1
|
Wu Z, Wang Y, Liu W, Lu M, Shi J. The role of neuropilin in bone/cartilage diseases. Life Sci 2024; 346:122630. [PMID: 38614296 DOI: 10.1016/j.lfs.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
2
|
Colotti G, Failla CM, Lacal PM, Ungarelli M, Ruffini F, Di Micco P, Orecchia A, Morea V. Neuropilin-1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1. FEBS J 2021; 289:183-198. [PMID: 34252269 PMCID: PMC9290910 DOI: 10.1111/febs.16119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Neuropilin‐1 (NRP‐1) is a semaphorin receptor involved in neuron guidance, and a co‐receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP‐1 binding to several VEGF‐A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)‐2, increasing receptor phosphorylation. Additionally, NRP‐1 directly interacts with VEGFR‐1, but this interaction competes with NRP‐1 binding to VEGF‐A165 and does not enhance VEGFR‐1 activation. In this work, we investigated in detail the role of NRP‐1 interaction with the soluble isoform of VEGFR‐1 (sVEGFR‐1) in angiogenesis. sVEGFR‐1 acts both as a decoy receptor for VEGFs and as an extracellular matrix protein directly binding to α5β1 integrin on endothelial cells. By combining cell adhesion assays and surface plasmon resonance experiments on purified proteins, we found that sVEGFR‐1/NRP‐1 interaction is required both for α5β1 integrin binding to sVEGFR‐1 and for endothelial cell adhesion to a sVEGFR‐1‐containing matrix. We also found that a previously reported anti‐angiogenic peptide (Flt2‐11), which maps in the second VEGFR‐1 Ig‐like domain, specifically binds NRP‐1 and inhibits NRP‐1/sVEGFR‐1 interaction, a process that likely contributes to its anti‐angiogenic activity. In view of potential translational applications, we developed a five‐residue‐long peptide, derived from Flt2‐11, which has the same ability as the parent Flt2‐11 peptide to inhibit cell adhesion to, and migration towards, sVEGFR‐1. Therefore, the Flt2‐5 peptide represents a potential anti‐angiogenic compound per se, as well as an attractive lead for the development of novel angiogenesis inhibitors acting with a different mechanism with respect to currently used therapeutics, which interfere with VEGF‐A165 binding.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| | | | | | | | | | - Patrizio Di Micco
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza' University of Rome, Italy
| | - Angela Orecchia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| |
Collapse
|
3
|
Pokhrel S, Kraemer BR, Burkholz S, Mochly-Rosen D. Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Sci Rep 2021; 11:13120. [PMID: 34162970 PMCID: PMC8222349 DOI: 10.1038/s41598-021-92641-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
In December 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of pneumonia with severe respiratory distress and outbreaks in Wuhan, China. The rapid and global spread of SARS-CoV-2 resulted in the coronavirus 2019 (COVID-19) pandemic. Earlier during the pandemic, there were limited genetic viral variations. As millions of people became infected, multiple single amino acid substitutions emerged. Many of these substitutions have no consequences. However, some of the new variants show a greater infection rate, more severe disease, and reduced sensitivity to current prophylaxes and treatments. Of particular importance in SARS-CoV-2 transmission are mutations that occur in the Spike (S) protein, the protein on the viral outer envelope that binds to the human angiotensin-converting enzyme receptor (hACE2). Here, we conducted a comprehensive analysis of 441,168 individual virus sequences isolated from humans throughout the world. From the individual sequences, we identified 3540 unique amino acid substitutions in the S protein. Analysis of these different variants in the S protein pinpointed important functional and structural sites in the protein. This information may guide the development of effective vaccines and therapeutics to help arrest the spread of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin R Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Valentini E, Di Martile M, Del Bufalo D, D'Aguanno S. SEMAPHORINS and their receptors: focus on the crosstalk between melanoma and hypoxia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:131. [PMID: 33858502 PMCID: PMC8050914 DOI: 10.1186/s13046-021-01929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Hypoxia, a condition of oxygen deprivation, is considered a hallmark of tumor microenvironment regulating several pathways and promoting cancer progression and resistance to therapy. Semaphorins, a family of about 20 secreted, transmembrane and GPI-linked glycoproteins, and their cognate receptors (plexins and neuropilins) play a pivotal role in the crosstalk between cancer and stromal cells present in the tumor microenvironment. Many studies reported that some semaphorins are involved in the development of a permissive tumor niche, guiding cell-cell communication and, consequently, the development and progression, as well as the response to therapy, of different cancer histotypes, including melanoma. In this review we will summarize the state of art of semaphorins regulation by hypoxic condition in cancer with different origin. We will also describe evidence about the ability of semaphorins to affect the expression and activity of transcription factors activated by hypoxia, such as hypoxia-inducible factor-1. Finally, we will focus our attention on findings reporting the role of semaphorins in melanocytes transformation, melanoma progression and response to therapy. Further studies are necessary to understand the mechanisms through which semaphorins induce their effect and to shed light on the possibility to use semaphorins or their cognate receptors as prognostic markers and/or therapeutic targets in melanoma or other malignancies.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy.
