1
|
Sawan S, Kumari A, Majie A, Ghosh A, Karmakar V, Kumari N, Ghosh S, Gorain B. siRNA-based nanotherapeutic approaches for targeted delivery in rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 168:214120. [PMID: 39577366 DOI: 10.1016/j.bioadv.2024.214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Rheumatoid arthritis (RA), characterized as a systemic autoimmune ailment, predominantly results in substantial joint and tissue damage, affecting millions of individuals globally. Modern treatment modalities are being explored as the traditional RA therapy with non-specific immunosuppressive drugs showcased potential side effects and variable responses. Research potential with small interfering RNA (siRNA) depicted potential in the treatment of RA. These siRNA-based therapies could include genes encoding pro-inflammatory cytokines like TNF-α, IL-1, and IL-6, as well as other molecular targets such as RANK, p38 MAPK, TGF-β, Wnt/Fz complex, and HIF. By downregulating the expression of these genes, siRNA-based nanoformulations can attenuate inflammation, inhibit immune system dysregulation, and prevent tissue damage associated with RA. Strategies of delivering siRNA molecules through nanocarriers could be targeted to treat RA effectively, where specific genes associated with this autoimmune disease pathology can be selectively silenced. Additionally, simultaneous targeting of multiple molecular pathways may offer synergistic therapeutic benefits, potentially leading to more effective and safer therapeutic strategies for RA patients. This review critically highlights the in-depth pathology of RA, RNA interference-mediated molecular targets, and nanocarrier-based siRNA delivery strategies, along with the challenges and opportunities to harbor future solutions.
Collapse
Affiliation(s)
- Sweta Sawan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankita Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santanu Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
| |
Collapse
|
2
|
Zack SR, Alzoubi O, Satoeya N, Singh KP, Deen S, Nijim W, Lewis MJ, Pitzalis C, Sweiss N, Ivashkiv LB, Shahrara S. Another Notch in the Belt of Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1475-1487. [PMID: 38961731 PMCID: PMC11421962 DOI: 10.1002/art.42937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Notch ligands and receptors, including JAG1/2, DLL1/4, and Notch1/3, are enriched on macrophages (MΦs), fibroblast-like synoviocytes (FLS), and/or endothelial cells in rheumatoid arthritis (RA) compared with normal synovial tissues (ST). Power Doppler ultrasound-guided ST studies reveal that the Notch family is highly involved in early active RA, especially during neovascularization. In contrast, the Notch family is not implicated during the erosive stage, evidenced by their lack of correlation with radiographic damage in RA ST. Toll-like receptors and tumor necrosis factor (TNF) are the common inducers of Notch expression in RA MΦs, FLS, and endothelial cells. Among Notch ligands, JAG1 and/or DLL4 are most inducible by inflammatory responses in RA MΦs or endothelial cells and transactivate their receptors on RA FLS. TNF plays a central role on Notch ligands, as anti-TNF good responders display JAG1/2 and DLL1/4 transcriptional downregulation in RA ST myeloid cells. In in vitro studies, TNF increases Notch3 expression in MΦs, which is further amplified by RA FLS addition. Specific disease-modifying antirheumatic drugs reduced JAG1 and Notch3 expression in MΦ and RA FLS cocultures. Organoids containing FLS and endothelial cells have increased expression of JAG1 and Notch3. Nonetheless, Methotrexate, interleukin-6 receptor (IL-6R) antibodies, and B cell blockers are mostly ineffective at decreasing Notch family expression. NF-κB, MAPK, and AKT pathways are involved in Notch signaling, whereas JAK/STATs are not. Although Notch blockade has been effective in RA preclinical studies, its small molecule inhibitors have failed in phase I and II studies, suggesting that alternative strategies may be required to intercept their function.
Collapse
Affiliation(s)
- Stephanie R. Zack
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Osama Alzoubi
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Neha Satoeya
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Kunwar P. Singh
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Sania Deen
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Wes Nijim
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Myles J. Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, United Kingdom
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London; London, United Kingdom
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust, London, United Kingdom
- Department of Biomedical Sciences, Humanitas University, and Humanitas Research Hospital, Milan, Italy
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York 10021, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago; IL, USA
| |
Collapse
|
3
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
4
|
Chen J, Tan J, Li J, Cheng W, Ke L, Wang A, Wang Q, Lin S, Li G, Wang B, Chen J, Zhang P. Genetically Engineered Biomimetic Nanoparticles for Targeted Delivery of mRNA to Treat Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300678. [PMID: 37526322 DOI: 10.1002/smtd.202300678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In addition to inhibiting persistent inflammation, phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is known as an important therapeutic target for alleviating rheumatoid arthritis (RA) symptoms. Modulation of PTEN gene expression in synovial tissue using messenger RNA (mRNA) is a promising approach to combat RA. However, mRNA therapeutics are often hampered by unsatisfactory stability and inefficient localization in synovial tissue. In this study, a genetically engineered biomimetic membrane-coated mRNA (MR@P-mPTEN) carrier that effectively delivers mRNA-PTEN (mPTEN) directly to the RA joint is presented. By overexpressing tumor necrosis factor (TNF-α) receptors on macrophage biomimetic membranes via plasmid transfection, decoys that reduce inflammatory pathway activation are prepared for TNF-α. The resulting construct, MR@P-mPTEN, shows good stability and RA targeting based on in vivo fluorescence imaging. It is also found that MR@P-mPTEN competitively binds TNF-α and activates the PTEN pathway in vitro and in vivo, thereby inhibiting synovitis and joint damage. Clinical micro-computed tomography and histological analyses confirm the treatment effects. These results suggest that the genetically engineered biomimetic therapeutic platform MR@P-mPTEN both inhibits pro-inflammatory cytokines and upregulates PTEN protein expression to alleviate RA damage, providing a new a new combination strategy for RA treatment.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Qiqing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, 999077, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
5
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhao H, Tang C, Wang M, Zhao H, Zhu Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol 2023; 14:1260839. [PMID: 37928554 PMCID: PMC10620966 DOI: 10.3389/fimmu.2023.1260839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. Due to the rise in the incidence rate of RA and the limitations of existing therapies, the search for new treatment strategies for RA has become a global focus. Ferroptosis is a novel programmed cell death characterized by iron-dependent lipid peroxidation, with distinct differences from apoptosis, autophagy, and necrosis. Under the conditions of iron accumulation and the glutathione peroxidase 4 (GPX4) activity loss, the lethal accumulation of lipid peroxide is the direct cause of ferroptosis. Ferroptosis mediates inflammation, oxidative stress, and lipid oxidative damage processes, and also participates in the occurrence and pathological progression of inflammatory joint diseases including RA. This review provides insight into the role and mechanism of ferroptosis in RA and discusses the potential and challenges of ferroptosis as a new therapeutic strategy for RA, with an effort to provide new targets for RA prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Tang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Wang
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hongfang Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Yuwen Y, Wang X, Liu J, Liu Z, Zhu H. Delta- like ligand 4- expressing macrophages and human diseases: Insights into pathophysiology and therapeutic opportunities. Heliyon 2023; 9:e20777. [PMID: 37842562 PMCID: PMC10569996 DOI: 10.1016/j.heliyon.2023.e20777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages are key players in the immune response and have been implicated in various human diseases, including atherosclerosis, cancer, and chronic inflammatory disorders. While numerous studies have delved into the nuances of macrophage behavior in these conditions, there remains a gap in understanding the specific role of Delta-like ligand 4 (Dll4)-expressing macrophages and their overarching implications across these diseases. Among the plethora of factors expressed by macrophages, Dll4 has emerged as a molecule of particular interest. Recent studies have highlighted its unique role in modulating macrophage functions and its potential implications in various diseases. This review seeks to consolidate existing knowledge, address this gap, and present a comprehensive overview of Dll4-expressing macrophages in the context of these disorders and highlight their potential as therapeutic targets. We examined the involvement of Dll4-expressing macrophages in multiple human diseases such as atherosclerosis, cancer and chronic inflammatory diseases, emphasizing their influence on disease progression. We also discussed the challenges, limitations, and emerging research areas in targeting Dll4-expressing macrophages and provide an outlook on potential therapeutic strategies for the treatment of these diseases. By addressing the previously existing research gap, we've provided a roadmap that brings together fragmented insights, paving the way for more holistic research and potentially more effective therapeutic strategies centered on Dll4-expressing macrophages.
