1
|
Li YJ, Geng WL, Li CC, Wu JH, Gao F, Wang Y. Progress of CCL20-CCR6 in the airways: a promising new therapeutic target. J Inflamm (Lond) 2024; 21:54. [PMID: 39731176 PMCID: PMC11681768 DOI: 10.1186/s12950-024-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling. Numerous studies have demonstrated that therapeutic interventions targeting CCL20 and CCR6, including antibodies and antagonists, have the potential to mitigate disease progression. Despite the promising research prospects surrounding the CCL20-CCR6 chemokine axis, the precise mechanisms underlying its action in respiratory diseases remain largely elusive. In this review, we delve into the potential roles of the CCL20-CCR6 axis within the respiratory system by synthesizing and analyzing current research findings. Our objective is to provide a comprehensive understanding of the CCL20-CCR6 axis and its implications for respiratory health and disease. And we aspire to propel research endeavors in this domain and furnish valuable insights for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Ya -Jing Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wan-Li Geng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chen-Chen Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jia-Hao Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
2
|
Jia Y, Xiong S, Chen H, Liu D, Wu X. Exosomes secreted by podocytes regulate the differentiation of Th17/Treg cells in idiopathic nephrotic syndrome. Heliyon 2024; 10:e37866. [PMID: 39315171 PMCID: PMC11417541 DOI: 10.1016/j.heliyon.2024.e37866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have demonstrated that immune cells release exosomes, which act as antigen-presenting vesicles to activate T cells. In our previous study, we discovered that podocytes, a type of kidney cell, can also exhibit antigen-presenting functions to naïve CD4+ T cells in idiopathic nephrotic syndrome (INS). Building upon these findings, the objective of this study was to investigate whether podocytes can regulate the balance between Th17 and Treg cells through the release of exosomes. Methods We co-cultured naïve CD4+ T cells with LPS-treated bone marrow dendritic cells (LPS-BMDC), LPS-treated mouse podocyte clone 5 (LPS-MPC-5), and exosomes derived from LPS-MPC-5 (LPS-EXO). As a control group, naïve CD4+ T cells were cultured with exosomes from untreated MPC-5 (EXO). After 48 h, we analyzed the percentages of Th17 and Treg cells using flow cytometry, measured the concentrations of IL-17A, IL-10, and IL-4 were using ELISA, and examined the expressions of IL-17a, IL-10, RORC, and FOXP3 using RT-qPCR. Results We confirmed the presence of exosomes derived from podocytes based on their morphology, size distribution, concentrations, and the levels of exosomes-specific markers. The percentage of Th17 and Treg cells in the LPS-EXO group was significantly higher than that in the control groups, but lower than in the LPS-MPC-5 group. Furthermore, the ratio of Th17/Treg was relatively higher in the LPS-EXO group compared to the LPS-MPC-5 group. Conclusion This study indicated further insights into the role of exosomes released from LPS-treated podocytes in regulating the balance between Th17 and Treg cells in INS.
Collapse
Affiliation(s)
- Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shiqiu Xiong
- Department of Gastroenterology, Xi'an Children's Hospital, Xi 'an, Shanxi, China
| | - Haixia Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Donghai Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
4
|
Rosetti F, Madera-Salcedo IK, Crispín JC. Relevance of acquired T cell molecular defects in the immunopathogenesis of SLE. Clin Immunol 2024; 263:110225. [PMID: 38642784 DOI: 10.1016/j.clim.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune diseases are thought to develop in genetically predisposed individuals when triggered by environmental factors. This paradigm does not fully explain disease development, as it fails to consider the delay between birth and disease expression. In this review, we discuss observations described in T cells from patients with SLE that are not related to hereditary factors and have therefore been considered secondary to the disease process itself. Here, we contextualize some of those observations and argue that they may represent a pathogenic layer between genetic factors and disease development. Acquired changes in T cell phenotype and function in the setting of SLE may affect the immune system, creating a predisposition towards a more inflammatory and pathogenic system that amplifies autoimmunity and facilitates disease development.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - Iris K Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico
| | - José C Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Mexico City 14080, Mexico; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| |
Collapse
|
5
|
Scherlinger M, Li H, Pan W, Li W, Karino K, Vichos T, Boulougoura A, Yoshida N, Tsokos MG, Tsokos GC. CaMK4 controls follicular helper T cell expansion and function during normal and autoimmune T-dependent B cell responses. Nat Commun 2024; 15:840. [PMID: 38287012 PMCID: PMC10825135 DOI: 10.1038/s41467-024-45080-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated B cell compartment responsible for the production of autoantibodies. Here, we show that T cell-specific expression of calcium/calmodulin-dependent protein kinase IV (CaMK4) leads to T follicular helper (Tfh) cells expansion in models of T-dependent immunization and autoimmunity. Mechanistically, CaMK4 controls the Tfh-specific transcription factor B cell lymphoma 6 (Bcl6) at the transcriptional level through the cAMP responsive element modulator α (CREMα). In the absence of CaMK4 in T cells, germinal center formation and humoral immunity is impaired in immunized mice, resulting in reduced anti-dsDNA titres, as well as IgG and complement kidney deposition in the lupus-prone B6.lpr mouse. In human Tfh cells, CaMK4 inhibition reduced BCL6 expression and IL-21 secretion ex vivo, resulting in impaired plasmablast formation and IgG production. In patients with SLE, CAMK4 mRNA levels in Tfh cells correlated with those of BCL6. In conclusion, we identify CaMK4/CREMα as a driver of T cell-dependent B cell dysregulation in autoimmunity.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Rheumatology department, Strasbourg University Hospital of Hautepierre, Strasbourg, France.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Strasbourg, France.