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Via Chianesi 53 (00144), Rome, Italy
| |
Collapse
|
5
|
Prieto D, González C, Weber L, Realini O, Pino-Lagos K, Bendek MJ, Retamal I, Beltrán V, Riedemann JP, Espinoza F, Chaparro A. Soluble neuropilin-1 in gingival crevicular fluid is associated with rheumatoid arthritis: An exploratory case-control study. J Oral Biol Craniofac Res 2021; 11:303-307. [PMID: 33747759 PMCID: PMC7970360 DOI: 10.1016/j.jobcr.2021.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND To explore the soluble Neuropilin-1 (sNRP-1) concentrations in gingival crevicular fluid (GCF) and the periodontal clinical status of patients with Rheumatoid Arthritis (RA). MATERIALS AND METHODS We conducted an exploratory study with 40 study participants, 20 with RA, and 20 healthy controls. Clinical and periodontal data were recorded, and GCF samples were obtained. sNRP-1 levels in GCF were determined by ELISA assay. Descriptive statistics, Mann-Whitney U test, Unpaired t-test, logistic regression model, and Area Under Receiver Operating Characteristic Curve (AUC-ROC) were made to explore the diagnostic performance accuracy. RESULTS RA patients had significantly higher levels of sNRP-1 in GCF (p = 0.0447). The median levels of GCF-sNRP-1 were 208.85 pg/μl (IQR 131.03) in the RA group compared to 81.46 pg/μl (IQR 163.73) in the control group. We observed an association between the GCF-sNRP-1 concentrations and the RA diagnosis (OR:1.009; CI 1.00-1.001; p = 0.047). The diagnosis of chronic periodontitis was also associated with RA (OR: 6.9; CI 1.52-31.37; p = 0.012). Moreover, the AUC-ROC of GCF-sNRP-1 concentrations combined with periodontal clinical parameters such as periodontal probing depth and periodontal inflamed surface area was 0.80. CONCLUSION This exploratory case-control study shows that RA patients had significantly higher levels of sNRP-1 in GCF. New longitudinal studies are necessary to evaluate the role of NRP-1 in periodontal tissues and consider it an oral biomarker with clinical value in RA.
Collapse
Affiliation(s)
- Diego Prieto
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Camila González
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Laura Weber
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ornella Realini
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maria José Bendek
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ignacio Retamal
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Víctor Beltrán
- Centre of Investigation and Innovation in Clinical Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco, Chile
| | - Juan Pablo Riedemann
- Rheumatology Unit, Faculty of Medicine, Universidad de la Frontera, Temuco, Chile
| | - Francisco Espinoza
- Department of Rheumatology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alejandra Chaparro
- Department of Periodontology, Center for Biomedical and Innovation Research, Laboratory of Periodontal Research, Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
6
|
Abstract
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.
Collapse
Affiliation(s)
- Bindu S. Mayi
- Department of Basic Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
- * E-mail:
| | - Jillian A. Leibowitz
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Arden T. Woods
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Katherine A. Ammon
- USF Morsani College of Medicine, Tampa, Florida, United States of America
| | - Alphonse E. Liu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| |
Collapse
|
7
|
Liu R, Xu B, Yu S, Zhang J, Sun H, Liu C, Lu F, Pan Q, Zhang X. Integrated Transcriptomic and Proteomic Analyses of the Interaction Between Chicken Synovial Fibroblasts and Mycoplasma synoviae. Front Microbiol 2020; 11:576. [PMID: 32318048 PMCID: PMC7147270 DOI: 10.3389/fmicb.2020.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma synoviae (MS), which causes respiratory disease, eggshell apex abnormalities, infectious synovitis, and arthritis in avian species, has become an economically detrimental poultry pathogen in recent years. In China, the disease is characterized by infectious synovitis and arthritis. However, the mechanism by which MS causes infectious synovitis and arthritis remains unknown. Increasing evidence suggests that synovial fibroblasts (SF) play a key role in the pathogenesis of arthritis. Here, both RNA sequencing and tandem mass tag analyses are utilized to compare the response of primary chicken SF (CSF) following infection with and without MS. The host response between non-infected and infected cells was remarkably different at both the mRNA and protein levels. In total, 2,347 differentially expressed genes (DEGs) (upregulated, n = 1,137; downregulated, n = 1,210) and 221 differentially expressed proteins (DEPs) (upregulated, n = 129; downregulated, n = 92) were detected in the infected group. A correlation analysis indicated a moderate positive correlation between the mRNA and protein level changes in MS-infected CSF. At both the transcriptomic and proteomic levels, 149 DEGs were identified; 88 genes were upregulated and 61 genes were downregulated in CSF. Additionally, part of these regulated genes and their protein products were grouped into seven categories: proliferation-related and apoptosis-related factors, inflammatory mediators, proangiogenic factors, antiangiogenic factors, matrix metalloproteinases, and other arthritis-related proteins. These proteins may be involved in the pathogenesis of MS-induced arthritis in chickens. To our knowledge, this is the first integrated analysis on the mechanism of CSF-MS interactions that combined transcriptomic and proteomic technologies. In this study, many key candidate genes and their protein products related to MS-induced infectious synovitis and arthritis were identified.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
8
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
9
|
Lesnak J, Sluka KA. Chronic non-inflammatory muscle pain: central and peripheral mediators. CURRENT OPINION IN PHYSIOLOGY 2019; 11:67-74. [PMID: 31998857 PMCID: PMC6988739 DOI: 10.1016/j.cophys.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Conditions with chronic widespread non-inflammatory muscle pain, such as fibromyalgia, have complex etiologies with numerous proposed mechanisms for their pathophysiology of underlying chronic pain. Advancements in neuroimaging have allowed for the study of brain function and connectivity in humans with these conditions, while development of animal models have allowed for the study of both peripheral and central factors that lead to chronic pain. This article reviews the current literature surrounding the pathophysiology of chronic widespread non-inflammatory muscle pain focusing on both peripheral and central nervous system, as well as immune system, contributions to the development and maintenance of pain. A better understanding of the mechanisms underlying these conditions can allow for improvements in patient education, treatment and outcomes.
