1
|
Nagata K, Tsukamoto M, Nagasawa Y, Kitamura N, Nakamura H. Direct Inhibitory Effect of HTLV-1-Infected T Cells on the Production of Anti-Ro/SS-A Antibody by B Cells from Patients with Sjögren's Syndrome. Eur J Immunol 2025; 55:e202451279. [PMID: 39775490 DOI: 10.1002/eji.202451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
The reasons for the low frequency of anti-Ro/SS-A antibody in patients with HTLV-1-associated myelopathy complicated with Sjögren's syndrome (SS) are unclear. In this study, we investigated whether HTLV-1-infected T cells can act directly on B cells and suppress B cells' production of antibodies, including anti-Ro/SS-A antibody. For this purpose, we established an in vitro T-cell-free B-cell antibody production system. The productions of total IgG and anti-cytomegalovirus IgG in B cells from healthy subjects and those of total IgG and anti-Ro/SS-A IgG in B cells from SS patients were significantly suppressed by the addition of HTLV-1-positive T-cell lines (MT-2 and HCT-5). Our analysis of co-cultured B cells identified no sign of HTLV-1 infection and revealed that MT-2 and HCT-5 cells act on the early stages of B-cell differentiation, not the activation stage. MT-2 and HCT-5 cells constitutively expressed CD70, ICAM-1, LAP (TGF-β), and PD-L1/2, but blocking monoclonal antibodies to these molecules or PD-L1/2 receptor PD-1 had no significant canceling effect on B-cell IgG production regarding their suppressive activity. Importantly, autologous CD4+CD25+CD127low Treg cells had no inhibitory effect on B-cell IgG production. These results demonstrate that HTLV-1-positive T cells can directly suppress B-cell antibody production through mechanisms that differ from Treg functions.
Collapse
Affiliation(s)
- Kinya Nagata
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Tsukamoto
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yosuke Nagasawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Noboru Kitamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Eades LE, Hoi AY, Liddle R, Sines J, Kandane-Rathnayake R, Khetan S, Nossent J, Lindenmayer G, Morand EF, Liew DFL, Rischmueller M, Brady S, Brown A, Vincent FB. Systemic lupus erythematosus in Aboriginal and Torres Strait Islander peoples in Australia: addressing disparities and barriers to optimising patient care. THE LANCET. RHEUMATOLOGY 2024; 6:e713-e726. [PMID: 38971169 DOI: 10.1016/s2665-9913(24)00095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 07/08/2024]
Abstract
The first inhabitants of Australia and the traditional owners of Australian lands are the Aboriginal and Torres Strait Islander peoples. Aboriginal and Torres Strait Islander peoples are two to four times more likely to have systemic lupus erythematosus (SLE) than the general Australian population. Phenotypically, SLE appears distinctive in Aboriginal and Torres Strait Islander peoples and its severity is substantially increased, with mortality rates up to six times higher than in the general Australian population with SLE. In particular, Aboriginal and Torres Strait Islander peoples with SLE have increased prevalence of lupus nephritis and increased rates of progression to end-stage kidney disease. The reasons for the increased prevalence and severity of SLE in this population are unclear, but socioeconomic, environmental, and biological factors are all likely to be implicated, although there are no published studies investigating these factors in Aboriginal and Torres Strait Islander peoples with SLE specifically, indicating an important knowledge gap. In this Review, we summarise the data on the incidence, prevalence, and clinical and biological findings relating to SLE in Aboriginal and Torres Strait Islander peoples and explore potential factors contributing to its increased prevalence and severity in this population. Importantly, we identify health disparities and deficiencies in health-care provision that limit optimal care and outcomes for many Aboriginal and Torres Strait Islander peoples with SLE and highlight potentially addressable goals to improve outcomes.
Collapse
Affiliation(s)
- Laura E Eades
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia; Rheumatology Department, Monash Health, Clayton, VIC, Australia
| | - Alberta Y Hoi
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia; Rheumatology Department, Monash Health, Clayton, VIC, Australia
| | - Ruaidhri Liddle
- Primary and Public Health Care Central Australia, Alice Springs, NT, Australia
| | - Jason Sines
- Rheumatology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - Sachin Khetan
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Rheumatology Department, Royal Darwin Hospital, Tiwi, NT, Australia
| | - Johannes Nossent
- Rheumatology Department, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Eric F Morand
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia; Rheumatology Department, Monash Health, Clayton, VIC, Australia
| | - David F L Liew
- Rheumatology Department, Austin Health, Heidelberg, VIC, Australia; Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Maureen Rischmueller
- Rheumatology Department, Royal Darwin Hospital, Tiwi, NT, Australia; Discipline of Medicine, University of Adelaide, SA, Australia; Rheumatology Department, The Queen Elizabeth Hospital, Woodville, SA, Australia; Rheumatology Department, Alice Springs Hospital, The Gap, NT, Australia
| | - Stephen Brady
- Rheumatology Department, Alice Springs Hospital, The Gap, NT, Australia
| | - Alex Brown
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
| | - Fabien B Vincent
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
4
|
Atyeo N, Maldonado J, Warner B, Chiorini J. Salivary Glands and Viral Pathogenesis. J Dent Res 2024; 103:227-234. [PMID: 38344753 PMCID: PMC10985391 DOI: 10.1177/00220345231222871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
The oral cavity is an epidemiologically relevant route of viral transmission due to the shedding of viruses in saliva. With advancements in salivary diagnostics, an increasing number of viruses have been detected. However, the anatomic source of virus in saliva is still largely unknown. Some viruses have a well-established tropism for the salivary glands (SGs), and recent studies have emphasized the importance of the glands as potential reservoirs for infectious viruses. Viral infections of the SGs have been linked to acute and chronic SG pathology and may be associated with SG dysfunction, with phenotypes similar to those seen in SjÖgren's disease (SjD), an autoimmune condition that affects the salivary and lacrimal glands. Understanding the breadth of viruses that infect the SG and the conserved or distinct host responses to these infections may provide insights into the pathogenesis of virus-mediated SG diseases. There is a need for further research to fully understand the molecular mechanisms by which viruses enter and replicate in the glands, their physiologic impact on SG function, and whether the SGs can serve as a long-term reservoir for infectious viral particles. The purpose of this review is to highlight a group of viruses that infect the salivary gland: hepatitis C virus, hepatitis D virus, severe acute respiratory syndrome coronavirus 2, enteric viruses, human T-cell leukemia virus type I, human immunodeficiency virus, human cytomegalovirus, and BK polyomavirus. We focus on the effects of viral infection on salivary gland (SG) inflammation, function, and its association with SjD.
