1
|
Wang X, He T, He L, Yang B, Liu Z, Pang M, Xie P, Zhang L, Rong L. Melatonin contributes to the hypertrophic differentiation of mesenchymal stem cell-derived chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res Ther 2021; 12:467. [PMID: 34419165 PMCID: PMC8379782 DOI: 10.1186/s13287-021-02536-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. METHODS Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. RESULTS Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. CONCLUSIONS The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Zhongyu Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| |
Collapse
|
2
|
Carlson EL, Karuppagounder V, Pinamont WJ, Yoshioka NK, Ahmad A, Schott EM, Le Bleu HK, Zuscik MJ, Elbarbary RA, Kamal F. Paroxetine-mediated GRK2 inhibition is a disease-modifying treatment for osteoarthritis. Sci Transl Med 2021; 13:13/580/eaau8491. [PMID: 33568523 DOI: 10.1126/scitranslmed.aau8491] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by progressive cartilage degeneration, with no available disease-modifying therapy. OA is driven by pathological chondrocyte hypertrophy (CH), the cellular regulators of which are unknown. We have recently reported the therapeutic efficacy of G protein-coupled receptor kinase 2 (GRK2) inhibition in other diseases by recovering protective G protein-coupled receptor (GPCR) signaling. However, the role of GPCR-GRK2 pathway in OA is unknown. Thus, in a surgical OA mouse model, we performed genetic GRK2 deletion in chondrocytes or pharmacological inhibition with the repurposed U.S. Food and Drug Administration (FDA)-approved antidepressant paroxetine. Both GRK2 deletion and inhibition prevented CH, abated OA progression, and promoted cartilage regeneration. Supporting experiments with cultured human OA cartilage confirmed the ability of paroxetine to mitigate CH and cartilage degradation. Our findings present elevated GRK2 signaling in chondrocytes as a driver of CH in OA and identify paroxetine as a disease-modifying drug for OA treatment.
Collapse
Affiliation(s)
- Elijah L Carlson
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - William J Pinamont
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Natalie K Yoshioka
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Adeel Ahmad
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | - Michael J Zuscik
- Colorado Program for Skeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reyad A Elbarbary
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Rehabilitation, Penn State College of Medicine, Hershey, PA 17033, USA. .,Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
3
|
Izumida E, Suzawa T, Miyamoto Y, Yamada A, Otsu M, Saito T, Yamaguchi T, Nishimura K, Ohtaka M, Nakanishi M, Yoshimura K, Sasa K, Takimoto R, Uyama R, Shirota T, Maki K, Kamijo R. Functional Analysis of PTH1R Variants Found in Primary Failure of Eruption. J Dent Res 2020; 99:429-436. [PMID: 31986066 DOI: 10.1177/0022034520901731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although many variants of the parathyroid hormone 1 receptor (PTH1R) gene are known to be associated with primary failure of eruption (PFE), the mechanisms underlying the link remains poorly understood. We here performed functional analyses of PTH1R variants reported in PFE patients-namely, 356C>T (P119L), 395C>T (P132L), 439C>T (R147C), and 1148G>A (R383Q)-using HeLa cells with a lentiviral vector-mediated genetic modification. Two particular variants, P119L and P132L, had severe reduction in a level of N-linked glycosylation when compared with wild-type PTH1R, whereas the other 2 showed modest alteration. PTH1R having P119L or P132L showed marked decrease in the affinity to PTH1-34, which likely led to severely impaired cAMP accumulation upon stimulation in cells expressing these mutants, highlighting the importance of these 2 amino acid residues for ligand-mediated proper functioning of PTH1R. To further gain insights into PTH1R functions, we established the induced pluripotent stem cell (iPSC) lines from a patient with PFE and the heterozygous P132L mutation. When differentiated into osteoblastic-lineage cells, PFE-iPSCs showed no abnormality in mineralization. The mRNA expression of RUNX2, SP7, and BGLAP, the osteoblastic differentiation-related genes, and that of PTH1R were augmented in both PFE-iPSC-derived cells and control iPSC-derived cells in the presence of bone morphogenetic protein 2. Also, active vitamin D3 induced the expression of RANKL, a major key factor for osteoclastogenesis, equally in osteoblastic cells derived from control and PFE-iPSCs. In sharp contrast, exposure to PTH1-34 resulted in no induction of RANKL mRNA expression in the cells expressing P132L variant PTH1R, consistent with the idea that a type of heterozygous PTH1R gene mutation would spoil PTH-dependent response in osteoblasts. Collectively, this study demonstrates a link between PFE-associated genetic alteration and causative functional impairment of PTH1R, as well as a utility of iPSC-based disease modeling for future elucidation of pathogenesis in genetic disorders, including PFE.