Collapse
Affiliation(s)
- Joseph Lesnak
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, 1-242 MEB, University of Iowa, Iowa City, IA 52252, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Pain Research Program, 1-242 MEB, University of Iowa, Iowa City, IA 52252, USA
| |
Collapse
|
10
|
Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, Prachayasittikul V, Shoombuatong W. TargetAntiAngio: A Sequence-Based Tool for the Prediction and Analysis of Anti-Angiogenic Peptides. Int J Mol Sci 2019; 20:E2950. [PMID: 31212918 PMCID: PMC6628072 DOI: 10.3390/ijms20122950] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/21/2022] Open
Abstract
Cancer remains one of the major causes of death worldwide. Angiogenesis is crucial for the pathogenesis of various human diseases, especially solid tumors. The discovery of anti-angiogenic peptides is a promising therapeutic route for cancer treatment. Thus, reliably identifying anti-angiogenic peptides is extremely important for understanding their biophysical and biochemical properties that serve as the basis for the discovery of new anti-cancer drugs. This study aims to develop an efficient and interpretable computational model called TargetAntiAngio for predicting and characterizing anti-angiogenic peptides. TargetAntiAngio was developed using the random forest classifier in conjunction with various classes of peptide features. It was observed via an independent validation test that TargetAntiAngio can identify anti-angiogenic peptides with an average accuracy of 77.50% on an objective benchmark dataset. Comparisons demonstrated that TargetAntiAngio is superior to other existing methods. In addition, results revealed the following important characteristics of anti-angiogenic peptides: (i) disulfide bond forming Cys residues play an important role for inhibiting blood vessel proliferation; (ii) Cys located at the C-terminal domain can decrease endothelial formatting activity and suppress tumor growth; and (iii) Cyclic disulfide-rich peptides contribute to the inhibition of angiogenesis and cell migration, selectivity and stability. Finally, for the convenience of experimental scientists, the TargetAntiAngio web server was established and made freely available online.
Collapse
Affiliation(s)
- Vishuda Laengsri
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Pornlada Nuchnoi
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
11
|
Koh JH, Park YJ, Lee S, Hong YS, Hong KS, Yoo SA, Cho CS, Kim WU. Distinct Urinary Metabolic Profile in Rheumatoid Arthritis Patients: A Possible Link between Diet and Arthritis Phenotype. JOURNAL OF RHEUMATIC DISEASES 2019. [DOI: 10.4078/jrd.2019.26.1.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Yune-Jung Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Saseong Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Korea
| | - Young-Shick Hong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kwan Soo Hong
- Bioimaging Research Team, Korea Basic Science Institute, Cheongju, Korea
| | - Seung-Ah Yoo
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Korea
| | - Chul-Soo Cho
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Korea
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Nishide M, Kumanogoh A. The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol 2017; 14:19-31. [DOI: 10.1038/nrrheum.2017.201] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
MicroRNA-143 and -145 modulate the phenotype of synovial fibroblasts in rheumatoid arthritis. Exp Mol Med 2017; 49:e363. [PMID: 28775366 PMCID: PMC5579506 DOI: 10.1038/emm.2017.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/19/2017] [Indexed: 01/31/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) constitute a major cell subset of rheumatoid arthritis (RA) synovia. Dysregulation of microRNAs (miRNAs) has been implicated in activation and proliferation of RA-FLSs. However, the functional association of various miRNAs with their targets that are characteristic of the RA-FLS phenotype has not been globally elucidated. In this study, we performed microarray analyses of miRNAs and mRNAs in RA-FLSs and osteoarthritis FLSs (OA-FLSs), simultaneously, to validate how dysregulated miRNAs may be associated with the RA-FLS phenotype. Global miRNA profiling revealed that miR-143 and miR-145 were differentially upregulated in RA-FLSs compared to OA-FLSs. miR-143 and miR-145 were highly expressed in independent RA-FLSs. The miRNA-target prediction and network model of the predicted targets identified insulin-like growth factor binding protein 5 (IGFBP5) and semaphorin 3A (SEMA3A) as potential target genes downregulated by miR-143 and miR-145, respectively. IGFBP5 level was inversely correlated with miR-143 expression, and its deficiency rendered RA-FLSs more sensitive to TNFα stimulation, promoting IL-6 production and NF-κB activity. Moreover, SEMA3A was a direct target of miR-145, as determined by a luciferase reporter assay, antagonizing VEGF165-induced increases in the survival, migration and invasion of RA-FLSs. Taken together, our data suggest that enhanced expression of miR-143 and miR-145 renders RA-FLSs susceptible to TNFα and VEGF165 stimuli by downregulating IGFBP5 and SEMA3A, respectively, and that these miRNAs could be therapeutic targets.
