renal failure.
Collapse
Affiliation(s)
- Andrea Schreiber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
34
|
Ribeiro A, Wörnle M, Motamedi N, Anders HJ, Gröne EF, Nitschko H, Kurktschiev P, Debiec H, Kretzler M, Cohen CD, Gröne HJ, Schlöndorff D, Schmid H. Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy. Kidney Int 2012; 81:100-11. [PMID: 21918500 DOI: 10.1038/ki.2011.311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyomavirus-associated nephropathy (PVAN) is a significant complication after kidney transplantation, often leading to premature graft loss. In order to identify antiviral responses of the renal tubular epithelium, we studied activation of the viral DNA and the double-stranded RNA (dsRNA) sensors Toll-like receptor 3 (TLR3) and retinoic acid inducible gene-I (RIG-I) in allograft biopsy samples of patients with PVAN, and in human collecting duct cells in culture after stimulation by the dsRNA mimic polyriboinosinic:polyribocytidylic acid (poly(I:C)), cytokines, or infection with BK virus. Double staining using immunofluorescence for BK virus and TLR3 showed strong signals in epithelial cells of distal cortical tubules and the collecting duct. In biopsies microdissected to isolate tubulointerstitial lesions, TLR3 but not RIG-I mRNA expression was found to be increased in PVAN. Collecting duct cells in culture expressed TLR3 intracellularly, and activation of TLR3 and RIG-I by poly(I:C) enhanced expression of cytokine, chemokine, and IFN-β mRNA. This inflammatory response could be specifically blocked by siRNA to TLR3. Finally, infection of the collecting duct cells with BK virus enhanced the expression of cytokines and chemokines. This led to an efficient antiviral immune response with TLR3 and RIG-I upregulation without activation of IL-1β or components of the inflammasome pathway. Thus, PVAN activation of innate immune defense mechanisms through TLR3 is involved in the antiviral and anti-inflammatory response leading to the expression of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Andrea Ribeiro
- Medizinische Poliklinik Campus Innenstadt, Klinikum der LMU, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, with glomerulonephritis representing a frequent and serious manifestation. SLE is characterized by the presence of various autoantibodies, including anti-DNA antibodies that occur in approximately 70% of patients with SLE and which contribute to disease pathogenesis. Consequently, immunosuppressive therapies are applied in the treatment of SLE to reduce autoantibody levels. However, increasing evidence suggests that DNA--especially double--stranded DNA-constitutes an important pathogenic factor that is able to activate inflammatory responses by itself in autoimmune diseases. Therefore, modifying the structure of DNA to reduce its pathogenicity might be a more targeted approach for the treatment of SLE than immunosuppression. This article presents information in support of this strategy, and discusses the potential methods of DNA structure manipulation--in light of data obtained from mouse models of SLE--including topoisomerase I inhibition, administration of DNase I, or modification of histones using heparin or histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Steffen Frese
- Department of Clinical Research, University Hospital Bern, Murtenstrasse 50, P. O. Box 44, CH-3010 Bern, Switzerland . The Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | - Betty Diamond
- Department of Clinical Research, University Hospital Bern, Murtenstrasse 50, P. O. Box 44, CH-3010 Bern, Switzerland . The Feinstein Institute for Medical Research, North Shore LIJ Health System, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
36
|
Abstract
A variety of immune mechanisms, both humoral and cellular, are involved in the onset and amplification of the inflammatory response in lupus nephritis (LN). Accumulating evidence substantiates the view that innate immunity pathways may also amplify inflammatory reactions within the kidneys. Toll-like receptors (TLRs) are essential modulators of the innate immune response thanks to their ability to rocognize conserved molecular patterns that are microbe specific and other danger signals. Their recognition of endogenous molecules released from injured cells may also contribute to renal inflammation. Studies conducted in vivo and in vitro provide experimental evidence for the functional role of TLRs in LN. Intriguingly, these data suggest that pharmacological TLR signal suppression could be a useful approach to the treatment of systemic lupus erythematosus.