Collapse
Affiliation(s)
- N. Atyeo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J.O. Maldonado
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Center for Oral Health Integration, HealthPartners Institute, Bloomington, MN, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - B.M. Warner
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J.A. Chiorini
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Qiu X, Wang B, Gong H, Bu S, Li P, Zhao R, Li M, Zhu L, Huo X. Integrative analysis of transcriptome and proteome in primary Sjögren syndrome. Genomics 2024; 116:110767. [PMID: 38128705 DOI: 10.1016/j.ygeno.2023.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions. METHOD Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS). The ESS model was established by immunization with salivary gland protein. The expression of mRNAs and proteins in salivary tissues and saliva were determined by high-throughput sequencing transcriptomic analysis and LC-MS/MS-based proteome, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to recognize dysregulated genes and proteins. The association between RNA and protein abundance was investigated to provides a comprehensive understanding of RNA-protein correlations in the pathogenesis of pSS. RESULTS As a result, we successfully established the ESS model. We recognized 3221 differentially expressed genes (DEGs) and 253 differentially expressed proteins (DEPs). The sample analysis showed that 61 proteins overlapped through the integrative analysis of transcriptomics and proteomics data. The enrichment pathway analysis of DEGs and DEPs in samples showed alterations in renin-angiotensin-system (RAS), lysosome, and apoptosis. Notably, we found that some genes, such as AGT, FN1, Klk1b26, Klk1, Klk1b5, Klk1b3 had a consistent trend in the regulation at the RNA and protein levels and might be potential diagnostic biomarkers of pSS. CONCLUSION Herein, we found critical processes and potential biomakers that may contribute to pSS pathogenesis by analyzing dysregulated genes and pathways. Additionally, the integrative multi-omics datasets provided additional insight into understanding complicated disease mechanisms.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beijia Wang
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongxiao Gong
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Pingping Li
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Runzhi Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Mingde Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ling Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
6
|
Maslinska M, Kostyra-Grabczak K. The role of virus infections in Sjögren’s syndrome. Front Immunol 2022; 13:823659. [PMID: 36148238 PMCID: PMC9488556 DOI: 10.3389/fimmu.2022.823659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is an autoimmune disease with a clinical picture of not only mainly exocrine gland involvement, with dryness symptoms, but also internal organ and systems involvement. The epithelial damage and releasing of antigens, which, in some circumstances, become autoantigens, underlay the pathogenesis of pSS. The activation of autoimmune processes in pSS leads to the hyperactivation of B cells with autoantibody production and other immunological phenomena such as hypergammaglobulinemia, production of cryoglobulins, or formation of extra-nodal lymphoid tissue. Among the risk factors for the development of this disease are viral infections, which themselves can activate autoimmune reactions and influence the host’s immune response. It is known that viruses, through various mechanisms, can influence the immune system and initiate autoimmune reactions. These mechanisms include molecular mimicry, bystander activation, production of superantigens—proteins encoded by viruses—or a programming to produce viral cytokines similar to host cytokines such as, e.g., interleukin-10. Of particular importance for pSS are viruses which not only, as expected, activate the interferon pathway but also play a particular role, directly or indirectly, in B cell activation or present tropism to organs also targeted in the course of pSS. This article is an attempt to present the current knowledge of the influence specific viruses have on the development and course of pSS.
Collapse
|
7
|
Nakamura H, Tsukamoto M, Nagasawa Y, Kitamura N, Shimizu T, Kawakami A, Nagata K, Takei M. Does HTLV-1 Infection Show Phenotypes Found in Sjögren's Syndrome? Viruses 2022; 14:100. [PMID: 35062304 PMCID: PMC8780498 DOI: 10.3390/v14010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are a possible cause for Sjögren's syndrome (SS) as an environmental factor related to SS onset, which exhibits exocrine gland dysfunction and the emergence of autoantibodies. Although retroviruses may exhibit lymphocytic infiltration into exocrine glands, human T-cell leukemia virus type 1 (HTLV-1) has been postulated to be a causative agent for SS. Transgenic mice with HTLV-1 genes showed sialadenitis resembling SS, but their phenotypic symptoms differed based on the adopted region of HTLV-1 genes. The dominance of tax gene differed in labial salivary glands (LSGs) of SS patients with HTLV 1-associated myelopathy (HAM) and adult T-cell leukemia. Although HTLV-1 was transmitted to salivary gland epithelial cells (SGECs) by a biofilm-like structure, no viral synapse formation was observed. After infection to SGECs derived from SS patients, adhesion molecules and migration factors were time-dependently released from infected SGECs. The frequency of the appearance of autoantibodies including anti-Ro/SS-A, La/SS-B antibodies in SS patients complicated with HAM is unknown; the observation of less frequent ectopic germinal center formation in HTLV-1-seropositive SS patients was a breakthrough. In addition, HTLV-1 infected cells inhibited B-lymphocyte activating factor or C-X-C motif chemokine 13 through direct contact with established follicular dendritic cell-like cells. These findings show that HTLV-1 is directly involved in the pathogenesis of SS.