Collapse
Affiliation(s)
- Ya Yuwen
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Medical School, Xizang Minzu University, Xianyang, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Integrative Chinese and Western Medicine Key Laboratory of Atherosclerosis, Research Office of Shaanxi Administration of Traditional Chinese Medicine, Xi'an, China
| | - Haitao Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an, China
| |
Collapse
|
8
|
Chen J, Chen J, Tan J, Li J, Cheng W, Ke L, Wang Q, Wang A, Lin S, Li G, Zhang P, Wang B. HIF-1α dependent RhoA as a novel therapeutic target to regulate rheumatoid arthritis fibroblast-like synoviocytes migration in vitro and in vivo. J Orthop Translat 2023; 40:49-57. [PMID: 37346290 PMCID: PMC10279694 DOI: 10.1016/j.jot.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE The purpose of this work is to investigate how the Rho family of GTPases A (RhoA) mediates the pathogenesis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS). METHODS The expression of RhoA in the synovial tissues of RA and Healthy people (Control) was detected using immunohistochemistry methods. The expression of RhoA and hypoxia-inducible factor-1α (HIF-1α) is inhibited by small interfering RNAs (siRNAs). The inhibition effect on RA-FLS migration was further investigated. The protein expression level of HIF-1α, RhoA, focal adhesion kinase (FAK), and myosin light chain (MLC) was also analysed using western blotting (WB). DBA1 mice were immunised with the mixture of bovine type II collagen and Freund's adjuvant to establish collagen induced arthritis (CIA) mouse model. Lip-siRhoA is administered through joint injection every two days. Micro-computed tomography (micro-CT) was used to detect mouse ankle joint destruction and evaluate the bone loss of the periarticular side. Destruction of the ankle articular cartilage was tested by histology. Expressions of P-RhoA, P-FAK and P-MLC in the ankle joint was detected by immunohistochemistry assay. RESULTS The expression level of RhoA in the synovial tissues of RA patients was significantly higher than that in control group. Hypoxia was able to up-regulate the expression of RhoA. Whereas, HIF-1α siRNA (siHIF-1α) could down-regulate the expression of RhoA. Additionally, both of siHIF-1α and RhoA siRNA (siRhoA) delivered by liposome (Lip-siHIF-1α and Lip-siRhoA) were found to suppress FAK and MLC phosphorylation in vitro. In CIA mouse model, Lip-siRhoA was demonstrated to ameliorate the destruction of ankle joint and reduce the severity of ankle joint cartilage damage by micro-CT and histological staining, respectively. Therefore, inhibition of FLS cell migration can protect articular bone from destruction. Furthermore, the expression of P-RhoA, P-FAK and P-MLC was evaluated and found to be down-regulated by Lip-siRhoA in vivo. CONCLUSION The results demonstrated that under hypoxic environment, HIF-1α dependent RhoA pathway played an important role on cytoskeleton remodelling and RA-FLS migration. Through down-regulating RhoA expression, it could effectively treat RA in vitro and in vivo. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our study provides new evidence for the potential clinical application of RhoA as a candidate for the treatment of RA.
Collapse
Affiliation(s)
- Jianhai Chen
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianwei Tan
- Research Center for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qijing Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Anqiao Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Benguo Wang
- Rehabilitation Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
9
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
11
|
Badour MI, Stone RM, Parikh KS, Lester NJ, Meloche OL, Wulterkens RN, Bain AR. Circulating Notch1 in response to altered vascular wall shear stress in adults. Exp Physiol 2022; 107:1426-1431. [PMID: 36116111 DOI: 10.1113/ep090749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is the plasma concentration of Notch1 extracellular domain altered in response to decreased and increased vascular wall shear stress in the forearm in humans? What is the main finding and its importance? Notch1 extracellular domain is increased with acute increases in antegrade shear rate but does not change with 20 min of decreased shear rate caused by distal forearm occlusion. A novel and integral endothelial mechanosensor in humans that can help explain vascular endothelial adjustments in response to increases in antegrade shear stress was characterized. ABSTRACT Notch1 has been proposed as a novel endothelial mechanosensor that is central for signalling adjustments in response to changes in vascular wall shear stress. However, there remains no controlled in vivo study in humans. Accordingly, we sought to address the question of whether plasma concentrations of Notch1 extracellular domain (ECD) is altered in response to transient changes in vascular wall shear stress. In 10 young healthy adults (6M/4F), alterations in shear stress were induced by supra-systolic cuff inflation around the wrist. The opposite arm was treated as a time control with no wrist cuff inflation. Plasma was collected from an antecubital vein of both arms at baseline, 20 min of wrist cuff inflation (low shear), as well as 1-2 min (high shear) and 15 min following (recovery) wrist cuff release. The Notch1 ECD was quantified using a commercially available ELISA. Duplex ultrasound was used to confirm alterations in shear stress. In the experimental arm, concentrations of Notch1 ECD remained statistically similar to baseline at all time points except for immediately following cuff release where it was elevated by ∼50% (P = 0.033), coinciding with the condition of high antegrade shear rate. Concentrations of Notch1 ECD remained unchanged in the control arm through all time points. These data indicate that Notch1 is a viable biomarker for quantifying mechanotransduction in response to increased shear stress in humans, and it may underlie the vascular adaptations or mal-adaptations associated with conditions that impact antegrade shear.
Collapse
Affiliation(s)
- Matthew I Badour
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | - Rachel M Stone
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | | | | | - Olivia L Meloche
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| | | | - Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Ontario, Canada
| |
Collapse
|
12
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
13
|
Iwamoto N, Kawakami A. The monocyte-to-osteoclast transition in rheumatoid arthritis: Recent findings. Front Immunol 2022; 13:998554. [PMID: 36172385 PMCID: PMC9510592 DOI: 10.3389/fimmu.2022.998554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation leading to joint destruction and deformity. The crucial role of osteoclasts in the bone erosion in RA has been demonstrated. Deregulated osteoclastogenesis which is affected by environmental factors including the inflammatory state, as well as genetic and epigenetic factors, is one of hallmarks of RA pathogenesis. An enhanced-monocyte-to-osteoclast transition plays an important role in osteoclast upregulation in RA because under specific stimuli, circulating monocytes might migrate to a specific location in the bones and fuse with each other to become mature multinucleated osteoclasts. To understand the mechanism of bone damage in RA and to develop novel treatments targeting osteoclast upregulation, it is important to clarify our understanding of the monocyte-to-osteoclast transition in RA. Several potential targets which inhibit both inflammation and osteoclastogenesis, as well as regulators that affect the monocyte-to-osteoclast transition have been revealed by recent studies. Here, we review the factors affecting osteoclastogenesis in RA, summarize the anti-osteoclastogenic effects of current RA treatments, and identify promising therapeutic targets relating to both inflammation and osteoclastogenesis.
Collapse
|
14
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 2022; 30:737-748. [PMID: 35364736 DOI: 10.1007/s10787-022-00974-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.