Collapse
|
37
|
Summers SA, Hoi A, Steinmetz OM, O'Sullivan KM, Ooi JD, Odobasic D, Akira S, Kitching AR, Holdsworth SR. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J Autoimmun 2011; 35:291-8. [PMID: 20810248 DOI: 10.1016/j.jaut.2010.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/24/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Systemic lupus erythematosus is a common autoimmune disease, with kidney involvement a serious complication associated with poor prognosis. Humoral immune responses constitute the hallmark of disease, however T helper cells are required for the generation of autoantibodies, as well as the induction and progression of renal injury. Administration of pristane to genetically intact mice results in the development of hypergammaglobulinaemia with the production of lupus like autoantibodies and proliferative glomerulonephritis, with similarities to human lupus nephritis. TLRs are intricately linked to the development of autoimmunity and are involved in the development of lupus nephritis. We injected wild type, TLR9-/- and TLR4-/- mice with pristane and assessed cellular and humoral autoimmunity and renal injury, 8 months later. TLR9-/- mice demonstrated a predominant decrease in Th1 cytokine production which resulted in decreased anti-RNP antibody levels, while anti-dsDNA levels remained intact. Compared to wild type mice treated with pristane, functional and histological renal injury and glomerular immunoglobulin and complement deposition was decreased in TLR9-/- mice. TLR4-/- mice demonstrated a global decrease in both Th1, IFNγ, and Th17 associated IL-17A and IL-6 cytokine production. Autoantibody levels of anti-dsDNA and anti-RNP were both decreased. Renal injury was attenuated in TLR4-/- mice which demonstrated less glomerular immunoglobulin and complement deposition. These results demonstrate that both TLR9 and TLR4 are required for 'full-blown' autoimmunity and organ injury in experimental lupus induced by pristane.
Collapse
Affiliation(s)
- S A Summers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The essential roles of Toll-like receptor signaling pathways in sterile inflammatory diseases. Int Immunopharmacol 2011; 11:1422-32. [PMID: 21600309 DOI: 10.1016/j.intimp.2011.04.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) form a family of pattern recognition receptors with at least 11 members in human and 13 in mouse. TLRs recognize a wide variety of putative host-derived agonists that have emerged as key mediators of innate immunity. TLR signaling also plays an important role in the activation of the adaptive immune system by inducing pro-inflammatory cytokines and upregulating costimulatory molecules of antigen presenting cells. Inappropriate activation of TLRs by self-components generated by damaged tissues may result in sterile inflammation. This review discusses the contribution of TLR signaling to the initiation and progression of non-infectious inflammatory processes, such as ischemia and reperfusion (I/R) injury, tissue repair and regeneration and autoimmune diseases. The involvement of TLR signaling in the pathogenesis of sterile inflammation-related diseases may provide novel targets for the development of therapeutics.
Collapse
|
39
|
The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int 2011; 79:1228-35. [PMID: 21346723 DOI: 10.1038/ki.2011.32] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) have a pivotal role in the autoimmune response of systemic lupus erythematosus. Plasmacytoid DCs infiltrate the kidney of patients with lupus nephritis, but factors regulating their recruitment to the kidney are unknown. Chemerin is the recently identified natural ligand of ChemR23, a receptor highly expressed by plasmacytoid DCs. We performed immunohistochemical and immunofluorescence analysis to study the ChemR23/Chemerin axis in renal biopsies from patients with lupus nephritis. We found ChemR23-positive DCs had infiltrated the kidney tubulointerstitium in patients with severe lupus nephritis. Chemerin association with tubular epithelial cells and renal lymphatic endothelial cells was found in patients with lupus nephritis but not in normal kidneys. Proximal tubular epithelial cells produced Chemerin in vitro, which was significantly down-modulated by added tumor necrosis factor (TNF)-α and interferon-γ as measured by quantitative PCR and enzyme-linked immunosorbent assay. Interestingly, TNF-α was capable of inducing a functionally active form of renal Chemerin, resulting in an efficient transendothelial migration of plasmacytoid DCs measured in transwell systems. Thus, the ChemR23/Chemerin axis may have a role in the recruitment of DCs within the kidney in patients affected by lupus nephritis.
Collapse
|
40
|
Batsford S, Duermueller U, Seemayer C, Mueller C, Hopfer H, Mihatsch M. Protein level expression of Toll-like receptors 2, 4 and 9 in renal disease. Nephrol Dial Transplant 2011; 26:1413-6. [PMID: 21220755 DOI: 10.1093/ndt/gfq752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) recognize a variety of ligands, including pathogen-associated molecular patterns and link innate and adaptive immunity. Individual receptors can be up-regulated during infection and inflammation. We examined the expression of selected TLRs at the protein level in various types of renal disease. METHODS Frozen sections of renal biopsies were stained with monoclonal antibodies to TLR-2, -4 and -9. RESULTS Up-regulation of the three TLRs studied was seen, although the extent was modest. TLR-2- and -4-positive cells belonged to the population of infiltrating inflammatory cells; only in the case of TLR-9 were intrinsic glomerular cells positive in polyoma virus infection and haemolytic uraemic syndrome (HUS). CONCLUSIONS Evidence for the involvement of the three TLRs tested in a variety of human renal diseases was found. These findings add to our understanding of the role of the innate immune system in kidney disease.