Collapse
Affiliation(s)
- Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masako Tsukamoto
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Yosuke Nagasawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Noboru Kitamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Toshimasa Shimizu
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.S.); (A.K.)
| | - Kinya Nagata
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan; (M.T.); (Y.N.); (N.K.); (K.N.); (M.T.)
| |
Collapse
|
8
|
Chang SH, Park SH, Cho ML, Choi Y. Why Should We Consider Potential Roles of Oral Bacteria in the Pathogenesis of Sjögren Syndrome? Immune Netw 2022; 22:e32. [PMID: 36081525 PMCID: PMC9433196 DOI: 10.4110/in.2022.22.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/01/2022] Open
Abstract
Sjögren syndrome (SS) is a chronic autoimmune disorder that primarily targets the salivary and lacrimal glands. The pathology of these exocrine glands is characterized by periductal focal lymphocytic infiltrates, and both T cell-mediated tissue injury and autoantibodies that interfere with the secretion process underlie glandular hypofunction. In addition to these adaptive mechanisms, multiple innate immune pathways are dysregulated, particularly in the salivary gland epithelium. Our understanding of the pathogenetic mechanisms of SS has substantially improved during the past decade. In contrast to viral infection, bacterial infection has never been considered in the pathogenesis of SS. In this review, oral dysbiosis associated with SS and evidence for bacterial infection of the salivary glands in SS were reviewed. In addition, the potential contributions of bacterial infection to innate activation of ductal epithelial cells, plasmacytoid dendritic cells, and B cells and to the breach of tolerance via bystander activation of autoreactive T cells and molecular mimicry were discussed. The added roles of bacteria may extend our understanding of the pathogenetic mechanisms and therapeutic approaches for this autoimmune exocrinopathy.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Sung-Hwan Park
- Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Qi X, Wang XQ, Jin L, Gao LX, Guo HF. Uncovering potential single nucleotide polymorphisms, copy number variations and related signaling pathways in primary Sjogren's syndrome. Bioengineered 2021; 12:9313-9331. [PMID: 34723755 PMCID: PMC8809958 DOI: 10.1080/21655979.2021.2000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a complex systemic autoimmune disease, which is difficult to accurately diagnose due to symptom diversity in patients, especially at earlier stages. We tried to find potential single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and related signaling pathways. Genomic DNA was extracted from peripheral blood of 12 individuals (7 individuals from 3 pSS pedigrees and 5 sporadic cases) for whole-exome sequencing (WES) analysis. SNPs and CNVs were identified, followed by functional annotation of genes with SNPs and CNVs. Gene expression profile (involving 64 normal controls and 166 cases) was downloaded from the Gene Expression Omnibus database (GEO) dataset for differentially expression analysis. Sanger sequencing and in vitro validation was used to validate the identified SNPs and differentially expressed genes, respectively. A total of 5 SNPs were identified in both pedigrees and sporadic cases, such as FES, PPM1J, and TRAPPC9. A total of 3402 and 19 CNVs were identified in pedigrees and sporadic cases, respectively. Fifty-one differentially expressed genes were associated with immunity, such as BATF3, LAP3, BATF2, PARP9, and IL15RA. AMPK signaling pathway and cell adhesion molecules (CAMs) were the most significantly enriched signaling pathways of identified SNPs. Identified CNVs were associated with systemic lupus erythematosus, mineral absorption, and HTLV-I infection. IL2-STAT5 signaling, interferon-gamma response, and interferon-alpha response were significantly enriched immune related signaling pathways of identified differentially expressed genes. In conclusion, our study found some potential SNPs, CNVs, and related signaling pathways, which could be useful in understanding the pathological mechanism of pSS.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Qin Wang
- Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Xia Gao
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui-Fang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Wu H, Chen X, Gu F, Zhang P, Xu S, Liu Q, Zhang Q, Wang X, Wang C, Körner H, Wei W. CP-25 alleviates antigen-induced experimental Sjögren's syndrome in mice by inhibiting JAK1-STAT1/2-CXCL13 signaling and interfering with B-cell migration. J Transl Med 2021; 101:1084-1097. [PMID: 32620868 DOI: 10.1038/s41374-020-0453-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
The etiology of primary Sjögren's syndrome (pSS) remains unknown, and there is no complete curative drug. In this study, we treated a mouse model of the submandibular gland (SG) protein-immunized experimental Sjögren's syndrome (ESS) with paeoniflorin-6'-O-benzene sulfonate (termed CP-25) to evaluate the potential therapeutic effects of CP-25. Through in vivo experiments, we found that CP-25 increased saliva flow, alleviated the salivary gland indexes, and improved tissue integrity in the ESS model. The viability of splenocytes and B-lymphocyte migration from spleen were reduced in ESS mice. Furthermore, CP-25 decreased the expression of IgG antibodies, anti-SSA and anti-SSB antibodies and modulated the levels of cytokines in the serum of SS mice. The numbers of total B lymphocytes, plasma cells (PCs), and memory B cells diminished in the salivary gland. Increased expression of the JAK1-STAT1-CXCL13 axis and IFNα was found in human tissue isolated from pSS patients. In vitro, after stimulation with IFNα, the levels of CXCL13 mRNA and CXCL13 in human salivary gland epithelial cells (HSGEC) increased, while CP-25 counteracted the secretion of CXCL13 and downregulated the expression of CXCL13. IFN-α activated the JAK1-STAT1/2-CXCL13 signaling pathway in HSGEC, which was negatively regulated by additional CP-25. As a consequence, B-cell migration was downregulated in coculture with IFN-α-stimulated HSGEC. Taken together, this study demonstrated that the therapeutic effects of CP-25 were associated with the inhibition of the JAK1-STAT1/2-CXCL13 signaling pathway in HSGEC, which impedes the migration of B cells into the salivary gland. We identified the underlying mechanisms of the therapeutic effect of CP-25 and provided an experimental foundation for CP-25 as a potential drug in the treatment of the human autoimmune disorder pSS.