Collapse
|
14
|
Han EJ, Kim HY, Lee N, Kim NH, Yoo SA, Kwon HM, Jue DM, Park YJ, Cho CS, De TQ, Jeong DY, Lim HJ, Park WK, Lee GH, Cho H, Kim WU. Suppression of NFAT5-mediated Inflammation and Chronic Arthritis by Novel κB-binding Inhibitors. EBioMedicine 2017; 18:261-273. [PMID: 28396011 PMCID: PMC5405180 DOI: 10.1016/j.ebiom.2017.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 01/28/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of > 40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis. We identify a novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5 to inhibit NFAT5 activity. KRN2 inhibits the transcriptional activation of NFAT5 and the pro-inflammatory responses. KRN2 and KRN5 suppress experimentally induced arthritis in mice.
NFAT5 has been implicated in the pathogenesis of arthritis. However, therapeutic agents specifically inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of > 40,000 chemicals was screened, leading to the discovery of novel berberine-based NFAT5 suppressors, KRN2 and its oral derivative KRN5. KRN2 inhibited the transcriptional activation of NFAT5 by blocking NF-κB binding to the NFAT5 promoter region, thereby reducing the expression of pro-inflammatory genes. Moreover, KRN2 and KRN5 ameliorated experimentally induced arthritis in mice without serious adverse effects. Therefore, we propose that KRN2 and KRN5 may be potential therapeutic agents in the treatment of chronic arthritis.
Collapse
Affiliation(s)
- Eun-Jin Han
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nam-Hoon Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ah Yoo
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - H Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yune-Jung Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul-Soo Cho
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tran Quang De
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dae Young Jeong
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hee-Jong Lim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Woo Kyu Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ge Hyeong Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adh Migr 2016; 10:700-708. [PMID: 27906605 PMCID: PMC5160035 DOI: 10.1080/19336918.2016.1261785] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.
Collapse
Affiliation(s)
- Lionel A. T. Meyer
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Justine Fritz
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Marie Pierdant-Mancera
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| |
Collapse
|
16
|
Deng Q, Bai S, Gao W, Tong L. Pristimerin inhibits angiogenesis in adjuvant-induced arthritic rats by suppressing VEGFR2 signaling pathways. Int Immunopharmacol 2015; 29:302-313. [PMID: 26548348 DOI: 10.1016/j.intimp.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease. As RA progresses, the hyperplastic synovial pannus creates a hypoxic, inflammatory environment that induces angiogenesis. Further vascularization of the synovial tissue promotes pannus growth and continued infiltration of inflammatory leukocytes, thus perpetuating the disease. Pristimerin inhibits inflammation and tumor angiogenesis. The present study focused on the inhibition of angiogenesis by Pristimerin in adjuvant-induced arthritic rats and the underlying molecular mechanisms. Our results clearly demonstrate for the first time that Pristimerin significantly reduces vessel density in synovial membrane tissues of inflamed joints and reduces the expression of pro-angiogenic factors in sera, including TNF-α, Ang-1, and MMP-9. Pristimerin also decreased the expression of VEGF and p-VEGFR2 in the synovial membrane, whereas the total amount of VEGFR2 remained unchanged. Pristimerin suppressed the sprouting vessels of the aortic ring and inhibited VEGF-induced HFLS-RA migration in vitro. Pristimerin also inhibited VEGF-induced proliferation, migration and tube formation by HUVECs, blocked the autophosphorylation of VEGF-induced VEGFR2 and consequently downregulated the signaling pathways of activated PI3K, AKT, mTOR, ERK1/2, JNK, and p38 in VEGF-induced HUVECs. Our results indicate that Pristimerin suppressed synovial angiogenesis in our rat model and in vitro by interrupting the targeting of VEGFR2 activation. Therefore, Pristimerin has potential as an angiogenesis inhibitor in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qiudi Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shutong Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wanjiao Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Tong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Semerano L, Duvallet E, Belmellat N, Marival N, Schall N, Monteil M, Grouard-Vogel G, Bernier E, Lecouvey M, Hlawaty H, Muller S, Boissier MC, Assier E. Targeting VEGF-A with a vaccine decreases inflammation and joint destruction in experimental arthritis. Angiogenesis 2015; 19:39-52. [PMID: 26419779 DOI: 10.1007/s10456-015-9487-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA). METHODS Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH). Two kinds of vaccines were separately tested in two independent experiments of CIA. In the first, we tested a kinoid of the murine cytokine VEGF (VEGF-K), obtained by conjugating VEGF-A to KLH. For the second, we selected two VEGF-A-derived peptide sequences to produce heterocomplexes (Vpep1-K and Vpep2-K). DBA/1 mice were immunized with either VEGF-K, Vpep1-K, or Vpep2-K, before CIA induction. Clinical and histological scores of arthritis, anti-VEGF, anti-Vpep Ab titers, and anti-VEGF Abs neutralizing capacity were determined. RESULTS Both VEGF-K and Vpep1-K significantly ameliorated clinical arthritis scores and reduced synovial inflammation and joint destruction at histology. VEGF-K significantly reduced synovial vascularization. None of the vaccines reduced anti-collagen Ab response in mice. Both VEGF-K and Vpep1-K induced persistently high titers of anti-VEGF Abs capable of inhibiting VEGF-A bioactivity. CONCLUSION Vaccination against the pro-angiogenic factor VEGF-A leads to the production of anti-VEGF polyclonal Abs and has a significant anti-inflammatory effect in CIA. Restraining Ab response to a single peptide sequence (Vpep1) with a peptide vaccine effectively protects immunized mice from joint inflammation and destruction.