Collapse
|
16
|
Hanlon MM, Canavan M, Barker BE, Fearon U. Metabolites as drivers and targets in Rheumatoid Arthritis. Clin Exp Immunol 2021; 208:167-180. [PMID: 35020864 PMCID: PMC9188347 DOI: 10.1093/cei/uxab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by neovascularization, immune cell infiltration, and synovial hyperplasia, which leads to degradation of articular cartilage and bone, and subsequent functional disability. Dysregulated angiogenesis, synovial hypoxia, and immune cell infiltration result in a ‘bioenergetic crisis’ in the inflamed joint which further exacerbates synovial invasiveness. Several studies have examined this vicious cycle between metabolism, immunity, and inflammation and the role metabolites play in these interactions. To add to this complexity, the inflamed synovium is a multicellular tissue with many cellular subsets having different metabolic requirements. Metabolites can shape the inflammatory phenotype of immune cell subsets during disease and act as central signalling hubs. In the RA joint, the increased energy demand of stromal and immune cells leads to the accumulation of metabolites such as lactate, citrate, and succinate as well as adipocytokines which can regulate downstream signalling pathways. Transcription factors such as HIF1ɑ and mTOR can act as metabolic sensors to activate synovial cells and drive pro-inflammatory effector function, thus perpetuating chronic inflammation further. These metabolic intermediates may be potential therapeutic targets and so understanding the complex interplay between metabolites and synovial cells in RA may allow for identification of novel therapeutic strategies but also may provide significant insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Brianne E Barker
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
17
|
Xu WD, Huang AF. Comment on: Notch-1 and Notch-3 Mediates Hypoxia-Induced Synovial Fibroblasts Activation in Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:2349-2350. [PMID: 34180160 DOI: 10.1002/art.41909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease with local, systemic inflammation, such as persistent synovial inflammation. Interaction of immune cells and inflammatory mediators results in amplification and perpetuation of inflammatory, remodelling process. This disease is characterized by joints swelling, redness, and arthralgia.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, 1 Xianglin Road, Luzhou, Sichuan, 646000, P.R. China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, 25 Taiping road, Luzhou, Sichuan, 646000, P.R. China
| |
Collapse
|
18
|
Chen J, Sun A, Li J, Cheng W, Zhang P. Reply: Comment on: Notch-1 and Notch-3 mediates hypoxia-induced synovial fibroblasts activation in rheumatoid arthritis. Arthritis Rheumatol 2021; 73:2350-2351. [PMID: 34180147 DOI: 10.1002/art.41904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/07/2022]
Abstract
We appreciate the comments from Dr. Wang-Dong Xu et al. It has been confirmed that hypoxia-inducible factor 1α (HIF-1α) regulates the expression of Notch-1 in Rheumatoid arthritis (RA) synovial fibroblast cell (RASFC) under hypoxia(1). Furthermore, our study shows that HIF-1α directly regulates the expression of Notch-1 and Notch-3 in the hypoxic microenvironment(2). However, for cells to adapt to the hypoxia microenvironment, HIF-1α and Notch signal transduction regulate each other.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Antonia Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Chen J, Li J, Chen J, Cheng W, Lin J, Ke L, Liu G, Bai X, Zhang P. Treatment of collagen-induced arthritis rat model by using Notch signalling inhibitor. J Orthop Translat 2021; 28:100-107. [PMID: 33816113 PMCID: PMC7995347 DOI: 10.1016/j.jot.2021.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/22/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The Notch signalling pathway has been reported to play a key role in rheumatoid arthritis (RA) development. Thus, inhibition of the activation of this signalling pathway may be a promising approach to the treatment of RA. In this study, the Notch signalling inhibitor LY411575, which can inhibit both Notch1 and Notch3, was used for the treatment of collagen-induced arthritis (CIA) rats. METHODS Wistar rats were immunised with bovine type II collagen (CII) to establish rats CIA model. The inhibitory effects of LY411575 on Notch1 intracellular domain (N1ICD) and Notch3 intracellular domain (N3ICD) protein was verified by western blot (WB) in vitro. CIA rats were treated with different doses of LY411575 for 15 and 28 days, respectively. Methotrexate and sodium carboxymethyl cellulose (CMC-Na) were used as positive and negative (vehicle) control respectively. Destruction of the rat ankle joint and the bone loss on the periarticular side were evaluated by micro-computed tomography (Micro-CT). In addition, destruction of the ankle articular cartilage and the osteoclast numbers were determined by histology. Expression of N1ICD and N3ICD in the ankle joint was detected by immunohistochemistry. RESULTS LY411575 could significantly inhibit the expression of N1ICD and N3ICD in vitro. Micro-CT test showed that the ankle joint destruction significantly improved after treatment with LY411575 (5 mg/kg and 10 mg/kg, respectively). The bone quality in the LY411575 (5 mg/kg and 10 mg/kg, respectively) groups were improved compared with the vehicle group. Histological analysis showed that LY411575 (5 mg/kg and 10 mg/kg, respectively) treatment reduced the severity of ankle joint inflammation in CIA rats (including ankle joint destruction, pannus formation, and cartilage damage) and reduced the expression of N1ICD and N3ICD in CIA rats ankle joints significantly. CONCLUSION The inhibitor of Notch signalling LY411575 is an effective treatment for CIA. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Our study provides new evidence to support the potential clinical application of Notch signalling pathway inhibitor LY411575 as a drug candidate for the treatment of RA.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinqing Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jietao Lin
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Gang Liu
- Shenzhen Hospital, University of Chinese Academy of Sciences, China
| | - Xueling Bai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Engineering Research Center for Medical Bioactive Materials, China
- Shenzhen Hospital, University of Chinese Academy of Sciences, China
| |
Collapse
|
21
|
Chen J, Cheng W, Li J, Wang Y, Chen J, Shen X, Su A, Gan D, Ke L, Liu G, Lin J, Li L, Bai X, Zhang P. Notch-1 and Notch-3 Mediate Hypoxia-Induced Activation of Synovial Fibroblasts in Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1810-1819. [PMID: 33844448 DOI: 10.1002/art.41748] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism of hypoxia-induced rheumatoid arthritis synovial fibroblast (RASF) activation via Notch-1 and Notch-3 signaling, and to evaluate its potential as a therapeutic target. METHODS Expression of Notch-1 intracellular domain (N1ICD), N3ICD, and hypoxia-inducible factor 1α (HIF-1α) was assessed by immunhistology in synovial tissue from patients with RA. RASFs were cultured under hypoxic conditions and normoxic conditions with or without small interfering RNAs (siRNAs), and N1ICD and N3ICD were overexpressed under normoxic conditions. Rats with collagen-induced arthritis (CIA) were administered LY411575 (inhibitor of N1ICD and N3ICD) for 15 days and 28 days, and its therapeutic efficacy was assessed by histologic and radiologic evaluation of the rat synovial tissue, and by analysis of inflammatory cytokine production in the serum of rats. RESULTS N1ICD, N3ICD, and HIF-1α were expressed abundantly in the synovial tissue of RA patients. HIF-1α was shown to directly regulate the expression of Notch-1 and Notch-3 genes under hypoxic conditions. Moreover, hypoxia-induced N1ICD and N3ICD expression in RASFs was blocked by HIF-1α siRNA. Notch-1 siRNA and Notch-3 siRNA inhibited hypoxia-induced RASF invasion and angiogenesis in vitro, whereas overexpression of N1ICD and N3ICD promoted these processes. In addition, Notch-1 was shown to regulate RASF migration and epithelial-mesenchymal transition under hypoxic conditions, whereas Notch-3 was shown to regulate the processes of anti-apoptosis and autophagy. Furthermore, in vivo studies in rats with CIA showed that the N1ICD and N3ICD inhibitor LY411575 had a therapeutic effect in terms of ameliorating the symptoms and severity of the disease. CONCLUSION This study identified a functional link between HIF-1α, Notch-1, and Notch-3 signaling in regulating activation of RASFs and the processes involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Jingqin Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Xin Shen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ailing Su
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Donghao Gan
- Shandong University of Traditional Chinese Medicine, Jinan City, Jinan City, Shangdong, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Shenzhen Hospital, University of Chinese Academy of Sciences, Beijing, China
| | - Jietao Lin
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Liang Li
- Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xueling Bai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Zhang X, Eliasberg CD, Rodeo SA. Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci 2021; 1490:29-41. [PMID: 33843069 DOI: 10.1111/nyas.14599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Tendinopathy is a common musculoskeletal condition that affects a wide range of patients, including athletes, laborers, and older patients. Tendinopathy is often characterized by pain, swelling, and impaired performance and function. The etiology of tendinopathy is multifactorial, including both intrinsic and extrinsic mechanisms. Various treatment strategies have been described, but outcomes are often variable, as tendons have poor intrinsic healing potential compared with other tissues. Therefore, several novel targets for tendon regeneration have been identified and are being explored. Mitochondria are organelles that generate adenosine triphosphate, and they are considered to be the power generators of the cell. Recently, mitochondrial dysfunction verified by increased reactive oxygen species (ROS), decreased superoxide dismutase activity, cristae disorganization, and decreased number of mitochondria has been identified as a mechanism that may contribute to tendinopathy. This has provided new insights for studying tendinopathy pathogenesis and potential treatments via antioxidant, metabolic modulation, or ROS inhibition. In this review, we present the current understanding of mitochondrial dysfunction in tendinopathy. The review summarizes the potential mechanism by which mitochondrial dysfunction contributes to the development of tendinopathy, as well as the potential therapeutic benefits of mitochondrial protectants in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Sports Medicine & Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Claire D Eliasberg
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|
23
|
Cheng X, Yu Z, Xu J, Quan D, Long H. Pathophysiological Changes and the Role of Notch-1 Activation After Decompression in a Compressive Spinal Cord Injury Rat Model. Front Neurosci 2021; 15:579431. [PMID: 33584186 PMCID: PMC7876297 DOI: 10.3389/fnins.2021.579431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Surgical decompression is the primary treatment for cervical spondylotic myelopathy (CSM) patients with compressive spinal cord injury (CSCI). However, the prognosis of patients with CSCI varies, and the pathophysiological changes following decompression remain poor. This study aimed to investigate the pathophysiological changes and the role of Notch-1 activation after decompression in a rat CSCI model. Surgical decompression was conducted at 1 week post-injury (wpi). DAPT was intraperitoneally injected to down-regulate Notch-1 expression. Basso, Beattie, and Bresnahan scores and an inclined plane test were used to evaluate the motor function recovery. Hematoxylin and eosin staining was performed to assess pathophysiological changes, while hypoxia-inducible factor 1 alpha, vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), matrix metalloproteinase (MMP)-9, MMP-2, Notch-1, and Hes-1 expression in the spinal cord were examined by immunohistochemical analysis or quantitative PCR. The results show that early decompression can partially promote motor function recovery. Improvements in structural and cellular damage and hypoxic levels were also observed in the decompressed spinal cord. Moreover, decompression resulted in increased VEGF and vWF expression, but decreased MMP-9 and MMP-2 expression at 3 wpi. Expression levels of Notch-1 and its downstream gene Hes-1 were increased after decompression, and the inhibition of Notch-1 significantly reduced the decompression-induced motor function recovery. This exploratory study revealed preliminary pathophysiological changes in the compressed and decompressed rat spinal cord. Furthermore, we confirmed that early surgical decompression partially promotes motor function recovery may via activation of the Notch-1 signaling pathway after CSCI. These results could provide new insights for the development of drug therapy to enhance recovery following surgery.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Yu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Canavan M, Floudas A, Veale DJ, Fearon U. The PD-1:PD-L1 axis in Inflammatory Arthritis. BMC Rheumatol 2021; 5:1. [PMID: 33423684 PMCID: PMC7798255 DOI: 10.1186/s41927-020-00171-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
The activation of antigen specific T cells during an immune response is a tightly regulated process at the level of both costimulatory and coinhibitory receptors. One such coinhibitory receptor or checkpoint inhibitor which has received much attention in the field of oncology is the programmed cell death protein 1 (PD-1). Blockade of PD-1 or its ligand PD-L1 has proven successful in the treatment of a wide variety of cancers, therefore highlighting an important role for this pathway in anti-tumour immune responses. However, a caveat of PD-1 therapy and boosting anti-tumour immune responses is the development of self-reactive T cells which can lead to the induction of various autoimmune or inflammatory diseases, referred to as immune- related adverse events (irAEs). The emergence of rheumatological irAEs such as Inflammatory Arthritis (IA) in recent years has highlighted the importance of PD-1 in maintaining self-tolerance. Furthermore, the emergence of rheumatology related irAEs raises an important question as to how defects in this pathway can contribute to spontaneous rheumatological disease. In this review, we describe the biological distribution, function and regulation of the PD-1 pathway, its potential role in IA and irAE related IA.
Collapse
Affiliation(s)
- Mary Canavan
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
- EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland.
| | - Achilleas Floudas
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Xie J, Wen J, Chen C, Luo M, Hu B, Wu D, Ye J, Lin Y, Ning L, Ning Y, Li Y. Notch 1 Is Involved in CD4 + T Cell Differentiation Into Th1 Subtype During Helicobacter pylori Infection. Front Cell Infect Microbiol 2020; 10:575271. [PMID: 33224898 PMCID: PMC7667190 DOI: 10.3389/fcimb.2020.575271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection induces CD4+ T differentiation cells into IFN-γ-producing Th1 cells. However, the details of mechanism underlying this process remain unclear. Notch signal pathway has been reported to regulate the differentiation of CD4+ T cells into Th1 subtype in many Th1-mediated inflammatory disorders but not yet in H. pylori infection. In the present study, the mRNA expression pattern of CD4+ T cells in H. pylori-infected patients differed from that of healthy control using Human Signal Transduction Pathway Finder RT2 Profiler PCR Array, and this alteration was associated with Notch signal pathway, as analyzed by Bioinformation. Quantitative real-time PCR showed that the mRNA expression of Notch1 and its target gene Hes-1 in CD4+ T cells of H. pylori-infected individuals increased compared with the healthy controls. In addition, the mRNA expression of Th1 master transcription factor T-bet and Th1 signature cytokine IFN-γ was both upregulated in H. pylori-infected individuals and positively correlated with Notch1 expression. The increased protein level of Notch1 and IFN-γ were also observed in H. pylori-infected individuals confirmed by flow cytometry and ELISA. In vitro, inhibition of Notch signaling decreased the mRNA expression of Notch1, Hes-1, T-bet, and IFN-γ, and reduced the protein levels of Notch1 and IFN-γ and the secretion of IFN-γ in CD4+ T cells stimulated by H. pylori. Collectively, this is the first evidence that Notch1 is upregulated and involved in the differentiation of Th1 cells during H. pylori infection, which will facilitate exploiting Notch1 as a therapeutic target for the control of H. pylori infection.
Collapse
Affiliation(s)
- Jinling Xie
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Affiliated Xinhui People's Hospital, Southern Medical University, Jiangmen, China
| | - Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bingxin Hu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Danlin Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianbin Ye
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanqing Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Sui X, Liu H, Zhou Y. Expression of miR-495 and miR-326 in peripheral blood of rheumatoid arthritis patients and its significance. Exp Ther Med 2020; 20:3766-3774. [PMID: 32904998 PMCID: PMC7464994 DOI: 10.3892/etm.2020.9124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-495 and miR-326 in the peripheral blood of patients with rheumatoid arthritis (RA). A total of 107 RA patients, admitted to the Yidu Central Hospital of Weifang (Weifang, China) from February 2016 to February 2019, and 112 healthy subjects, who underwent physical examination during the same period, were selected as the research subjects for prospective analysis. The RA patients served as the study group and the healthy subjects as the control group. The expression levels of miR-495 and miR-326 in the peripheral blood of the two groups of subjects were compared. The association between miR-495 and miR-326 with RA clinical pathology and the diagnostic value of miR-495 and miR-326 for RA were analyzed. In the study group, miR-495 expression was significantly higher than that in the control group, and miR-326 expression was significantly lower than that in the control group (P<0.001). miR-495 and miR-326 combined diagnosis showed good predictive value for the occurrence of RA (P<0.001) and was closely related to RA clinical pathology (P<0.001). After treatment, miR-495 expression was significantly decreased in the study group, whereas miR-326 expression was significantly increased (P<0.001). Pearson's correlation coefficient analysis showed that rheumatoid factor (RF) was positively correlated with miR-495 expression and negatively correlated with miR-326 expression (P<0.001). In conclusion, miR-495 was highly expressed in patients with RA, whereas miR-326 was poorly expressed in RA patients, and the combined detection of miR-495 and miR-326 has good diagnostic value for RA.