Collapse
Affiliation(s)
- Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China.
| | - Xiaoyun Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Fang Gu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Pengying Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Shixia Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Qi Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Qiaolin Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Mizuma A, Enokida K, Nagata E, Takizawa S. Cerebellitis in a human T-lymphotropic virus type 1 carrier: a case report. BMJ Case Rep 2021; 14:14/6/e241366. [PMID: 34099448 DOI: 10.1136/bcr-2020-241366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human T-lymphotropic virus type I (HTLV-I) is a retrovirus associated with adult T-cell lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In addition to HAM/TSP and ATL, HTLV-I-associated encephalopathy and cerebellar involvement have been reported. We report a case of an 87-year-old Japanese woman presenting with progressive dysarthria and gait disturbance. Neurological examination showed word-finding difficulty, scanning speech, saccadic eye movements, ocular dysmetria, gaze-evoked nystagmus and bilateral dysmetria. There was no motor weakness or spasticity. HTLV-I antibody was detected in both her serum and cerebrospinal fluid. Cerebrospinal fluid neopterin (57 pg/mL) and IgG index (3.27) were significantly elevated. MRI showed cerebellar swelling. She was finally diagnosed with HTLV-I associated cerebellitis. Two courses of high-dose intravenous methylpredonine therapy attenuated cerebellar ataxia and cerebellar swelling. It suggests that cerebellitis can result from HTLV-I infection, regardless of the existence of ATL or HAM/TSP.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kumiko Enokida
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
12
|
Tezuka K, Fuchi N, Okuma K, Tsukiyama T, Miura S, Hasegawa Y, Nagata A, Komatsu N, Hasegawa H, Sasaki D, Sasaki E, Mizukami T, Kuramitsu M, Matsuoka S, Yanagihara K, Miura K, Hamaguchi I. HTLV-1 targets human placental trophoblasts in seropositive pregnant women. J Clin Invest 2021; 130:6171-6186. [PMID: 33074247 DOI: 10.1172/jci135525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.
Collapse
Affiliation(s)
- Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Tsukiyama
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoko Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ai Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nahoko Komatsu
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Del Papa N, Minniti A, Lorini M, Carbonelli V, Maglione W, Pignataro F, Montano N, Caporali R, Vitali C. The Role of Interferons in the Pathogenesis of Sjögren's Syndrome and Future Therapeutic Perspectives. Biomolecules 2021; 11:biom11020251. [PMID: 33572487 PMCID: PMC7916411 DOI: 10.3390/biom11020251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
There is a great deal of evidence pointing to interferons (IFNs) as being key cytokines in the pathogenesis of different systemic autoimmune diseases, including primary Sjögren’s syndrome (pSS). In this disease, a large number of studies have shown that an overexpression of type I IFN, the ‘so-called’ type I IFN signature, is present in peripheral blood mononuclear cells, and that this finding is associated with the development of systemic extra-glandular manifestations, and a substantial production of autoantibodies and inflammatory cytokines. In contrast, the absence or a milder expression of type I IFN signature and low level of inflammatory cytokines characterizes patients with a different clinical phenotype, where the disease is limited to glandular involvement and often marked by the presence of widespread pain and depression. The role of type II (IFNγ) in this subset of pSS patients, together with the potentially related activation of completely different immunological and metabolic pathways, are emerging issues. Expression of both types of IFNs has also been shown in target tissues, namely in minor salivary glands where a predominance of type II IFN signature appeared to have a certain association with the development of lymphoma. In view of the role played by IFN overexpression in the development and progression of pSS, inhibition or modulation of IFN signaling has been regarded as a potential target for the therapeutic approach. A number of therapeutic compounds with variable mechanisms of action have been tested or are under consideration for the treatment of patients with pSS.
Collapse
Affiliation(s)
- Nicoletta Del Papa
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
- Correspondence:
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Maurizio Lorini
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Vincenzo Carbonelli
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Wanda Maglione
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Francesca Pignataro
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Ca’ Granda IRCCS Foundation, Ospedale Maggiore Policlinico, Università degli Studi di Milano, 20122 Milano, Italy; (M.L.); (V.C.); (N.M.)
| | - Roberto Caporali
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milano, Italy; (A.M.); (W.M.); (F.P.); (R.C.)
- Research Center for Adult and Pediatric Rheumatic Diseases, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Claudio Vitali
- Mater Domini Humanitas Hospital, Rheumatology Outpatient Clinics, 21053 Castellanza, Italy;
| |
Collapse
|
14
|
Parisis D, Chivasso C, Perret J, Soyfoo MS, Delporte C. Current State of Knowledge on Primary Sjögren's Syndrome, an Autoimmune Exocrinopathy. J Clin Med 2020; 9:E2299. [PMID: 32698400 PMCID: PMC7408693 DOI: 10.3390/jcm9072299] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune rheumatic disease characterized by lymphoplasmacytic infiltration of the salivary and lacrimal glands, whereby sicca syndrome and/or systemic manifestations are the clinical hallmarks, associated with a particular autoantibody profile. pSS is the most frequent connective tissue disease after rheumatoid arthritis, affecting 0.3-3% of the population. Women are more prone to develop pSS than men, with a sex ratio of 9:1. Considered in the past as innocent collateral passive victims of autoimmunity, the epithelial cells of the salivary glands are now known to play an active role in the pathogenesis of the disease. The aetiology of the "autoimmune epithelitis" still remains unknown, but certainly involves genetic, environmental and hormonal factors. Later during the disease evolution, the subsequent chronic activation of B cells can lead to the development of systemic manifestations or non-Hodgkin's lymphoma. The aim of the present comprehensive review is to provide the current state of knowledge on pSS. The review addresses the clinical manifestations and complications of the disease, the diagnostic workup, the pathogenic mechanisms and the therapeutic approaches.