Collapse
Affiliation(s)
- Stephen Batsford
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
41
|
Tubulointerstitial lesions of patients with lupus nephritis classified by the 2003 International Society of Nephrology and Renal Pathology Society system. Kidney Int 2010; 77:820-9. [PMID: 20182417 DOI: 10.1038/ki.2010.13] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The 2003 International Society of Nephrology/Renal Pathology Society (ISN/RPS) system for classifying patients with lupus nephritis was based on glomerular lesions exclusively, despite the fact that lupus nephritis affects all compartments of the kidney. Hence, we analyzed the tubulointerstitial lesions in patients with lupus nephritis within the different classes and subclasses of the 2003 ISN/RPS system. Among 313 patients from five centers in northern China with lupus nephritis, interstitial inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis were severe in 170 patients with class IV, moderate in 55 with class III, and mild in 19 with class II and in 69 with class V disease, each with significance. The severity of tubulointerstitial lesions in classes IV-segmental and III was similar, whereas the score of interstitial inflammatory cell infiltration in patients with subclass IV-global was significantly higher than that in those with subclass IV-segmental. Interstitial fibrosis and tubular atrophy were each significantly more prominent in patients with both active and chronic lesions than in those with active lesions alone. The correlation coefficient ranged from 0.222 to 0.811 comparing glomerular and tubulointerstitial indices. In multivariate Cox hazard analysis of tubulointerstitial lesions, indices of interstitial infiltration, tubular atrophy, and interstitial fibrosis were confirmed as significant independent risk factors for renal outcome. Thus, we found that the 2003 ISN/RPS classification system of lupus nephritis, based on glomerular lesions, could also reflect related tubulointerstitial lesions. Hence, we suggest that the extent of tubulointerstitial lesions may be helpful in predicting renal outcome in patients with lupus nephritis.
Collapse
|
42
|
Machida H, Ito S, Hirose T, Takeshita F, Oshiro H, Nakamura T, Mori M, Inayama Y, Yan K, Kobayashi N, Yokota S. Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol Dial Transplant 2010; 25:2530-537. [PMID: 20181802 DOI: 10.1093/ndt/gfq058] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Childhood-onset systemic lupus erythematosus (SLE) is frequently complicated with lupus nephritis (LN), which is characterized by the deposition of DNA-containing immune complex to the glomerulus. Toll-like receptor 9 (TLR9), capable of recognizing the microbially derived CpG oligonucleotide, plays a crucial role in the innate immunity. TLR9 is also assumed to be related to the aetiology of SLE in the recognition of anti-DNA antibody-containing immune complex, but this remains controversial. We conducted a study to elucidate the association between TLR9 and LN in childhood-onset SLE. METHODS We compared the expression and localization of TLR9 and the slit membrane-related protein in the biopsied kidney sample by immunostaining in four children with active or inactive LN. We also evaluated their laboratory findings, such as anti-DNA antibody, complement and proteinuria at biopsy, to assess the correlation to the findings of the immunostaining. RESULTS TLR9 is not expressed in a normal control kidney. However, TLR9 develops in podocytes only in active LN but disappears in remission. Meanwhile, the slit membrane-related proteins such as nephrin, podocin and synaptopodin in podocytes express clearly and uniformly in remission, but their expression is markedly diminished in active LN, which results in podocyte injury. When TLR9 is expressed in podocytes, all the patients simultaneously showed hypocomplementaemia, high titre of anti-double-stranded DNA (dsDNA) antibody and proteinuria. CONCLUSION Injured podocytes in active LN express TLR9. This expression could be associated with proteinuria and increased anti-dsDNA antibody. This is the first report indicating that TLR9 is involved in the aetiology of LN and that it may play some role in podocyte injury.