Collapse
Affiliation(s)
- Xiaojuan Sui
- Department of Orthopaedics, Yidu Central Hospital of Weifang, Weifang, Shandong 261000, P.R. China
| | - Huiping Liu
- Department of Orthopaedics, Yidu Central Hospital of Weifang, Weifang, Shandong 261000, P.R. China
| | - Yanli Zhou
- Department of Neurology, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
27
|
Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res 2020; 69:1087-1101. [DOI: 10.1007/s00011-020-01391-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
|
28
|
Cheng X, Xu J, Yu Z, Xu J, Long H. LncRNA Xist Contributes to Endogenous Neurological Repair After Chronic Compressive Spinal Cord Injury by Promoting Angiogenesis Through the miR-32-5p/Notch-1 Axis. Front Cell Dev Biol 2020; 8:744. [PMID: 32850853 PMCID: PMC7423840 DOI: 10.3389/fcell.2020.00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Endogenous repair after chronic compressive spinal cord injury (CCSCI) is of great clinical interest. Ischemia-hypoxia-induced angiogenesis has been proposed to play an important role during this repair process. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are involved in the pathophysiological processes of various diseases. Here, we identified a lncRNA (Xist; X-inactive specific transcript) with upregulated expression in cervical spine lesions during endogenous neurological repair in CCSCI rats. Therapeutically, the introduction of Xist to rats increased neurological function in vivo as assayed using the Basso, Beattie, and Bresnahan (BBB) score and inclined plane test (IPT). We found that the introduction of Xist enhanced endogenous neurological repair by promoting angiogenesis and microvessel density after CCSCI, while depletion of Xist inhibited angiogenesis and cell sprouting and migration. Mechanistically, Xist promoted angiogenesis by sponging miR-32-5p and modulating Notch-1 expression both in vitro and in vivo. These findings suggest a role of the Xist/miR-32-5p/Notch-1 axis in endogenous repair and provide a potential molecular target for the treatment of ischemia-related central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Yu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Šućur A, Filipović M, Flegar D, Kelava T, Šisl D, Lukač N, Kovačić N, Grčević D. Notch receptors and ligands in inflammatory arthritis - a systematic review. Immunol Lett 2020; 223:106-114. [PMID: 32325090 DOI: 10.1016/j.imlet.2020.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Notch pathway is highly conserved across species and is involved in the regulation of cell differentiation and activity both in embryonic development and adult life. Notch signaling has an important role in the development of hematopoietic stem cells and their differentiation to committed lineages, as well as in the regulation of several non-hematopoietic cell lines. OBJECTIVE As Notch signaling has been implicated in various inflammatory and autoimmune diseases, it is of interest to elucidate what role do Notch receptors and ligands have in inflammatory arthritides. METHODS We performed a search on the role of Notch receptors (1-4) and Notch ligands Delta-like (DLL) 1, 3, 4 and Jagged (Jag) 1 and 2 in animal models of inflammatory arthritis and most common types of human inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis or ankylosing spondylitis). The initial search identified 135 unique articles, of which 24 were ultimately deemed relevant and included in this systematic review. RESULTS Overall, identified articles describe roles for Notch ligands and receptors in inflammatory arthritis, with Notch activation resulting in enhanced Th1/17 polarization, osteoclast differentiation, macrophage activation and fibroblast-like synoviocyte proliferation. However, the inhibitory role of Notch signaling, especially by Jag1 is also described. CONCLUSION There is evidence that Notch pathway activation affects multiple cell lineages present within the arthritic environment, therefore potentially acting as one of the drivers of disease pathogenesis. Since cell lineage-selective transgenic mouse models and specific Notch receptor inhibitors are becoming increasingly available, it can be expected that future research will evaluate whether Notch signaling components initiate crucial pathogenic impulses and, therefore, present viable therapeutic targets in inflammatory arthritis.
Collapse
Affiliation(s)
- Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Šalata 3, Zagreb, HR 10000, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Šalata 3, Zagreb, HR 10000, Croatia
| | - Darja Flegar
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Šalata 3, Zagreb, HR 10000, Croatia
| | - Tomislav Kelava
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Šalata 3, Zagreb, HR 10000, Croatia
| | - Dino Šisl
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Physiology and Immunology, University of Zagreb School of Medicine, Šalata 3, Zagreb, HR 10000, Croatia
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, HR 10000, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia; Department of Anatomy, University of Zagreb School of Medicine, Šalata 11, Zagreb, HR 10000, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, Zagreb, HR 10000, Croatia.
| |
Collapse
|
30
|
Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020; 9:cells9010111. [PMID: 31906482 PMCID: PMC7016800 DOI: 10.3390/cells9010111] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Notch signaling coordinates numerous cellular processes and has been implicated in many pathological conditions, including rheumatoid arthritis (RA). Although the role of Notch signaling in development, maturation, differentiation, and activation of lymphocytes has been comprehensively reported, less is known about its role in myeloid cells. Certainly, limited data are available about the role of Notch signaling in macrophages during inflammation and infection. In this review, we discuss the recent advances pertaining to the role of Notch signaling in differentiation, activation, and metabolism of macrophages during inflammation and infection. We also highlight the reciprocal interplay between Notch signaling and other signaling pathways in macrophages under different inflammatory and infectious conditions including pathogenesis of RA. Finally, we discuss approaches that could consider Notch signaling as a potential therapeutic target against infection- and inflammation-driven diseases.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
31
|
Fromm S, Cunningham CC, Dunne MR, Veale DJ, Fearon U, Wade SM. Enhanced angiogenic function in response to fibroblasts from psoriatic arthritis synovium compared to rheumatoid arthritis. Arthritis Res Ther 2019; 21:297. [PMID: 31864394 PMCID: PMC6925847 DOI: 10.1186/s13075-019-2088-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Angiogenesis is an early event in the pathogenesis of both psoriatic arthritis (PsA) and rheumatoid arthritis (RA); however, there are striking differences in blood vessel morphology and activation between the two arthropathies. The aim of this study was to assess if the PsA and RA joint microenvironments differentially regulate endothelial cell function. Methods PsA and RA primary synovial fibroblasts (SFC) were isolated from synovial biopsies, grown to confluence, and supernatants harvested and termed ‘conditioned media’ (CM). Human umbilical vein endothelial cells (HUVEC) were cultured with PsA SFC or RA SFC-CM (20%). HUVEC tube formation, migration, and PBMC adhesion were assessed by matrigel tube formation, wound repair, and PBMC adhesion assays. HUVEC cell surface expression of ICAM, VCAM, and E-Selectin was assessed by flow cytometry. Transcriptome analysis of genes promoting angiogenesis was performed by real-time PCR. Finally, a MSD multiplex angiogenic assay was performed on PsA SFC and RA SFC supernatants. Results Macroscopic synovitis and vascularity were similar in PsA and RA patients; however, significant differences in vascular morphological pattern were recorded with tortuous, elongated vessels observed in PsA compared to straight regular branching vessels observed in RA. Transcriptome analysis showed strong upregulation of the pro-angiogenic signature in HUVEC primed with PsA SFC-CM compared to RA SFC-CM and basal control. In parallel, paired PsA SFC-CM significantly induced HUVEC tube formation compared to that of RA SFC-CM. Furthermore, PsA SFC-CM induced HUVEC migration was paralleled by a significant induction in VEGFA, PFKFB3, ICAM-1, and MMP3 mRNA expression. A significant increase in PBMC adhesion and cell surface expression of VCAM-1, ICAM-1, and E-Selectin expression was also demonstrated in PsA SFC-CM-primed HUVEC compared to RA SFC-CM. Finally, VEGF, TSLP, Flt-1, and Tie-2 expression was elevated in PsA SFC-CM compared to RA SFC-CM, with no significant difference in other pro-angiogenic mediators including MIP-3, bFGF, PIGF, and MCP-1. Conclusion PsA SFC and RA SFC secreted factors differentially regulate endothelial cell function, with soluble mediators in the PsA joint microenvironment inducing a more pro-angiogenic phenotype compared to the RA.