Collapse
Affiliation(s)
- Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
- Department of Rheumatology, Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| | | | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (D.P.); (C.C.); (J.P.)
| |
Collapse
|
15
|
Nakamura H, Shimizu T, Kawakami A. Role of Viral Infections in the Pathogenesis of Sjögren's Syndrome: Different Characteristics of Epstein-Barr Virus and HTLV-1. J Clin Med 2020; 9:jcm9051459. [PMID: 32414149 PMCID: PMC7290771 DOI: 10.3390/jcm9051459] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are possible pathogenic agents in several autoimmune diseases. Sjögren’s syndrome (SS), which involves exocrine dysfunction and the appearance of autoantibodies, shows salivary gland- and lacrimal gland-oriented clinical features. Epstein-Barr virus (EBV) is the most investigated pathogen as a candidate that directly induces the phenotype found in SS. The reactivation of the virus with various stimuli induced a dysregulated form of EBV that has the potential to infect SS-specific B cells and plasma cells that are closely associated with the function of an ectopic lymphoid structure that contains a germinal center (GC) in the salivary glands of individuals with SS. The involvement of human T-cell leukemia virus type 1 (HTLV-1) in SS has been epidemiologically established, but the disease concept of HTLV-1-associated SS remains unexplained due to limited evidence from basic research. Unlike the cell-to-cell contact between lymphocytes, biofilm-like structures are candidates as the mode of HTLV-1 infection of salivary gland epithelial cells (SGECs). HTLV-1 can infect SGECs with enhanced levels of inflammatory cytokines and chemokines that are secreted from SGECs. Regardless of the different targets that viruses have with respect to affinitive lymphocytes, viruses are involved in the formation of pathological alterations with immunological modifications in SS.
Collapse
|
16
|
Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjögren's syndrome. J Intern Med 2020; 287:475-492. [PMID: 32107824 DOI: 10.1111/joim.13032] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary Sjögren's syndrome (SS) is a systemic autoimmune disease in which exocrine organs, primarily the salivary and lacrimal glands, are targets of chronic inflammation, leading to severe dryness of eyes and mouth. Fatigue and arthralgia are also common, and extraglandular manifestations involving the respiratory, nervous and vascular systems occur in a subset of patients. Persistent activation of the type I interferon system, and autoreactive B and T cells with production of disease-associated autoantibodies are central to the pathogenesis. Genetic polymorphisms that associate with an increased risk of SS have been described, though the risk-increase contributed by the respective variant is generally low. It is thus becoming increasingly clear that genetics cannot alone account for the development of SS and that other, presumably exogenous, factors must play a critical role. Relatively few studies have investigated exposure to potential risk factors prior to SS disease onset. Rather, many factors have been studied in prevalent cases. In this review, we summarize current literature on exogenous factors in the pathogenesis of SS including infections, hormones, smoking, solvents and additional compounds. We delineate for which factors there is current evidence of increased disease risk, and for which our present knowledge is confined to suggesting their role in SS pathogenesis. Finally, we outline future perspectives in the continued search for environmental risk factors for SS, a research area of great importance considering the possibilities for preventive measures.
Collapse
Affiliation(s)
- A Björk
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Mofors
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M Wahren-Herlenius
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Nakamura H, Shimizu T, Takatani A, Suematsu T, Nakamura T, Kawakami A. Initial human T-cell leukemia virus type 1 infection of the salivary gland epithelial cells requires a biofilm-like structure. Virus Res 2019; 269:197643. [PMID: 31233774 DOI: 10.1016/j.virusres.2019.197643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
The initial phase of the human T cell leukemia virus-1 (HTLV-1) infection of salivary gland epithelial cells (SGECs) was examined. SGECs of patients with Sjögren's syndrome (SS) and non-SS subjects were co-cultured with the HTLV-1-infected cell line HCT-5 or MOLT-4, then immunofluorescence (IF), scanning and transmission electron microscopy (SEM/TEM) were employed. The extracellular matrix and linker proteins galectin-3, agrin, and tetherin were expressed on the surfaces of both HCT-5 and MOLT-4 cells. HTLV-1 Gag-positive spots were observed on adjacent SGECs after 1 h of co-culture with HCT-5. Both in subjects with and those without SS, agrin and tetherin were co-expressed with HTLV-1 Gag on SGECs after co-culture with HCT-5, although no polarization of HTLV-1 Gag and relevant molecules was observed. SEM showed HTLV-1 virions that were found on HCT-5 were observed in the interfaces between HCT-5 cells and SGECs. TEM imaging showed that HTLV-1 virions were transmitted to SGECs at the interface with thin film-like structure, while HTLV-1 virions were released from the surface of HCT-5 cells. No endogenous retroviruses were observed. These results showed that the initial phase of HTLV-1 infection toward SGECs of SS was mediated not by viral synapses, but by biofilm-like components.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Division of Electron Microscopy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
18
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases. Crit Rev Microbiol 2019; 45:394-412. [PMID: 31145640 DOI: 10.1080/1040841x.2019.1614904] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exact aetiology of most autoimmune diseases remains unknown, nonetheless, several factors contributing to the induction or exacerbation of autoimmune reactions have been suggested. These include the genetic profile and lifestyle of the affected individual in addition to environmental triggers such as bacterial, parasitic, fungal and viral infections. Infections caused by viruses usually trigger a potent immune response that is necessary for the containment of the infection; however, in some cases, a failure in the regulation of this immune response may lead to harmful immune reactions directed against the host's antigens. The autoimmune attack can be carried out by different arms and components of the immune system and through different possible mechanisms including molecular mimicry, bystander activation, and epitope spreading among others. In this review, we examine the data available for the involvement of viral infections in triggering or exacerbating autoimmune diseases in addition to discussing the mechanisms by which these viral infections and the immune pathways they trigger possibly contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut , Beirut , Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut , Beirut , Lebanon