Collapse
|
43
|
Papadimitraki ED, Tzardi M, Bertsias G, Sotsiou E, Boumpas DT. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus 2009; 18:831-5. [DOI: 10.1177/0961203309103054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Toll-like receptors recognising self-derived nucleic acids may participate in the pathogenesis of autoimmune diseases. Following the description of an enhanced population of toll-like receptor-9 (TLR-9) expressing auto-antibody producing B lymphocytes in active lupus, we explored the expression of TLR-9 in the renal tissue of patients with lupus. TLR-9 expression was studied in the kidneys of 12 lupus and 10 control samples from macroscopically unaffected areas of patients with renal adenocarcinoma by immunohistochemistry. A semiquantitative score was assigned separately for tubular, interstitial and glomerular expression. TLR-9 was expressed in the renal tubules and interstitial tissue in both patients with lupus and controls. Six of 12 patients with lupus with proliferative or membranous nephritis – as compared to none of the controls – exhibited both tubulointerstitial and glomerular TLR-9 expression. Biopsies with glomerular TLR-9 expression had a higher activity index (mean ± SD, 6.3 ± 3.5 in the presence of TLR-9 glomerular expression as compared to 1.3 ± 1.8 in its absence, P = 0.015, t-test). This study documents for the first time the up-regulation of TLR-9 within the glomerulus of patients with lupus nephritis. Activation of TLR-9 expressing glomerular cells by endogenous nucleic acids (nucleosomes) may amplify the inflammatory response.
Collapse
Affiliation(s)
- ED Papadimitraki
- Laboratory of Autoimmunity and Inflammation, Rheumatology, Clinical Immunology and Allergy, Medical School, University of Crete, Greece
| | - M Tzardi
- Department of Pathology, Medical School, University of Crete, Greece
| | - G Bertsias
- Laboratory of Autoimmunity and Inflammation, Rheumatology, Clinical Immunology and Allergy, Medical School, University of Crete, Greece
| | - E Sotsiou
- Department of Pathology, Evangelismos Hospital, Athens, Greece
| | - DT Boumpas
- Laboratory of Autoimmunity and Inflammation, Rheumatology, Clinical Immunology and Allergy, Medical School, University of Crete, Greece
| |
Collapse
|
44
|
Trivedi S, Greidinger EL. Endosomal Toll-like receptors in autoimmunity: mechanisms for clinical diversity. ACTA ACUST UNITED AC 2009; 6:433-442. [PMID: 20161373 DOI: 10.2217/thy.09.2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The endosomal Toll-like receptors (TLR3, TLR7 and TLR9) have been implicated in the pathogenesis of autoimmune diseases. Their signaling pathways show remarkable similarities and yet the outcomes following activation of each of these TLRs lead to clinically distinct autoimmune disease phenotypes. This review discusses how differences may arise at a molecular and cellular level to account for this diversity of responses. Understanding the roles of individual TLR pathways and the relationships between them and non-TLR innate immune pathways in the pathogenesis of diseases such as systemic lupus erythematosis highlights potential treatment targets for this spectrum of autoimmune diseases.
Collapse
Affiliation(s)
- Sapna Trivedi
- Division of Nephrology & Hypertension, University of Miami Miller School of Medicine, FL, USA
| | | |
Collapse
|
45
|
Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection. Nat Rev Drug Discov 2008; 7:936-53. [PMID: 18846102 DOI: 10.1038/nrd2685] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At present, there are no specific cures for most of the acquired chronic kidney diseases, and renal transplantation is limited by organ shortage, therefore present efforts are concentrated on the prevention of progression of renal diseases. There is robust experimental and clinical evidence that progression of chronic nephropathies is multifactorial; however, intraglomerular haemodynamic changes and proteinuria play a key role in this process. With a focus on renoprotection, we first examine more established therapies--such as those that modulate the renin-angiotensin-aldosterone system--that can be used for the treatment of proteinuric renal diseases. We then discuss examples of novel drugs and biologics that might be used to target the inflammatory and profibrotic process, and glomerular injury, highlighting results from recent clinical trials.
Collapse
|
46
|
|
47
|
Toll-like receptors in systemic lupus erythematosus; prospects for therapeutic intervention. Autoimmun Rev 2008; 8:204-8. [PMID: 18722558 DOI: 10.1016/j.autrev.2008.07.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experimental and clinical studies have placed new emphasis on the role of the innate immune system in SLE. Nucleic acid-containing immune complexes activate the innate response by engaging specific Toll-like receptors (TLRs) and promote the generation of autoantibodies. Pharmacologic modulation of TLR-directed pathways may offer new therapeutic approaches for the treatment of SLE.