Collapse
Affiliation(s)
- S Fromm
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - C C Cunningham
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - M R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - D J Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| | - U Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - S M Wade
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Mallm JP, Windisch P, Biran A, Gal Z, Schumacher S, Glass R, Herold-Mende C, Meshorer E, Barbus M, Rippe K. Glioblastoma initiating cells are sensitive to histone demethylase inhibition due to epigenetic deregulation. Int J Cancer 2019; 146:1281-1292. [PMID: 31456217 DOI: 10.1002/ijc.32649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022]
Abstract
Tumor-initiating cells are a subpopulation of cells that have self-renewal capacity to regenerate a tumor. Here, we identify stem cell-like chromatin features in human glioblastoma initiating cells (GICs) and link them to a loss of the repressive histone H3 lysine 9 trimethylation (H3K9me3) mark. Increasing H3K9me3 levels by histone demethylase inhibition led to cell death in GICs but not in their differentiated counterparts. The induction of apoptosis was accompanied by a loss of the activating H3 lysine 9 acetylation (H3K9ac) modification and accumulation of DNA damage and downregulation of DNA damage response genes. Upon knockdown of histone demethylases, KDM4C and KDM7A both differentiation and DNA damage were induced. Thus, the H3K9me3-H3K9ac equilibrium is crucial for GIC viability and represents a chromatin feature that can be exploited to specifically target this tumor subpopulation.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Windisch
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alva Biran
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zoltan Gal
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glass
- Neurosurgical Research, University Hospital, LMU Munich, Munich, Germany
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Martje Barbus
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Fearon U, Hanlon MM, Wade SM, Fletcher JM. Altered metabolic pathways regulate synovial inflammation in rheumatoid arthritis. Clin Exp Immunol 2018; 197:170-180. [PMID: 30357805 DOI: 10.1111/cei.13228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis is characterized by synovial proliferation, neovascularization and leucocyte extravasation leading to joint destruction and functional disability. The blood vessels in the inflamed synovium are highly dysregulated, resulting in poor delivery of oxygen; this, along with the increased metabolic demand of infiltrating immune cells and inflamed resident cells, results in the lack of key nutrients at the site of inflammation. In these adverse conditions synovial cells must adapt to generate sufficient energy to support their proliferation and activation status, and thus switch their cell metabolism from a resting regulatory state to a highly metabolically active state. This alters redox-sensitive signalling pathways and also results in the accumulation of metabolic intermediates which, in turn, can act as signalling molecules that further exacerbate the inflammatory response. The RA synovium is a multi-cellular tissue, and while many cell types interact to promote the inflammatory response, their metabolic requirements differ. Thus, understanding the complex interplay between hypoxia-induced signalling pathways, metabolic pathways and the inflammatory response will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- U Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - M M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - S M Wade
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J M Fletcher
- Translational Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Choi BY, Choi Y, Park JS, Kang LJ, Baek SH, Park JS, Bahn G, Cho Y, Kim HK, Han J, Sul JH, Baik SH, Hyun DH, Arumugam TV, Yang S, Han JW, Kang YM, Cho YW, Park JH, Jo DG. Inhibition of Notch1 induces population and suppressive activity of regulatory T cell in inflammatory arthritis. Am J Cancer Res 2018; 8:4795-4804. [PMID: 30279738 PMCID: PMC6160763 DOI: 10.7150/thno.26093] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Inhibition of Notch signalling has shown anti-inflammatory properties in vivo and in vitro models of rheumatoid arthritis (RA). The objective of this study was to determine whether Notch1 might play a role in regulating T-regulatory cells (Tregs) in animal models of RA. Methods: Collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) were induced in C57BL/6, Notch1 antisense transgenic (NAS) or DBA1/J mice. We examined whether pharmacological inhibitors of γ-secretase (an enzyme required for Notch1 activation) and antisense-mediated knockdown of Notch1 could attenuate the severity of inflammatory arthritis in CIA and CAIA mice. Proportions of CD4+CD25+Foxp3+ Treg cells were measured by flow cytometry. To assess the suppressive capacity of Treg toward responder cells, CFSE-based suppression assay of Treg was performed. Results: γ-secretase inhibitors and antisense-mediated knockdown of Notch1 reduced the severity of inflammatory arthritis in both CIA and CAIA mice. Pharmacological and genetic inhibition of Notch1 signalling induced significant elevation of Treg cell population in CIA and CAIA mice. We also demonstrated that inhibition of Notch signalling suppressed the progression of inflammatory arthritis through modulating the expansion and suppressive function of regulatory T (Treg) cells. Conclusion: Pharmacological and genetic inhibition of Notch1 signalling suppresses the progression of inflammatory arthritis through modulating the population and suppressive function of Treg cells in animal models of RA.
Collapse
|
35
|
McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med 2018; 125:15-24. [PMID: 29601945 DOI: 10.1016/j.freeradbiomed.2018.03.042] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory Arthritis is characterized by synovial proliferation, neovascularization and leukocyte extravasation leading to joint destruction and functional disability. Efficiency of oxygen supply to the synovium is poor due to the highly dysregulated synovial microvasculature. This along with the increased energy demands of activated infiltrating immune cells and inflamed resident cells leads to an hypoxic microenvironment and mitochondrial dysfunction. This favors an increase of reactive oxygen species, leading to oxidative damage which further promotes inflammation. In this adverse microenvironment synovial cells adapt to generate energy and switch their cell metabolism from a resting regulatory state to a highly metabolically active state which allows them to produce essential building blocks to support their proliferation. This metabolic shift results in the accumulation of metabolic intermediates which act as signaling molecules that further dictate the inflammatory response. Understanding the complex interplay between hypoxia-induced signaling pathways, oxidative stress and mitochondrial function will provide better insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Trudy McGarry
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland
| | - Monika Biniecka
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Douglas J Veale
- The Centre for Arthritis and Rheumatic Disease, Dublin Academic Medical Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Ursula Fearon
- The Department of Molecular Rheumatology, Trinity College Dublin, Ireland.
| |
Collapse
|
36
|
Notch signaling promotes a HIF2α-driven hypoxic response in multiple tumor cell types. Oncogene 2018; 37:6083-6095. [PMID: 29993038 PMCID: PMC6237764 DOI: 10.1038/s41388-018-0400-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 05/07/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Hyperactivation of Notch signaling and the cellular hypoxic response are frequently observed in cancers, with increasing reports of connections to tumor initiation and progression. The two signaling mechanisms are known to intersect, but while it is well established that hypoxia regulates Notch signaling, less is known about whether Notch can regulate the cellular hypoxic response. We now report that Notch signaling specifically controls expression of HIF2α, a key mediator of the cellular hypoxic response. Transcriptional upregulation of HIF2α by Notch under normoxic conditions leads to elevated HIF2α protein levels in primary breast cancer cells as well as in human breast cancer, medulloblastoma, and renal cell carcinoma cell lines. The elevated level of HIF2α protein was in certain tumor cell types accompanied by downregulation of HIF1α protein levels, indicating that high Notch signaling may drive a HIF1α-to-HIF2α switch. At the transcriptome level, the presence of HIF2α was required for approximately 21% of all Notch-induced genes: among the 1062 genes that were upregulated by Notch in medulloblastoma cells during normoxia, upregulation was abrogated in 227 genes when HIF2α expression was knocked down by HIF2α siRNA. In conclusion, our data show that Notch signaling affects the hypoxic response via regulation of HIF2α, which may be important for future cancer therapies.
Collapse
|
37
|
Del Rey MJ, Valín Á, Usategui A, García-Herrero CM, Sánchez-Aragó M, Cuezva JM, Galindo M, Bravo B, Cañete JD, Blanco FJ, Criado G, Pablos JL. Hif-1α Knockdown Reduces Glycolytic Metabolism and Induces Cell Death of Human Synovial Fibroblasts Under Normoxic Conditions. Sci Rep 2017. [PMID: 28623342 PMCID: PMC5473902 DOI: 10.1038/s41598-017-03921-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increased glycolysis and HIF-1α activity are characteristics of cells under hypoxic or inflammatory conditions. Besides, in normal O2 environments, elevated rates of glycolysis support critical cellular mechanisms such as cell survival. The purpose of this study was to analyze the contribution of HIF-1α to the energy metabolism and survival of human synovial fibroblasts (SF) under normoxic conditions. HIF-1α was silenced using lentiviral vectors or small-interfering RNA (siRNA) duplexes. Expression analysis by qRT-PCR and western blot of known HIF-1α target genes in hypoxia demonstrated the presence of functional HIF-1α in normoxic SF and confirmed the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a HIF-1α target even in normoxia. HIF-1α silencing induced apoptotic cell death in cultured SF and, similarly, treatment with glycolytic, but not with OXPHOS inhibitors, induced SF death. Finally, in vivo HIF-1α targeting by siRNA showed a significant reduction in the viability of human SF engrafted into a murine air pouch. Our results demonstrate that SF are highly dependent on glycolytic metabolism and that HIF-1α plays a regulatory role in glycolysis even under aerobic conditions. Local targeting of HIF-1α provides a feasible strategy to reduce SF hyperplasia in chronic arthritic diseases.
Collapse
Affiliation(s)
- Manuel J Del Rey
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Álvaro Valín
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alicia Usategui
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Carmen M García-Herrero
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - María Sánchez-Aragó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Universidad Autónoma de Madrid, Madrid, Spain
| | - María Galindo
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Bravo
- Servicio de Cirugía Ortopédica y Traumatología, Hospital 12 de Octubre, Madrid, Spain
| | - Juan D Cañete
- Unitat d'Artritis, Servei de Reumatologia, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pí i Sunyer, Barcelona, Spain
| | - Francisco J Blanco
- Laboratorio de Investigación Osteoarticular y del Envejecimiento, Instituto de Investigación Biomédica de A Coruña, INIBIC, A Coruña, Spain
| | - Gabriel Criado
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - José L Pablos
- Servicio de Reumatología, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. .,Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
38
|
Landor SKJ, Lendahl U. The interplay between the cellular hypoxic response and Notch signaling. Exp Cell Res 2017; 356:146-151. [PMID: 28456549 DOI: 10.1016/j.yexcr.2017.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023]
Abstract
The ability to sense and adapt to low oxygen levels (hypoxia) is central for most organisms and cell types. At the center of this process is a molecular mechanism, the cellular hypoxic response, in which the hypoxia inducible factors (HIFs) are stabilized by hypoxia, allowing the HIF proteins to act as master transcriptional regulators to adjust the cell to a low oxygen environment. In recent years, it has become increasingly appreciated that the cellular hypoxic response does not always operate in splendid isolation, but intersects with signaling mechanisms such as Notch signaling, a key regulatory signaling mechanism operating in most cell types controlling stem cell maintenance and differentiation. In this review, which is dedicated to the memory of Lorenz Poellinger,1 we discuss how the intersection between Notch and the cellular hypoxic response was discovered and our current understanding of the molecular basis for the cross-talk. We also provide examples of where Notch and hypoxia intersect in various physiological and disease contexts.