| |
Collapse
|
19
|
Suzuki T, Fukui S, Umekita K, Miyamoto J, Umeda M, Nishino A, Okada A, Koga T, Kawashiri SY, Iwamoto N, Ichinose K, Tamai M, Fujikawa K, Aramaki T, Mizokami A, Matsuoka N, Ueki Y, Eguchi K, Sato S, Hidaka T, Origuchi T, Okayama A, Kawakami A, Nakamura H. Brief Report: Attenuated Effectiveness of Tumor Necrosis Factor Inhibitors for Anti-Human T Lymphotropic Virus Type I Antibody-Positive Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:1014-1021. [DOI: 10.1002/art.40461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Takahisa Suzuki
- Japanese Red Cross Nagasaki Genbaku Hospital; Nagasaki Japan
| | - Shoichi Fukui
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | | | - Junya Miyamoto
- Nagasaki University Hospital Clinical Research Center; Nagasaki Japan
| | | | - Ayako Nishino
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Akitomo Okada
- Japanese Red Cross Nagasaki Genbaku Hospital; Nagasaki Japan
| | - Tomohiro Koga
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Shin-ya Kawashiri
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Naoki Iwamoto
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Kunihiro Ichinose
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Mami Tamai
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Keita Fujikawa
- Japan Community Healthcare Organization Isahaya General Hospital; Isahaya Japan
| | | | - Akinari Mizokami
- Japan Community Healthcare Organization Isahaya General Hospital; Isahaya Japan
| | - Naoki Matsuoka
- Nagasaki Medical Hospital of Rheumatology; Nagasaki Japan
| | | | | | - Shuntaro Sato
- Nagasaki University Hospital Clinical Research Center; Nagasaki Japan
| | | | - Tomoki Origuchi
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | | | - Atsushi Kawakami
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hideki Nakamura
- Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
20
|
Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren's syndrome patients using single-cell analysis. Clin Immunol 2018; 192:58-67. [PMID: 29679709 DOI: 10.1016/j.clim.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease in which the underlying cause has yet to be elucidated. The main objective of this study was to determine the T cell receptor (TCR) repertoires of individual infiltrating T helper (Th)-1 and 17 cells of pSS patients using single-cell analysis. Single-cell analysis of ex-vivo infiltrating T cells demonstrated that pSS patients had higher frequencies of activated Th17 cells. Single-cell TCR sequencing revealed that TCRβ variable (TRBV)3-1/joint (J)1-2 (CLFLSMSACVW) and TRBV20-1/J1-1 (SVGSTAIPP*T) were expressed by activated Th1 and Th17 cells in both cohorts. Uniquely, TCRα variable (TRAV)8-2/J5 (VVSDTVLETAGE) was expressed by Th1 cells present only in patients and complementarity-determining region (CDR)3α-specific motif (LSTD*E) present in both Th1/Th17 cells. The study demonstrates that both activated Th1 and Th17 cells of pSS patients showed restricted clonal diversities of which two CDR3 motifs were present in controls and patients, with another two motifs unique to pSS.
Collapse
|
21
|
Yamanashi H, Koyamatsu J, Nagayoshi M, Shimizu Y, Kawashiri SY, Kondo H, Fukui S, Tamai M, Sato S, Yanagihara K, Kawakami A, Maeda T. Human T-Cell Leukemia Virus-1 Infection Is Associated With Atherosclerosis as Measured by Carotid Intima-Media Thickness in Japanese Community-Dwelling Older People. Clin Infect Dis 2018. [DOI: 10.1093/cid/ciy168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hirotomo Yamanashi
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Goto
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Japan
| | - Jun Koyamatsu
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Goto
| | | | - Yuji Shimizu
- Department of Community Medicine, Sakamoto, Japan
| | | | | | | | - Mami Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Sakamoto, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Japan
| | - Takahiro Maeda
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Goto
- Department of Community Medicine, Sakamoto, Japan
| |
Collapse
|
22
|
Quartuccio L, Gandolfo S, Callegher SZ, De Vita S. Sjögren’s Syndrome. THE MICROBIOME IN RHEUMATIC DISEASES AND INFECTION 2018:323-335. [DOI: 10.1007/978-3-319-79026-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
What is the evidence for Sjögren's syndrome being triggered by viral infection? Subplot: infections that cause clinical features of Sjögren's syndrome. Curr Opin Rheumatol 2017; 28:390-7. [PMID: 26962705 DOI: 10.1097/bor.0000000000000287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To clarify the involvement of viral infections in the pathogenesis of Sjögren's syndrome and to discuss whether viruses can be a trigger for the development of Sjögren's syndrome. RECENT FINDINGS Although some viruses are candidate triggers of Sjögren's syndrome, we focus on human T lymphotropic virus type I (HTLV-I). Clinicoepidemiological studies show a relationship between HTLV-I and Sjögren's syndrome with a low frequency of salivary gland damage in magnetic resonance imaging, autoantibody production and ectopic germinal center in HTLV-I-associated myelopathy (HAM) patients with Sjögren's syndrome. Our recent study showed that HTLV-I has the potential to infect salivary gland epithelial cells (SGECs). After a coculture of HCT-5 (an HTLV-I-infected T-cell line derived from the cerebrospinal fluid) of an HAM patient and SGECs, we observed time-dependent increases in the levels of soluble intracellular adhesion molecule1, interferon gamma-induced protein 10 kDa and regulated on activation, normal T-cell expressed and secreted. In addition, SGECs themselves express these molecules along with the expression of HTLV-I proteins. SUMMARY HTLV-I is involved in the pathogenesis of HTLV-I-seropositive patients with Sjögren's syndrome. By infecting CD4 T cells in vivo, HTLV-I induces specific clinicopathological conditions. In addition, HTLV-I-infected SGECs have the potential to augment the expression of molecules involved in cell adhesion, inflammation and migration.