Collapse
Affiliation(s)
- Luca Semerano
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Emilie Duvallet
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nadia Belmellat
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Marival
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Nicolas Schall
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Maëlle Monteil
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | | | | | - Marc Lecouvey
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,CNRS UMR 7244, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Hanna Hlawaty
- Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Inserm UMR 1148, 74 rue Marcel Cachin, 93000, Bobigny, France.
| | - Sylviane Muller
- CNRS, Immunopathologie et chimie thérapeutique/Laboratory of excellence Medalis, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Marie-Christophe Boissier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France. .,Service de Rhumatologie, Assistance Publique - Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, 125 rue de Stalingrad, 93000, Bobigny, France.
| | - Eric Assier
- Inserm UMR 1125, Sorbonne Paris Cité - Université Paris 13, 74, rue Marcel Cachin, 93017, Bobigny, France. .,Sorbonne Paris Cité - Université Paris 13, 74 rue Marcel Cachin, 93000, Bobigny, France.
| |
Collapse
|
18
|
Berberine ameliorates collagen-induced arthritis in rats associated with anti-inflammatory and anti-angiogenic effects. Inflammation 2015; 37:1789-98. [PMID: 24803296 DOI: 10.1007/s10753-014-9909-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by inflammation and joint destruction. In this study, we explored the effect of berberine on rats with bovine type II collagen-induced arthritis (CIA), an animal model for RA. Following treatment, berberine attenuates arthritic scores and suppresses collagen-specific immune responses in CIA rats. Compared with the un-treated CIA group, berberine reversed pathological changes, which showed a significant improvement in synovial hyperplasia and inflammatory infiltration. The expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-17 and vascular endothelial growth factor (VEGF) were obviously reduced in the sera of berberine-treated rats (all P<0.05). Moreover, berberine showed marked inhibition of the expression of VEGF and CD34 (all P<0.05). Interestingly, berberine significantly suppresses p-ERK, p-p38 and p-JNK activation (all P<0.05), which may partially explain the anti-RA activity of berberine. These results suggest that berberine ameliorates CIA in rats associated with anti-inflammatory and anti-angiogenic effects, which might be of great therapeutic value for RA.
Collapse
|
19
|
Gong W, Kolker SJ, Usachev Y, Walder RY, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res Ther 2014; 16:R121. [PMID: 24923411 PMCID: PMC4095605 DOI: 10.1186/ar4577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS). Methods Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay. Results Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS. Conclusions Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.
Collapse
|
20
|
Park SJ, Kim KJ, Kim WU, Cho CS. Interaction of mesenchymal stem cells with fibroblast-like synoviocytes via cadherin-11 promotes angiogenesis by enhanced secretion of placental growth factor. THE JOURNAL OF IMMUNOLOGY 2014; 192:3003-10. [PMID: 24574497 DOI: 10.4049/jimmunol.1302177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) exist in the synovium of patients with rheumatoid arthritis (RA), yet the role of MSC in RA is elusive. Placental growth factor (PlGF) expression is increased in RA synovial fluids, and blocking of PlGF attenuates progression of arthritis in mice. In this study, we observed that PlGF induced chemotaxis of MSC in a dose-dependent manner, which was blocked by anti-vascular endothelial growth factor receptor-1 peptide. MSC exposed to PlGF elicited increased phosphorylation of Akt and p38 MAPK. PlGF-mediated chemotaxis was inhibited by PI3K inhibitor (LY294002) and p38 MAPK inhibitor (SB203580), but not by ERK1/2 inhibitor (PD98059). Fibroblast-like synoviocytes (FLS) constitutively produced PlGF, but MSC released negligible amounts of PlGF. Of note, when FLS of RA patients and MSC were cocultured, PlGF production by FLS was significantly increased; such an increase was dependent on the number of added MSC. Moreover, coculture conditioned medium promoted chemotaxis of MSC and increased angiogenesis in Matrigel plugs assay, and these were suppressed by preincubation of the medium with anti-PlGF Ab. Transwell experiments revealed that MSC to FLS contact was required for the increase in PlGF production by coculture. Cadherin-11 was expressed both in FLS and MSC, and small interfering RNA knockdown of cadherin-11 in FLS significantly abrogated the enhanced PlGF production under coculture conditions. These data indicate that increased levels of PlGF in RA joints could induce the migration of MSC to the synovium, and interaction of migrated MSC with FLS via cadherin-11 may contribute to angiogenesis and chronic synovitis by enhancing the secretion of PlGF.
Collapse
Affiliation(s)
- Su-Jung Park
- Catholic Research Institutes of Medical Sciences, Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | |
Collapse
|
21
|
Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 2013; 13:802-14. [PMID: 24319778 DOI: 10.1038/nri3545] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Semaphorins were originally identified as axon-guidance molecules that function during neuronal development. However, cumulative evidence indicates that semaphorins also participate in immune responses, both physiological and pathological, and they are now considered to be potential diagnostic and/or therapeutic targets for a range of diseases. The primary receptors for semaphorins are neuropilins and plexins, which have cell type-specific patterns of expression and are involved in multiple signalling responses. In this Review, we focus on the roles of neuropilin 1 (NRP1) and plexins in the regulation of the immune system, and we summarize recent advances in our understanding of their pathological implications.