Collapse
Affiliation(s)
- Sebastian K-J Landor
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden; Department of Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
39
|
Ganesan R, Rasool M. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: Current status and future directions. Int Rev Immunol 2017; 36:20-30. [PMID: 28102734 DOI: 10.1080/08830185.2016.1269175] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic-autoimmune-mediated disease characterized by synovial hyperplasia and progressive destruction of joint. Currently available biological agents and inhibitor therapy that specifically target tumor necrosis factor-α, interleukin 1β (IL-1β), IL-6, T cells, B cells, and subcellular molecules (p38 mitogen-activated protein kinase and janus kinase) cannot facilitate complete remission in all patients and are unable to cure the disease. Therefore, further potent therapeutic targets need to be identified for effective treatment and successful clinical outcomes in patients with RA. Scientific breakthroughs have brought new insights regarding fibroblast-like synoviocytes (FLS), a major constituent of the synovial hyperplasia. These play a pivotal role in RA invading cartilage and bone tissue. Currently there are no effective therapies available that specifically target these aggressive cells. Recent evidences indicate that FLS-dependent effector molecules (toll-like receptors, nodal effector molecules, hypoxia-inducible factor, and IL-17) have emerged as important mediators of RA. In this review, we discuss the pathological features and recent advances in understanding the role of FLS-dependent effector molecules in the disease onset of RA. Pharmacological inhibition of FLS-dependent effector molecules might be a promising option for FLS-targeted therapy in RA.
Collapse
Affiliation(s)
- Ramamoorthi Ganesan
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| | - Mahaboobkhan Rasool
- a Immunopathology Lab, School of Biosciences and Technology, VIT University , Vellore , Tamilnadu , India
| |
Collapse
|
40
|
Glucose-6-Phosphate Isomerase (G6PI) Mediates Hypoxia-Induced Angiogenesis in Rheumatoid Arthritis. Sci Rep 2017; 7:40274. [PMID: 28067317 PMCID: PMC5220294 DOI: 10.1038/srep40274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
The higher level of Glucose-6-phosphate isomerase (G6PI) has been found in both synovial tissue and synovial fluid of rheumatoid arthritis (RA) patients, while the function of G6PI in RA remains unclear. Herein we found the enrichment of G6PI in microvascular endothelial cells of synovial tissue in RA patients, where a 3% O2 hypoxia environment has been identified. In order to determine the correlation between the high G6PI level and the low oxygen concentration in RA, a hypoxia condition (~3% O2) in vitro was applied to mimic the RA environment in vivo. Hypoxia promoted cellular proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), and induced cell migration and angiogenic tube formation of human dermal microvascular endothelial cells (HDMECs), which were accompanied with the increased expression of G6PI and HIF-1α. Through application of G6PI loss-of-function assays, we confirmed the requirement of G6PI expression for those hypoxia-induced phenotype in RA. In addition, we demonstrated for the first time that G6PI plays key roles in regulating VEGF secretion from RASFs to regulate the hypoxia-induced angiogenesis in RA. Taken together, we demonstrated a novel pathway regulating hypoxia-induced angiogenesis in RA mediated by G6PI.
Collapse
|
41
|
Biniecka M, Canavan M, McGarry T, Gao W, McCormick J, Cregan S, Gallagher L, Smith T, Phelan JJ, Ryan J, O'Sullivan J, Ng CT, Veale DJ, Fearon U. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis 2016; 75:2192-2200. [PMID: 27013493 PMCID: PMC5136702 DOI: 10.1136/annrheumdis-2015-208476] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/28/2016] [Accepted: 03/03/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This study examines the relationship between synovial hypoxia and cellular bioenergetics with synovial inflammation. METHODS Primary rheumatoid arthritis synovial fibroblasts (RASF) were cultured with hypoxia, dimethyloxalylglycine (DMOG) or metabolic intermediates. Mitochondrial respiration, mitochondrial DNA mutations, cell invasion, cytokines, glucose and lactate were quantified using specific functional assays. RASF metabolism was assessed by the XF24-Flux Analyzer. Mitochondrial structural morphology was assessed by transmission electron microscopy (TEM). In vivo synovial tissue oxygen (tpO2 mmHg) was measured in patients with inflammatory arthritis (n=42) at arthroscopy, and markers of glycolysis/oxidative phosphorylation (glyceraldehyde 3-phosphate dehydrogenase (GAPDH), PKM2, GLUT1, ATP) were quantified by immunohistology. A subgroup of patients underwent contiguous MRI and positron emission tomography (PET)/CT imaging. RASF and human dermal microvascular endothelial cells (HMVEC) migration/angiogenesis, transcriptional activation (HIF1α, pSTAT3, Notch1-IC) and cytokines were examined in the presence of glycolytic inhibitor 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). RESULTS DMOG significantly increased mtDNA mutations, mitochondrial membrane potential, mitochondrial mass, reactive oxygen species and glycolytic RASF activity with concomitant attenuation of mitochondrial respiration and ATP activity (all p<0.01). This was coupled with altered mitochondrial morphology. Hypoxia-induced lactate levels (p<0.01), which in turn induced basic fibroblast growth factor (bFGF) secretion and RASF invasiveness (all p<0.05). In vivo glycolytic markers were inversely associated with synovial tpO2 levels <20 mm Hg, in contrast ATP was significantly reduced (all p<0.05). Decrease in GAPDH and GLUT1 was paralleled by an increase in in vivo tpO2 in tumour necrosis factor alpha inhibitor (TNFi) responders. Novel PET/MRI hybrid imaging demonstrated close association between metabolic activity and inflammation. 3PO significantly inhibited RASF invasion/migration, angiogenic tube formation, secretion of proinflammatory mediators (all p<0.05), and activation of HIF1α, pSTAT3 and Notch-1IC under normoxic and hypoxic conditions. CONCLUSIONS Hypoxia alters cellular bioenergetics by inducing mitochondrial dysfunction and promoting a switch to glycolysis, supporting abnormal angiogenesis, cellular invasion and pannus formation.
Collapse
Affiliation(s)
- M Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - M Canavan
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - T McGarry
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - W Gao
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - J McCormick
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - S Cregan
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - L Gallagher
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - T Smith
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - J J Phelan
- Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - J Ryan
- Department of Radiology, School of Medicine and Biomedical Sciences, University College Dublin, Dublin, Ireland
| | - J O'Sullivan
- Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - C T Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
| | - D J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - U Fearon
- Department of Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Hua S, Dias TH. Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis. Front Pharmacol 2016; 7:184. [PMID: 27445820 PMCID: PMC4921475 DOI: 10.3389/fphar.2016.00184] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is an important micro-environmental characteristic of rheumatoid arthritis (RA). Hypoxia-inducible factors (HIF) are key transcriptional factors that are highly expressed in RA synovium to regulate the adaptive responses to this hypoxic milieu. Accumulating evidence supports hypoxia and HIFs in regulating a number of important pathophysiological characteristics of RA, including synovial inflammation, angiogenesis, and cartilage destruction. Experimental and clinical data have confirmed the upregulation of both HIF-1α and HIF-2α in RA. This review will focus on the differential expression of HIFs within the synovial joint and its functional behavior in different cell types to regulate RA progression. Potential development of new therapeutic strategies targeting HIF-regulated pathways at sites of disease in RA will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia; Hunter Medical Research InstituteNew Lambton Heights, NSW, Australia
| | - Thilani H Dias
- School of Biomedical Sciences and Pharmacy, University of Newcastle Callaghan, NSW, Australia
| |
Collapse
|
43
|
Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12:385-97. [PMID: 27225300 DOI: 10.1038/nrrheum.2016.69] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Deng W, Feng X, Li X, Wang D, Sun L. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol 2016; 303:7-15. [DOI: 10.1016/j.cellimm.2016.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/29/2022]
|
45
|
Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother 2016; 80:30-41. [PMID: 27133037 DOI: 10.1016/j.biopha.2016.03.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the common and severe autoimmune diseases related to joints. This chronic autoimmune inflammatory disease, leads to functional limitation and reduced quality of life, since as there is bone and cartilage destruction, joint swelling and pain. Current advances and new treatment approaches have considerably postponed disease progression and improved the quality of life for many patients. In spite of major advances in therapeutic options, restrictions on the routes of administration and the necessity for frequent and long-term dosing often result in systemic adverse effects and patient non-compliance. Unlike usual drugs, nanoparticle systems are planned to deliver therapeutic agents especially to inflamed synovium, so avoiding systemic and unpleasant effects. The present review discusses about some of the most successful drugs in RA therapy and their side effects and also focuses on key design parameters of RA-targeted nanotechnology-based strategies for improving RA therapies.