Collapse
Affiliation(s)
- E Izumida
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - T Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Y Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - A Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - M Otsu
- Stem Cell Bank & Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Present address: Department of Transfusion and Cell Transplantation, School of Medicine, Kitasato University, Sagamihara, Japan
| | - T Saito
- Division of Tissue Engineering, Department of Bone and Cartilage Regenerative Medicine, University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
| | - T Yamaguchi
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - K Nishimura
- Laboratory for Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - M Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Japan
| | - M Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - K Yoshimura
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - K Sasa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - R Takimoto
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - R Uyama
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - T Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - K Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - R Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
4
|
Yang Y, Lei H, Qiang YW, Wang B. Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor. Mol Biol Cell 2017; 28:1792-1803. [PMID: 28495797 PMCID: PMC5491187 DOI: 10.1091/mbc.e17-02-0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
The proteasome inhibitor ixazomib (Izb) dissociates β-catenin from the PTH receptor to enhance PTH stimulation of β-catenin/TCF signaling through the cAMP/PKA signaling pathway. These findings provide a rationale for the use of Izb as an adjunct in the treatment of osteoporosis with PTH. The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin–mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element–luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| | - Hong Lei
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.,College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ya-Wei Qiang
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Bin Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
5
|
Kedlaya R, Kang KS, Hong JM, Bettagere V, Lim KE, Horan D, Divieti-Pajevic P, Robling AG. Adult-Onset Deletion of β-Catenin in (10kb)Dmp1-Expressing Cells Prevents Intermittent PTH-Induced Bone Gain. Endocrinology 2016; 157:3047-57. [PMID: 27253995 PMCID: PMC4967118 DOI: 10.1210/en.2015-1587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
β-Catenin (βcat) is a major downstream signaling node in canonical Wingless-related integration site (Wnt) signaling pathway, and its activity is crucial for canonical Wnt signal transduction. Wnt signaling has recently been implicated in the osteo-anabolic response to PTH, a potent calcium-regulating factor. We investigated whether βcat is essential for the anabolic action of intermittent PTH by generating male mice with adult-onset deletion of βcat in a subpopulation of bone cells (osteocytes and late-stage osteoblasts), treating them with an anabolic regimen of PTH, and measuring the skeletal responses. Male (10kb)Dmp1-CreERt2 transgenic mice that also harbored floxed loss-of-function βcat alleles (βcat(f/f)) were induced for Cre activity using tamoxifen, then injected daily with human PTH 1-34 (30 μg/kg) or vehicle for 5 weeks. Mice in which βcat was deleted showed either total lack of bone mineral density (BMD) gain, or BMD loss, and did not respond to PTH treatment. However, bone mass measurements in the trabecular compartment of the femur and spine revealed PTH-induced bone gain whether βcat was deleted or not. PTH-stimulated increases in periosteal and cancellous bone formation rates were not impaired by βcat deletion, but resorption markers and cortical porosity were significantly increased in induced mice, particularly induced mice treated with PTH. These results suggest that βcat is required for net-positive BMD effects of PTH therapy but that the anabolic effects per se of PTH treatment might not require osteocytic/osteoblastic βcat.