Collapse
|
22
|
Seyedarabi A, Cheng L, Zachary I, Djordjevic S. Production of soluble human vascular endothelial growth factor VEGF-A165-heparin binding domain in Escherichia coli. PLoS One 2013; 8:e55690. [PMID: 23409021 PMCID: PMC3568127 DOI: 10.1371/journal.pone.0055690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
We report a method for production of soluble heparin binding domain (HBD) of human vascular endothelial growth factor VEGF-A165. Recombinant VEGF-A165-HBD that contains four disulphide bridges was expressed in specialised E. coli SHuffle cells and its activity has been confirmed through interactions with neuropilin and heparin. The ability to produce significant quantities of a soluble active form of VEGF-A165-HBD will enable further studies addressing the role of VEGF-A in essential processes such as angiogenesis, vasculogenesis and vascular permeability.
Collapse
Affiliation(s)
- Arefeh Seyedarabi
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Lili Cheng
- Ark Therapeutics Ltd., London, United Kingdom
- Centre for Cardiovascular Biology and Medicine, British Heart Foundation Laboratories at University College London, London, United Kingdom
| | - Ian Zachary
- Centre for Cardiovascular Biology and Medicine, British Heart Foundation Laboratories at University College London, London, United Kingdom
| | - Snezana Djordjevic
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Takagawa S, Nakamura F, Kumagai K, Nagashima Y, Goshima Y, Saito T. Decreased semaphorin3A expression correlates with disease activity and histological features of rheumatoid arthritis. BMC Musculoskelet Disord 2013; 14:40. [PMID: 23343469 PMCID: PMC3558329 DOI: 10.1186/1471-2474-14-40] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/12/2013] [Indexed: 02/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease of which the pathogenetic mechanisms are not fully understood. Semaphorin3A (Sema3A) has an immune regulatory role. Neuropilin1 (NRP1), the primary receptor for Sema3A, is also a receptor for vascular endothelial growth factor 165 (VEGF165). It has been shown that Sema3A competitively antagonizes VEGF165 signaling. This study investigated whether Sema3A is expressed in synovial tissues, and is associated with disease activity and the histological features of synovial tissues from RA patients. Methods Human synovial tissues samples were obtained from RA and osteoarthritis (OA) patients. Disease activity of RA patients was calculated using the 28-joint Disease Activity Score based on C-reactive protein (DAS28-CRP). The histological features of RA synovial tissues were evaluated using Rooney’s inflammation scoring system. The localization of Sema3A, VEGF165 and NRP1 positive cells was immunohistochemically determined in synovial tissues. Expression levels of Sema3A, VEGF-A and NRP1 mRNA were determined using quantitative real-time polymerase chain reaction (qPCR). Results In OA specimens, Sema3A, VEGF165 and NRP1 proteins were expressed in the synovial lining and inflammatory cells beneath the lining. Immunohistochemistry revealed the protein expression of Sema3A in synovial lining cells was decreased in RA tissues compared with OA samples. qPCR analysis demonstrated a significant reduction of Sema3A mRNA levels in RA synovial tissue samples than in OA and a significant correlation of the ratio of Sema3A/VEGF-A mRNA expression levels with DAS28-CRP (R = −0.449, p = 0.013). Sema3A mRNA levels also correlated with Rooney’s inflammation score, especially in perivascular infiltrates of lymphocytes (R = −0.506, p = 0.004), focal aggregates of lymphocytes (R = −0.501, p = 0.005) and diffuse infiltrates of lymphocytes (R = −0.536, p = 0.002). Conclusions Reduction of Sema3A expression in RA synovial tissues may contribute to pathogenesis of RA.
Collapse
Affiliation(s)
- Shu Takagawa
- Department of Orthopaedic Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Emerging avenues linking inflammation, angiogenesis and Sjögren's syndrome. Cytokine 2013; 61:693-703. [PMID: 23340181 DOI: 10.1016/j.cyto.2012.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 12/28/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by an inflammatory mononuclear infiltration and the destruction of epithelial cells of the lachrymal and salivary glands. The aetiology is unknown. The expression "autoimmune epithelitis" has been proposed as an alternative to SS, in view of the emerging central role of the epithelial cells in the disease pathogenesis. At the biomolecular level, the epithelial cells play an important role in triggering the autoimmune condition via antigen presentation, apoptosis, and chemokine and cytokines release. Inflammation and angiogenesis are frequently coupled in the pathological conditions associated to autoimmune diseases, and an angiogenic imbalance contributes to the pathogenesis of a number of inflammatory disorders. This work reviews the current knowledge of the molecular and cellular mechanisms underlying the pathogenesis of the inflammatory reactions that characterize SS. The literature and our data on the role of angiogenesis in the pathophysiology of the disease are discussed.
Collapse
|
25
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
26
|
Raatz Y, Ibrahim S, Feldmann M, Paleolog EM. Gene expression profiling and functional analysis of angiogenic markers in murine collagen-induced arthritis. Arthritis Res Ther 2012; 14:R169. [PMID: 22817681 PMCID: PMC3580563 DOI: 10.1186/ar3922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/20/2012] [Indexed: 01/13/2023] Open
Abstract
Introduction Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA. Methods CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1. Results Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice. Conclusions Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.