Collapse
|
46
|
Tas SW, Maracle CX, Balogh E, Szekanecz Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol 2015; 12:111-22. [PMID: 26633288 DOI: 10.1038/nrrheum.2015.164] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiogenesis is de novo capillary outgrowth from pre-existing blood vessels. This process not only is crucial for normal development, but also has an important role in supplying oxygen and nutrients to inflamed tissues, as well as in facilitating the migration of inflammatory cells to the synovium in rheumatoid arthritis, spondyloarthritis and other systemic autoimmune diseases. Neovascularization is dependent on the balance of proangiogenic and antiangiogenic mediators, including growth factors, cytokines, chemokines, cell adhesion molecules and matrix metalloproteinases. This Review describes the various intracellular signalling pathways that govern these angiogenic processes and discusses potential approaches to interfere with pathological angiogenesis, and thereby ameliorate inflammatory disease, by targeting these pathways.
Collapse
Affiliation(s)
- Sander W Tas
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Chrissta X Maracle
- Amsterdam Rheumatology &Immunology Centre, Department of Experimental Immunology, Academic Medical Centre and University of Amsterdam, EULAR &FOCIS (Federation of Clinical Immunology Societies) Centre of Excellence, Meibergdreef 9, F4-105, 1105 AZ Amsterdam, Netherlands
| | - Emese Balogh
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen, Faculty of Medicine, Nagyerdei Str. 98, Debrecen 4032, Hungary
| |
Collapse
|
47
|
Deng Q, Bai S, Gao W, Tong L. Pristimerin inhibits angiogenesis in adjuvant-induced arthritic rats by suppressing VEGFR2 signaling pathways. Int Immunopharmacol 2015; 29:302-313. [PMID: 26548348 DOI: 10.1016/j.intimp.2015.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/24/2015] [Accepted: 11/02/2015] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease. As RA progresses, the hyperplastic synovial pannus creates a hypoxic, inflammatory environment that induces angiogenesis. Further vascularization of the synovial tissue promotes pannus growth and continued infiltration of inflammatory leukocytes, thus perpetuating the disease. Pristimerin inhibits inflammation and tumor angiogenesis. The present study focused on the inhibition of angiogenesis by Pristimerin in adjuvant-induced arthritic rats and the underlying molecular mechanisms. Our results clearly demonstrate for the first time that Pristimerin significantly reduces vessel density in synovial membrane tissues of inflamed joints and reduces the expression of pro-angiogenic factors in sera, including TNF-α, Ang-1, and MMP-9. Pristimerin also decreased the expression of VEGF and p-VEGFR2 in the synovial membrane, whereas the total amount of VEGFR2 remained unchanged. Pristimerin suppressed the sprouting vessels of the aortic ring and inhibited VEGF-induced HFLS-RA migration in vitro. Pristimerin also inhibited VEGF-induced proliferation, migration and tube formation by HUVECs, blocked the autophosphorylation of VEGF-induced VEGFR2 and consequently downregulated the signaling pathways of activated PI3K, AKT, mTOR, ERK1/2, JNK, and p38 in VEGF-induced HUVECs. Our results indicate that Pristimerin suppressed synovial angiogenesis in our rat model and in vitro by interrupting the targeting of VEGFR2 activation. Therefore, Pristimerin has potential as an angiogenesis inhibitor in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qiudi Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shutong Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wanjiao Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Tong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition. Exp Cell Res 2015; 336:66-75. [DOI: 10.1016/j.yexcr.2015.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/08/2015] [Accepted: 03/26/2015] [Indexed: 02/02/2023]
|
49
|
Jiang SJ, Li W, Li YJ, Fang W, Long X. Dickkopf‑related protein 1 induces angiogenesis by upregulating vascular endothelial growth factor in the synovial fibroblasts of patients with temporomandibular joint disorders. Mol Med Rep 2015; 12:4959-66. [PMID: 26239269 PMCID: PMC4581813 DOI: 10.3892/mmr.2015.4101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis has an important role in the progression of temporomandibular joint disorders (TMD). The aim of the present study was to explore the association between dickkopf-related protein 1 (DKK-1) and angiogenesis in TMD. The expression levels of DKK-1 and vascular endothelial growth factor (VEGF) were quantified by an ELISA assay of the synovial fluid from patients with TMD. The correlation between DKK-1 and VEGF was analyzed by Pearson correlation test. Synovial fibroblasts were isolated from patients with TMD and were subsequently treated with recombinant human DKK-1, anti-DKK-1 antibody, hypoxia inducible factor-1α (HIF-1α), or small interfering RNA (siRNA). The expression levels of DKK-1, HIF-1α, and VEGF were subsequently quantified. The present study also investigated the effects of DKK-1 on the migration of human umbilical vein endothelial cells (HUVEC). Increased expression levels of DKK-1 were concordant with increased expression levels of VEGF in the synovial fluid from patients with TMD. In the synovial fibroblasts, DKK-1 increased the expression levels of VEGF, and promoted HIF-1α nuclear localization. In addition, DKK-1 induced HUVEC migration, and HIF-1α siRNA inhibited DKK-1-induced cell migration. The results of the present study indicate that DKK-1 is associated with angiogenesis in the synovial fluid of patients with TMD. Furthermore, HIF-1α may be associated with DKK-1-induced HUVEC activation.
Collapse
Affiliation(s)
- Sheng-Jun Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Ying-Jie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
50
|
Gao W, McCormick J, Connolly M, Balogh E, Veale DJ, Fearon U. Hypoxia and STAT3 signalling interactions regulate pro-inflammatory pathways in rheumatoid arthritis. Ann Rheum Dis 2015; 74:1275-83. [PMID: 24525913 DOI: 10.1136/annrheumdis-2013-204105] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/24/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine the effect of hypoxia on Signal Transducer and Activator of Transcription 3 (STAT3)-induced pro-inflammatory pathways in rheumatoid arthritis (RA). METHODS Detection of phospho-STAT3 was assessed in RA synovial tissue and fibroblasts (RASFC) by immunohistology/immunofluorescence. Primary RASFCs and a normal synoviocyte cell line (K4IM) were cultured under hypoxic and normoxic conditions±Stat3-siRNA, HIF-siRNA or WP1066 (JAK2-inhibitor). HIF1α, p-STAT3, p-STAT1 and Notch-1IC protein expression were analysed by western blot. Functional mechanisms were quantified by invasion chamber, matrigel and migration assays. IL-6, IL-8, IL-10 and matrixmetalloproteinases (MMP)-3 were quantified by ELISA. Notch-1 receptor, its DLL-4 ligand and downstream target genes (hrt-1, hrt-2) were quantified by real-time PCR. The effect of WP1066 on spontaneous secretion of pro/anti-inflammatory cytokines and Notch signalling was examined in RA synovial explants ex vivo. RESULTS p-STAT3 was increased in RA synovium compared with control (p<0.05). Hypoxia induced p-STAT3, p-STAT1 and HIF1α expression, an effect blocked by Stat3-siRNA and WP1066. Hypoxia-induced cell invasion, migration and cytokine production were inhibited by Stat3-siRNA (p<0.05) and WP1066 (p<0.05). While HIF1α siRNA inhibited hypoxia-induced p-STAT3 detection, Stat3-siRNA also inhibited hypoxia-induced HIF1α. Furthermore, hypoxia-induced Notch-1IC, DLL4, hrt-1 and -2 expression were significantly inhibited by WP1066 (p<0.05). Finally, in RA synovial explant cultures ex vivo, WP1066 decreased spontaneous secretion of IL-6, IL-8 and MMP3 (p<0.05), Notch-1 mRNA (p<0.05) and induced IL-10 (p<0.05). CONCLUSIONS This is the first study to provide evidence of a functional link between HIF1α, STAT3 and Notch-1 signalling in the regulation of pro-inflammatory mechanisms in RA, and further supports a role for STAT blockade in the treatment of RA.
Collapse
Affiliation(s)
- Wei Gao
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Jennifer McCormick
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Mary Connolly
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Emese Balogh
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|