Collapse
Affiliation(s)
- Rajendra Kedlaya
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Kyung Shin Kang
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Jung Min Hong
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Vidya Bettagere
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Kyung-Eun Lim
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Daniel Horan
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Paola Divieti-Pajevic
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| | - Alexander G Robling
- Department of Anatomy and Cell Biology (R.K., K.S.K., J.M.H., V.B., K.-E.L., D.H., A.G.R.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Molecular and Cell Biology (P.D.-P.), Boston University School of Dental Medicine, Boston, Massachusetts 02215; Department of Biomedical Engineering (A.G.R.), Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202; and Richard L. Roudebush Veterans Affairs Medical Center (A.G.R.), Indianapolis, Indiana 46202
| |
Collapse
|
6
|
|
7
|
Okuma T, Hirata M, Yano F, Mori D, Kawaguchi H, Chung UI, Tanaka S, Saito T. Regulation of mouse chondrocyte differentiation by CCAAT/enhancer-binding proteins. Biomed Res 2015; 36:21-9. [PMID: 25749148 DOI: 10.2220/biomedres.36.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBP) β regulates chondrocyte differentiaion and proliferation during endochondral ossification. However, expression and function of other C/EBP family members in chondrocytes have not been fully understood. To understand the comprehensive regulation of chondrocyte differentiation by C/EBPs, we initially examined their expression levels. Among four members (C/EBPα, C/EBPβ, C/EBPδ and C/EBPε) with transactivation domain, expression of Cebpb and Cebpd was abundant compared to Cebpa, while Cebpe was hardly expressed in mouse isolated chondrocytes. Doxycycline (DOX)-inducible overexpression of each of the three C/EBPs (C/EBPα, C/EBPβ and C/EBPδ) in ATDC5 cells suppressed expressions of early differentiation markers including Col2a1, aggrecan and Sox9, enhanced those of late differentiation markers including Mmp13, Vegfa and Col10a1, and decelerated cell proliferation, indicating their overlapped functions in chondrocytes. In contrast, DOX-inducible overexpression of A-CEBP, which exerts a dominant-negative effect against all C/EBPs, increased expressions of early differentiation markers and decreased those of late differentiation markers. Finally, microarray and gene ontology analyses showed that A-CEBP altered many genes related with various events or tissues such as skeletal development, cartilage, cell cycle, inflammation and apoptosis. In conclusion, C/EBPα, C/EBPβ and C/EBPδ regulate proliferation and differentiation of chondrocytes and possibly is involved with apoptosis and inflammation. C/EBPs may play a variety of roles in the homeostasis of joint cartilage under physiological and pathological conditions.
Collapse
Affiliation(s)
- Tomotake Okuma
- Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the Parathyroid Hormone Type 1 Receptor (PTH1R) as a Mechanosensor in Osteocyte Survival. J Bone Miner Res 2015; 30:1231-44. [PMID: 25529820 DOI: 10.1002/jbmr.2439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/22/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
Osteocytes have a major role in the control of bone remodeling. Mechanical stimulation decreases osteocyte apoptosis and promotes bone accrual, whereas skeletal unloading is deleterious in both respects. PTH1R ablation or overexpression in osteocytes in mice produces trabecular bone loss or increases bone mass, respectively. The latter effect was related to a decreased osteocyte apoptosis. Here, the putative role of PTH1R activation in osteocyte protection conferred by mechanical stimulation was assessed. Osteocytic MLO-Y4 cells were subjected to mechanical stimuli represented by hypotonic shock (216 mOsm/kg) or pulsatile fluid flow (8 Hz, 10 dynes/cm(2)) for a short pulse (10 min), with or without PTH1R antagonists or after transfection with specific PTHrP or PTH1R siRNA. These mechanical stimuli prevented cell death induced within 6 hours by etoposide (50 μM), related to PTHrP overexpression; and this effect was abolished by the calcium antagonist verapamil (1 μM), a phospholipase C (PLC) inhibitor (U73122; 10 μM), and a PKA activation inhibitor, Rp-cAMPS (25 μM), in these cells. Each mechanical stimulus also rapidly induced β-catenin stabilization and nuclear ERK translocation, which were inhibited by the PTH1R antagonist PTHrP(7-34) (1 μM), or PTH1R siRNA, and mimicked by PTHrP(1-36) (100 nM). Mechanical stretching by hypotonic shock did not affect cAMP production but rapidly (<1 min) stimulated Ca(i)(2+) transients in PTH1R-overexpressing HEK-293 cells and in MLO-Y4 cells, in which calcium signaling was unaffected by the presence of a PTHrP antiserum or PTHrP siRNA but inhibited by knocking down PTH1R. These novel findings indicate that PTH1R is an important component of mechanical signal transduction in osteocytic MLO-Y4 cells, and that PTH1R activation by PTHrP-independent and dependent mechanisms has a relevant role in the prosurvival action of mechanical stimulus in these cells.