Collapse
|
24
|
Fukui S, Nakamura H, Takahashi Y, Iwamoto N, Hasegawa H, Yanagihara K, Nakamura T, Okayama A, Kawakami A. Tumor necrosis factor alpha inhibitors have no effect on a human T-lymphotropic virus type-I (HTLV-I)-infected cell line from patients with HTLV-I-associated myelopathy. BMC Immunol 2017; 18:7. [PMID: 28158970 PMCID: PMC5292003 DOI: 10.1186/s12865-017-0191-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/26/2017] [Indexed: 01/21/2023] Open
Abstract
Background While tumor necrosis factor alpha (TNF-α) inhibitors (TNFi) and other biologics are very effective against autoimmune diseases, they can also cause infectious diseases. Therefore, it is important to clarify whether the TNFi sometimes used to treat patients with rheumatoid arthritis (RA) complicated with human T-lymphotropic virus type-I (HTLV-I) infection have the unintended side effect of promoting HTLV-I proliferation. Methods We used the HTLV-I-infected cell line HCT-5, derived from spinal fluid cells of a patient with HTLV-I associated myelopathy, to evaluate the production of cytokines and chemokines, TNF-α receptor (TNFR), the expression of HTLV-I associated genes, the HTLV-I proviral load (PVL), the expression of HTLV-I structural protein, and apoptosis. We used Jurkat cells as a control. Results Supernatants of HCT-5 showed time-dependent elevations of IL-6, RANTES and ICAM-1. HCT-5 supernatants treated with infliximab, adalimumab, etanercept (ETN), golimumab and certolizumab pegol showed no significant differences in the levels of these molecules compared to the control. Neither TNFR1 nor TNFR2 expression was altered by any TNFi treatment, relative to phosphate-buffered saline (PBS) treatment, with the exception that TNFR2 was significantly decreased and internalized in HCT-5 cells by ETN treatment. The HTLV-I associated genes Tax and HBZ and the PVL levels were not significantly changed. Immunofluorescence staining of HCT-5 for an HTLV-I-associated protein, GAG, was also not significantly different between any of the TNFi treatments and the PBS treatment. DNA ladders as an index of apoptosis were not detected. Apoptotic cells were not increased by the addition of any TNFi. Conclusions In vitro, TNFi did not affect the cytokine profiles, expression of associated genes and proteins, proviral load or apoptosis of HCT-5 cells. The results suggested that TNFi treatment of RA patients complicated with HTLV-I might have no effect on HTLV-I infection.
Collapse
Affiliation(s)
- Shoichi Fukui
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yoshiko Takahashi
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Sasebo, Japan
| | - Akihiko Okayama
- Department of Rheumatology, Infectious Diseases and Laboratory Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
25
|
Narkeviciute I, Sudzius G, Mieliauskaite D, Mackiewicz Z, Butrimiene I, Viliene R, Dumalakiene I. Are cytotoxic effector cells changes in peripheral blood of patients with Sjögren's syndrome related to persistent virus infection: Suggestions and conundrums. Cell Immunol 2016; 310:123-130. [PMID: 27592028 DOI: 10.1016/j.cellimm.2016.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
Etiology of Sjögren's syndrome (SS) is still unknown, but there is strong evidence that certain pathogens of bacterial or viral origin can incite autoimmune response. The aim of this study was to quantitatively evaluate changes of the main cell populations (dendritic cells, natural killer, natural killer T and cytotoxic T lymphocytes) presumably participating in virus clearance in peripheral blood of patients with primary SS (pSS). In analyzing cytotoxic T lymphocytes (CTL) populations we observed alterations in the frequency of highly cytotoxic effector CD8high/57+/27-/45RA+, less cytotoxic CD8high/57-/27-/45RA+ effector cells and cytotoxic memory CD8high/57+/27+/45RA- effector cells. We found a decrease of conventional dendritic cells (cDC) population in peripheral blood of pSS patients. It is possible that, a decrease of effector CTL and cDC, accompanied by increase of transitory phenotype memory CTL in peripheral blood of pSS patients may be associated with viral etiopathogenesis of Sjögren's syndrome.
Collapse
Affiliation(s)
- Ieva Narkeviciute
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Gintaras Sudzius
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Diana Mieliauskaite
- Department of Innovative Diagnostic, Treatment and Health Monitoring Technology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Zygmunt Mackiewicz
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Irena Butrimiene
- Department of Innovative Diagnostic, Treatment and Health Monitoring Technology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania; Center of Rheumatology, Vilnius University, Santariskiu st. 2, LT-08406 Vilnius, Lithuania
| | - Rita Viliene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania
| | - Irena Dumalakiene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu st. 5, LT-08406 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223 Vilnius, Lithuania.
| |
Collapse
|
26
|
Brito-Zerón P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, Sivils K, Theander E, Tzioufas A, Ramos-Casals M. Sjögren syndrome. Nat Rev Dis Primers 2016; 2:16047. [PMID: 27383445 DOI: 10.1038/nrdp.2016.47] [Citation(s) in RCA: 508] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sjögren syndrome (SjS) is a systemic autoimmune disease that primarily affects the exocrine glands (mainly the salivary and lacrimal glands) and results in the severe dryness of mucosal surfaces, principally in the mouth and eyes. This disease predominantly affects middle-aged women, but can also be observed in children, men and the elderly. The clinical presentation of SjS is heterogeneous and can vary from sicca symptoms to systemic disease (characterized by peri-epithelial lymphocytic infiltration of the affected tissue or the deposition of the immune complex) and lymphoma. The mechanism underlying the development of SjS is the destruction of the epithelium of the exocrine glands, as a consequence of abnormal B cell and T cell responses to the autoantigens Ro/SSA and La/SSB, among others. Diagnostic criteria for SjS include the detection of autoantibodies in patient serum and histological analysis of biopsied salivary gland tissue. Therapeutic approaches for SjS include both topical and systemic treatments to manage the sicca and systemic symptoms of disease. SjS is a serious disease with excess mortality, mainly related to the systemic involvement of disease and the development of lymphomas in some patients. Knowledge of SjS has progressed substantially, but this disease is still characterized by sicca symptoms, the systemic involvement of disease, lymphocytic infiltration to exocrine glands, the presence of anti-Ro/SSA and anti-La/SSB autoantibodies and the increased risk of lymphoma in patients with SjS.