Collapse
|
48
|
Faurschou M, Penkowa M, Andersen CB, Starklint H, Jacobsen S. The renal metallothionein expression profile is altered in human lupus nephritis. Arthritis Res Ther 2008; 10:R76. [PMID: 18601746 PMCID: PMC2575622 DOI: 10.1186/ar2450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/30/2008] [Accepted: 07/06/2008] [Indexed: 11/10/2022] Open
Abstract
Introduction Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT-I+II expression profile is altered during lupus nephritis. Methods Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means of standard statistical methods. Results Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median number of proximal tubules displaying this MT expression pattern per high-power microscope field (40× magnification), was positively correlated to the creatinine clearance in the lupus nephritis cohort (P = 0.01). Furthermore, a tubular MT score below the median value of the cohort emerged as a significant predictor of a poor renal outcome in renal survival analyses. Thus, patients with a tubular MT score < 1.0 had a 6.2-times higher risk of developing end-stage renal disease than patients with a tubular MT score ≥ 1.0 (P = 0.03). Conclusion Lupus nephritis is associated with significant alterations in renal MT-I+II expression. Our data indicate that important prognostic information can be deduced from the renal MT-I+II expression profile in systemic lupus erythematosus patients with nephritis.
Collapse
Affiliation(s)
- Mikkel Faurschou
- Department of Rheumatology, The National University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
49
|
Ferraccioli G, Romano G. Renal interstitial cells, proteinuria and progression of lupus nephritis: new frontiers for old factors. Lupus 2008; 17:533-40. [DOI: 10.1177/0961203307088002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells, inflammatory-immune cells, tubular cells and endothelial cells of the peritubular capillaries have arisen as possible major players of the nephron damage in lupus nephritis. Increased ICAM-1, Von Willebrand factor, soluble endothelial protein C receptors and decreased ADAMS-13 point to a diffuse vascular damage. Albuminuria elicits a rapid generation of hydrogen peroxide in proximal tubular cells along with nuclear factor-kB activation, endothelin-1 and transforming growth factor (TGF-β1) upregulation. TGF-β1 enhances epithelial-to-mesenchymal transdifferentiation. Albuminuria also enhances the expression of macrophage chemotactic protein-1 and macrophage inflammatory protein-1α, thus leading to increased interstitial inflammation. TGF-β1 and thrombospondin-1, a putative activator of TGF-β, induce apoptosis of peritubular capillaries, as well as of glomerular endothelial cells. All these events can be counteracted by hepatocyte growth factor (HGF), which is expressed by the epithelial tubular cells and stimulates the growth of epithelial cells (mitogen), enhances the motility of epithelial cells (motogen), induces renal epithelial tubule regeneration (morphogen) and enhances angiogenesis (angiogen). The balance between TGF-β1 and HGF could be a key to define the prognostic value of kidney histopathology at baseline and during follow-up, in lupus nephritis. Therapeutic strategies aiming at altering the biological balance in the patients are at hand to test and prove the experimental evidences.
Collapse
Affiliation(s)
- G Ferraccioli
- Division of Rheumatology, Catholic University of the Sacred Heart, Rome, Italy
| | - G Romano
- Nephrology Unit, University of Udine, Udine, Italy
| |
Collapse
|
50
|
Yasuda H, Leelahavanichkul A, Tsunoda S, Dear JW, Takahashi Y, Ito S, Hu X, Zhou H, Doi K, Childs R, Klinman DM, Yuen PST, Star RA. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 2008; 294:F1050-8. [PMID: 18305095 DOI: 10.1152/ajprenal.00461.2007] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mortality from sepsis has remained high despite recent advances in supportive and targeted therapies. Toll-like receptors (TLRs) sense bacterial products and stimulate pathogenic innate immune responses. Mice deficient in the common adapter protein MyD88, downstream from most TLRs, have reduced mortality and acute kidney injury (AKI) from polymicrobial sepsis. However, the identity of the TLR(s) responsible for the host response to polymicrobial sepsis is unknown. Here, we show that chloroquine, an inhibitor of endocytic TLRs (TLR3, 7, 8, 9), improves sepsis-induced mortality and AKI in a clinically relevant polymicrobial sepsis mouse model, even when administered 6 h after the septic insult. Chloroquine administration attenuated the decline in renal function, splenic apoptosis, serum markers of damage to other organs, and prototypical serum pro- and anti-inflammatory cytokines TNF-alpha and IL-10. An oligodeoxynucleotide inhibitor (H154) of TLR9 and TLR9-deficient mice mirror the actions of chloroquine in all functional parameters that we tested. In addition, chloroquine decreased TLR9 protein abundance in spleen, further suggesting that TLR9 signaling may be a major target for the protective actions of chloroquine. Our findings indicate that chloroquine improves survival by inhibiting multiple pathways leading to polymicrobial sepsis and that chloroquine and TLR9 inhibitors represent viable broad-spectrum and targeted therapeutic strategies, respectively, that are promising candidates for further clinical development.
Collapse
|