Collapse
Affiliation(s)
- Marta Maycas
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| | - Juan A Ardura
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| | - Luis F de Castro
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Bravo
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Arancha R Gortázar
- Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Pedro Esbrit
- Instituto de, Investigación Sanitaria (IIS)-, Fundación Jiménez Díaz, Universidad Autónoma de Madrid (UAM) and Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Madrid, Spain
| |
Collapse
|
9
|
Disruption of β-catenin binding to parathyroid hormone (PTH) receptor inhibits PTH-stimulated ERK1/2 activation. Biochem Biophys Res Commun 2015; 464:27-32. [PMID: 26047699 DOI: 10.1016/j.bbrc.2015.05.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
The type I parathyroid hormone receptor (PTH1R) mediates PTH and PTH-related protein (PTHrP) actions on extracellular mineral ion homeostasis and bone remodeling. These effects depend in part on the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Sequences located within or at the carboxyl-terminus of PTH1R control its activation and trafficking. β-catenin regulates PTH1R signaling and promotes chondrocyte hypertrophy through binding to the intracellular carboxyl-terminal region of the receptor. How the interaction of PTH1R with β-catenin affects PTH-stimulated ERK1/2 is unknown. In the present study, human embryonic kidney 293 (HEK293) cells, which do not express the PTH1R, were used to investigate whether the disruption of β-catenin binding to PTH1R affects PTH-stimulated ERK1/2 activation. We demonstrated that β-catenin interacted with wild-type PTH1R but this interaction was markedly reduced with mutant PTH1R (L584A/L585A). PTH stimulated less cAMP formation and increased more intracellular calcium in HEK293 cells transfected with wild-type PTH1R compared with mutant PTH1R, indicating β-catenin switches PTH1R signaling from Gαs activation to Gαq signaling. In addition, ERK1/2 activation in HEK293 cells transfected with PTH1R exhibited time and concentration dependence. PTH-stimulated ERK1/2 activation was mostly mediated through Gαq/PLC signaling pathway. Importantly, transfection of mutant PTH1R decreased PTH-induced ERK1/2 activation by inhibiting Gαq-mediated signaling. This study shows for the first time that the interference of β-catenin binding to PTH1R inhibits PTH-stimulated ERK1/2 phosphorylation.
Collapse
|
10
|
Abstract
Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease progression. Effective disease-modifying OA therapies are lacking, but better understanding inflammatory pathophysiology in OA could lead to transformative therapy. Networks of diverse innate inflammatory danger signals, including complement and alarmins, are activated in OA. Through inflammatory mediators, biomechanical injury and oxidative stress compromise the viability of chondrocytes, reprogramming them to hypertrophic differentiation and proinflammatory and pro-catabolic responses. Integral to this reprogramming are 'switching' pathways in transcriptional networks, other than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling; HIF-2α transcriptional signalling and ZIP8-mediated Zn(2+) uptake, with downstream MTF1 transcriptional signalling, have been implicated but further validation is required. Permissive factors, including impaired bioenergetics via altered mitochondrial function and decreased activity of bioenergy sensors, interact with molecular inflammatory responses and proteostasis mechanisms such as the unfolded protein response and autophagy. Bioenergy-sensing by AMPK and SIRT1 provides 'stop signals' for oxidative stress, inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular inflammatory processes in OA and the involvement of multiple inflammatory mediators in tissue repair responses, raises daunting questions about how to therapeutically target inflammatory processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic 'entry point'.
Collapse
Affiliation(s)
- Ru Liu-Bryan
- San Diego VA Healthcare System and Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Robert Terkeltaub
- San Diego VA Healthcare System and Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 111K, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
11
|
Xie Y, Zhou S, Chen H, Du X, Chen L. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders. J Mol Endocrinol 2014; 53:T11-34. [PMID: 25114206 DOI: 10.1530/jme-14-0012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Skeletons are formed through two distinct developmental actions, intramembranous ossification and endochondral ossification. During embryonic development, most bone is formed by endochondral ossification. The growth plate is the developmental center for endochondral ossification. Multiple signaling pathways participate in the regulation of endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling has been found to play a vital role in the development and maintenance of growth plates. Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs signaling in skeletal development and genetic skeletal diseases will have implications for the development of therapies for FGF-signaling-related skeletal dysplasias and growth plate injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs signaling in growth plate development, genetic skeletal disorders, and the promising therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction. Finally, we also examine the potential important research in this field in the future.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Siru Zhou
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hangang Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaolan Du
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- Department of Rehabilitation MedicineCenter of Bone Metabolism and Repair, Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
12
|
Xi Y, Chen Y. Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis. Cancer Lett 2014; 353:8-16. [PMID: 25042867 DOI: 10.1016/j.canlet.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/12/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.
Collapse
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, China
| | - Yan Chen
- Division in Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, Canada.
| |
Collapse
|
13
|
Abstract
Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here, we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
Collapse
Affiliation(s)
- K A Staines
- (Correspondence should be addressed to K A Staines; )
| | | | | | - C Farquharson
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College Street, London, NW1 0TUUK
| | | |
Collapse
|
14
|
López-Herradón A, Portal-Núñez S, García-Martín A, Lozano D, Pérez-Martínez FC, Ceña V, Esbrit P. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells. J Cell Biochem 2013; 114:1908-16. [DOI: 10.1002/jcb.24535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|