Collapse
|
27
|
Abstract
During osteoarthritis (OA), angiogenesis is increased in the synovium, osteophytes and menisci and leads to ossification in osteophytes and the deep layers of articular cartilage. Angiogenic and antiangiogenic factors might both be upregulated in the osteoarthritic joint; however, vascular growth predominates, and the articular cartilage loses its resistance to vascularization. In addition, blood vessel growth is increased at--and disrupts--the osteochondral junction. Angiogenesis in this location is dependent on the creation of channels from subchondral bone spaces into noncalcified articular cartilage. Inflammation drives synovial angiogenesis through macrophage activation. Blood vessel and nerve growth are linked by common pathways that involve the release of proangiogenic factors, such as vascular endothelial growth factor, β-nerve growth factor and neuropeptides. Proangiogenic factors might also stimulate nerve growth, and molecules produced by vascular cells could both stimulate and guide nerve growth. As sensory nerves grow along new blood vessels in osteoarthritic joints, they eventually penetrate noncalcified articular cartilage, osteophytes and the inner regions of menisci. Angiogenesis could, therefore, contribute to structural damage and pain in OA and provide potential targets for new treatments.
Collapse
|
28
|
Neuropilin-1 is upregulated in Sjögren's syndrome and contributes to pathological neovascularization. Histochem Cell Biol 2012; 137:669-77. [PMID: 22237885 DOI: 10.1007/s00418-012-0910-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2011] [Indexed: 12/21/2022]
Abstract
Neuropilin-1 (NRP1) is a transmembrane co-receptor for members of the vascular endothelial growth factor family. Recent studies revealed an important role of NRP1 in angiogenesis and progression of many diseases. The role of NRP1 in the development of Sjögren's syndrome (SS), one of the most common rheumatic diseases, has not yet been investigated. Molecular studies and protein expression techniques were performed to elucidate the gene and protein expression profile of NRP1 in human salivary gland epithelial cells (SGEC) from primary SS. We used human microarrays and transient transfection with a mutant form of the negative inhibitory κBα proteins (IκBαDN) to investigate whether selective inhibition of nuclear Factor-κB (NF-κB) improves NRP1-mediated pro-angiogenic factors release from SS SGEC. The selective NRP1 function inhibition with an antibody to human NRP1, was employed to evaluate the therapeutic potential of targeting NRP1. We demonstrate that NRP1 is expressed in SGEC of both human healthy biopsies and in SS samples, and increased NRP1 expression in SS SGEC is significantly associated with pro-angiogenic factors release. Neutralizing anti-NRP1 antibody decreased pro-angiogenic factor production from SS SGEC and blocking NF-κB activation could be a way to inhibit NRP1-mediated angiogenesis in Sjögren's syndrome.
Collapse
|
29
|
Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans 2011; 39:1565-70. [DOI: 10.1042/bst20110654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Class 3 semaphorins (Sema3) are a family of secreted proteins that were originally identified as axon guidance factors mediating their signal transduction by forming complexes with neuropilins and plexins. However, the wide expression pattern of Sema3 suggested additional functions other than those associated with the nervous system, and indeed many studies have now indicated that Sema3 proteins and their receptors play a role in angiogenesis. The present review specifically focuses on recent evidence for this role in both physiological and pathological angiogenesis.
Collapse
|
30
|
Kong JS, Yoo SA, Kang JH, Ko W, Jeon S, Chae CB, Cho CS, Kim WU. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG™. Angiogenesis 2011; 14:431-42. [DOI: 10.1007/s10456-011-9226-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/30/2011] [Indexed: 12/27/2022]
|
31
|
Yoon HJ, You S, Yoo SA, Kim NH, Kwon HM, Yoon CH, Cho CS, Hwang D, Kim WU. NF-AT5 is a critical regulator of inflammatory arthritis. ARTHRITIS AND RHEUMATISM 2011; 63:1843-52. [PMID: 21717420 PMCID: PMC3084342 DOI: 10.1002/art.30229] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the role of NF-AT5, an osmoprotective transcription factor, in synovial hyperplasia and angiogenesis in patients with rheumatoid arthritis (RA). METHODS The expression of NF-AT5 in synovial tissue and synoviocytes from RA patients was examined by immunohistochemistry and Western blot analysis, respectively. Messenger RNA (mRNA) in RA synoviocytes and human umbilical vein endothelial cells (HUVECs) transfected with dummy small interfering RNA (siRNA) or NF-AT5 siRNA were profiled using microarray technology. Assays to determine synoviocyte apoptosis and proliferation were performed in the presence of NF-AT5 siRNA. VEGF₁₆₅-induced angiogenesis was assessed by measuring the proliferation, tube formation, and wound migration of HUVECs. Experimental arthritis was induced in mice by injection of anti-type II collagen antibody. RESULTS NF-AT5 was highly expressed in rheumatoid synovium, and its activity was increased by proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. The mRNA profiling of synoviocytes and HUVECs transfected with NF-AT5-targeted siRNA revealed 3 major changes in cellular processes associated with the pathogenesis of RA: cell cycle and survival, angiogenesis, and cell migration. Consistent with these results, NF-AT5 knockdown in RA synoviocytes and HUVECs inhibited their proliferation/survival and impeded angiogenic processes in HUVECs. Mice with NF-AT5 haploinsufficiency (NF-AT5(+/-)) developed a very limited degree of synovial proliferation, as seen on histologic analysis, and decreased angiogenesis, and they exhibited a nearly complete suppression of experimentally induced arthritis. CONCLUSION NF-AT5 regulates synovial proliferation and angiogenesis in chronic arthritis.