Collapse
Affiliation(s)
- Pilar Brito-Zerón
- Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain.,Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain.,Department of Autoimmune Diseases, ICMiD, Hospital Clínic, C/Villarroel, 170, 08036 Barcelona, Spain
| | | | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Simon J Bowman
- Rheumatology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Xavier Mariette
- Université Paris Sud, INSERM, Paris, France.,Center for Immunology of Viral Infections and Autoimmune Diseases, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, Paris, France
| | - Kathy Sivils
- Oklahoma Sjögren's syndrome Center of Research Translation, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Elke Theander
- Department of Rheumatology, Malmö University Hospital, Lund University, Lund, Sweden
| | - Athanasios Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece
| | - Manuel Ramos-Casals
- Sjögren Syndrome Research Group (AGAUR), Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain.,Department of Autoimmune Diseases, ICMiD, Hospital Clínic, C/Villarroel, 170, 08036 Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to give an update on the understanding of the immune responses involved in the pathogenesis of primary Sjögren's syndrome (pSS), and to highlight recent findings on the underlying molecular and cellular mechanisms at play. RECENT FINDINGS In recent years, genetic studies have confirmed the importance of aberrant type I interferon (IFN) and B cell responses in pSS and highlighted critical pathways involved in disease pathogenesis. In particular, the formation of ectopic lymphoid structures has emerged as an important factor in the establishment of chronic autoimmune responses in target organs. Interestingly, recent studies on viral infection in the context of pSS, as well as findings on the contribution of salivary gland epithelial cells in local immune responses, offer further clues to understand pSS etiology and its target organ specificity. Finally, new evidence brings T cells and natural killer cells under renewed attention as possible important contributors to pSS pathogenesis. SUMMARY Progress made during the last few years on the pathogenesis of pSS has been mirrored by clinical trials directed at inhibiting cytokines, B, or T cell responses. Future efforts should focus on identifying additional pSS specific targets and developing methods to help choose optimal therapeutic strategies for the individual patient.
Collapse
|
28
|
Quaresma JAS, Yoshikawa GT, Koyama RVL, Dias GAS, Fujihara S, Fuzii HT. HTLV-1, Immune Response and Autoimmunity. Viruses 2015; 8:v8010005. [PMID: 26712781 PMCID: PMC4728565 DOI: 10.3390/v8010005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren's Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4⁺ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4⁺ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.
Collapse
Affiliation(s)
- Juarez A S Quaresma
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Gilberto T Yoshikawa
- Science Health Institute, Federal University of Pará, Praça Camilo Salgado, 1, Belém, Pará 66055-240, Brazil.
| | - Roberta V L Koyama
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - George A S Dias
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Satomi Fujihara
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| | - Hellen T Fuzii
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| |
Collapse
|
29
|
Nakamura H, Shimizu T, Takagi Y, Takahashi Y, Horai Y, Nakashima Y, Sato S, Shiraishi H, Nakamura T, Fukuoka J, Nakamura T, Kawakami A. Reevaluation for clinical manifestations of HTLV-I-seropositive patients with Sjögren's syndrome. BMC Musculoskelet Disord 2015; 16:335. [PMID: 26537778 PMCID: PMC4634153 DOI: 10.1186/s12891-015-0773-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study was to reassess the prevalence and characteristics of human T lymphotropic virus type I (HTLV-I)-associated Sjögren’s syndrome (SS) and SS in HTLV-I-associated myelopathy (HAM) based on the American European Consensus Group (AECG) criteria in HTLV-I endemic area, Nagasaki prefecture. Methods The 349 patients who underwent a minor salivary gland biopsy (MSGB) for suspected SS were retrospectively classified by AECG classification criteria and divided with or without anti-HTLV-I antibody. Results The HTLV-I data-available 294 patients were investigated. One hundred-seventy patients were classified as SS and 26.5 % were HTLV-I-seropositive. We have included 26 patients with HTLV-I-associated myelopathy (HAM) and 38.5 % were classified as having SS. The prevalences of ANA and anti-SS-A/Ro antibody of HAM + SS were significantly low compared to the HTLV-I asymptomatic carriers (AC) with SS and the HTLV-I-seronegative SS patients, although lacrimal dysfunction tended to be high in HAM + SS and significantly high in AC + SS patients compared with the patients with HTLV-I-seronegative SS. The focus scores of MSGB in the HAM + SS patients were similar to those of the AC + SS patients and the HTLV-I-seronegative patients with SS. Among the MSGB-positive patients, there was a low prevalence of ANA in the HAM + SS patients. Similar results were obtained in case of anti-SS-A/Ro or SS-B/La antibody. Conclusion In HTLV-I endemic area, high prevalence of anti-HTLV-I antibody among SS as well as the characteristics of HAM + SS and AC + SS was still determined by AECG classification criteria.
Collapse
Affiliation(s)
- Hideki Nakamura
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Toshimasa Shimizu
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Yukinori Takagi
- Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, Nagasaki, Japan.
| | - Yoshiko Takahashi
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Yoshiro Horai
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Yoshikazu Nakashima
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan.
| | - Hirokazu Shiraishi
- Unit of Translational Medicine, Department of Clinical Neuroscience and Neurology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Nagasaki, Japan.
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Hospital, Nagasaki, Japan.
| | - Takashi Nakamura
- Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, Nagasaki, Japan.
| | - Atsushi Kawakami
- Unit of Translational Medicine, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8501, Japan.
| |
Collapse
|