Collapse
MESH Headings
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Blotting, Western
- Cell Proliferation
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- Interleukin-1beta/metabolism
- Interleukin-1beta/pharmacology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering
- Statistics, Nonparametric
- Synovial Membrane/drug effects
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Hyung-Ju Yoon
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
| | - Sungyong You
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Seung-Ah Yoo
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
| | - Nam-Hoon Kim
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
| | - H Moo Kwon
- Department of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Chong-Hyeon Yoon
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Chul-Soo Cho
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
- Department of Chemical Engineering, POSTECH, Pohang, Korea
| | - Wan-Uk Kim
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
- Department of Internal Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
32
|
Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011; 32:88-111. [PMID: 21565214 DOI: 10.1016/j.mam.2011.04.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Vascular endothelial growth factors (VEGFs) are critical regulators of vascular and lymphatic function during development, in health and in disease. There are five mammalian VEGF ligands and three VEGF receptor tyrosine kinases. In addition, several VEGF co-receptors that lack intrinsic catalytic activity, but that indirectly modulate the responsiveness to VEGF contribute to the final biological effect. This review describes the molecular features of VEGFs, VEGFRs and co-receptors with focus on their role in the treatment of cancer.
Collapse
Affiliation(s)
- Sònia Tugues
- Uppsala University, Dept. of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
33
|
Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ, Conway EM. CD248 and its cytoplasmic domain: a therapeutic target for arthritis. ACTA ACUST UNITED AC 2011; 62:3595-606. [PMID: 20722022 DOI: 10.1002/art.27701] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE CD248 is a transmembrane glycoprotein expressed on the surface of activated perivascular and fibroblast-like cells. This study was undertaken to explore the function of CD248 and its cytoplasmic domain in arthritis. METHODS Synovial tissue biopsy samples from healthy controls, from patients with psoriatic arthritis (PsA), and from patients with rheumatoid arthritis (RA) were stained for CD248. Transgenic mice that were CD248-deficient (CD248-knockout [CD248(KO/KO) ]) or mice with CD248 lacking the cytoplasmic domain (CD248(CyD/CyD) ) were generated. Collagen antibody-induced arthritis (CAIA) was induced in these mice and in corresponding wild-type (WT) mice as controls. Clinical signs and histologic features of arthritis were evaluated. Cytokine levels were determined by enzyme-linked immunosorbent assay, and the number of infiltrating inflammatory cells was quantified by immunohistochemistry. In vitro studies were performed with fibroblasts from CD248-transgenic mouse embryos to explain the observed effects on inflammation. RESULTS Immunostaining of synovium from patients with PsA and patients with RA and that from mice after the induction of CAIA revealed strong CD248 expression in perivascular and fibroblast-like stromal cells. CD248(KO/KO) and CD248(CyD/CyD) mice had less severe arthritis, with lower plasma levels of proinflammatory cytokines, as compared with WT controls. Moreover, the joints of these mice had less synovial hyperplasia, reduced accumulation of inflammatory cells, and less articular cartilage and bone damage. Tumor necrosis factor α-induced monocyte adhesion to CD248(CyD/CyD) fibroblasts was impaired. CD248(CyD/CyD) fibroblasts exhibited reduced expression of hypoxia-inducible factor 1α, placental growth factor, vascular endothelial growth factor, and matrix metalloproteinase 9 activity in response to transforming growth factor β. CONCLUSION CD248 contributes to synovial hyperplasia and leukocyte accumulation in inflammatory arthritis, the effects of which are mediated partly via its cytoplasmic domain. CD248 is therefore a potential new target in the treatment of arthritis.
Collapse
Affiliation(s)
- Margarida Maia
- Katholieke Universiteit-Leuven, Flanders Interuniversity Institute for Biotechnology (VIB)-Leuven, VIB-Ghent, and Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vadasz Z, Attias D, Kessel A, Toubi E. Neuropilins and semaphorins - from angiogenesis to autoimmunity. Autoimmun Rev 2010; 9:825-9. [PMID: 20678594 DOI: 10.1016/j.autrev.2010.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/23/2010] [Indexed: 01/13/2023]
Abstract
Angiogenesis, the growth of new blood vessels from preexisting ones, is an important process in health and disease. The persistence of neovascularization in inflammatory diseases, such as rheumatoid arthritis (RA), might facilitate the entrance of inflammatory cells into the synovium and stimulate pannus formation. Several potent pro-angiogenic cytokines have been implicated in inflammatory angiogenesis. Of these, vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been demonstrated to play a central role in RA, systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Increased serum levels of VEGF were found to correlate with disease activity and severity of these diseases whereas, remission was associated with decreased levels. In the last few years, other molecules, initially found in neurodevelopment, were found to be involved in angiogenesis and recently also in the immune system and autoimmunity. Neuropilins (NPs) are VEGF receptors, while some of the semaphorins (SEMAs) are neuropilins' ligands. Their involvement in the development of autoimmune diseases and the various mechanisms by which they may induce autoimmunity will be discussed in this review.
Collapse
Affiliation(s)
- Z Vadasz
- Bnai-Zion Medical Center, Technion Institute, Haifa, Israel
| | | | | | | |
Collapse
|