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Wei Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kohei Karino
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Theodoros Vichos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
7
|
Wang J, Yang J, Xia W, Zhang M, Tang H, Wang K, Zhou C, Qian L, Fan Y. Escherichia coli enhances Th17/Treg imbalance via TLR4/NF-κB signaling pathway in oral lichen planus. Int Immunopharmacol 2023; 119:110175. [PMID: 37058754 DOI: 10.1016/j.intimp.2023.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Oral lichen planus (OLP) is a T-cell-mediated immunoinflammatory disease. Several studies have proposed that Escherichia coli (E. coli) may participate in the progress of OLP. In this study, we examined the functional role of E. coli and its supernatant via toll-like receptor 4 (TLR4)/nuclear factor-kappab (NF-κB) signaling pathway in regulating T helper (Th) 17/ regulatory T (Treg) balance and related cytokines and chemokines profile in OLP immune microenvironment. We discovered that E. coli and supernatant could activate the TLR4/NF-κB signaling pathway in human oral keratinocytes (HOKs) and OLP-derived T cells and increase the expression of interleukin (IL)-6, IL-17, C-C motif chemokine ligand (CCL) 17 and CCL20, thereby increasing the expression of retinoic acid-related orphan receptor (RoRγt) and the proportion of Th17 cells. Furthermore, the co-culture experiment revealed that HOKs treated with E. coli and supernatant increased T cell proliferation and migration, which promoted HOKs apoptosis. TLR4 inhibitor (TAK-242) successfully reversed the effect of E. coli and its supernatant. Consequently, E. coli and supernatant activated the TLR4/NF-κB signaling pathway in HOKs and OLP-derived T cells, leading to increased cytokines and chemokines expression and Th17/Treg imbalance in OLP.
Collapse
Affiliation(s)
- Jia Wang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Jingjing Yang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Wenhui Xia
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Mengna Zhang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Haonan Tang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Keyi Wang
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Chenyu Zhou
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Ling Qian
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China
| | - Yuan Fan
- Department of Oral Medicine, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, Jiangsu, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
8
|
Guo C, Liu Q, Zong D, Zhang W, Zuo Z, Yu Q, Sha Q, Zhu L, Gao X, Fang J, Tao J, Wu Q, Li X, Qu K. Single-cell transcriptome profiling and chromatin accessibility reveal an exhausted regulatory CD4+ T cell subset in systemic lupus erythematosus. Cell Rep 2022; 41:111606. [DOI: 10.1016/j.celrep.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
|
9
|
Szabó K, Jámbor I, Pázmándi K, Nagy N, Papp G, Tarr T. Altered Circulating Follicular T Helper Cell Subsets and Follicular T Regulatory Cells Are Indicators of a Derailed B Cell Response in Lupus, Which Could Be Modified by Targeting IL-21R. Int J Mol Sci 2022; 23:ijms232012209. [PMID: 36293075 PMCID: PMC9602506 DOI: 10.3390/ijms232012209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the breakdown of self-tolerance, the production of high-affinity pathogenic autoantibodies and derailed B cell responses, which indicates the importance of central players, such as follicular T helper (TFH) subsets and follicular T regulatory (TFR) cells, in the pathomechanism of the disease. In this study, we aimed to analyze the distribution of the circulating counterparts of these cells and their association with disease characteristics and B cell disproportions in SLE. We found that the increased percentage of activated circulating TFH (cTFH) and cTFR cells was more pronounced in cutaneous lupus; however, among cTFH subsets, the frequency of cTFH17 cells was decreased in patients with lupus nephritis. Furthermore, the decreased proportion of cTFH17 cells was associated with low complement C4 levels and high disease activity scores. We also investigated whether the blocking of the IL-21 receptor (IL-21R) with an anti-IL-21R monoclonal antibody inhibits the B cell response, since IL-21 primarily produced by TFH cells potentially promotes humoral immunity. We observed that anti-IL-21R inhibited plasmablast generation and immunoglobulin production. Our study demonstrated that, besides cTFR/cTFH imbalance, cTFH17 cells play a crucial role in SLE pathogenesis, and modulating cTFH-B cell interaction through the IL-21/IL-21R pathway may be a promising therapeutic strategy to suppress the pathological B cell response.
Collapse
Affiliation(s)
- Krisztina Szabó
- Division of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| | - Ilona Jámbor
- Division of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nikolett Nagy
- Division of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Papp
- Division of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
10
|
Abstract
Systemic lupus erythematosus (SLE) is a typical autoimmune disease with a complex pathogenesis and genetic predisposition. With continued understanding of this disease, it was found that SLE is related to the interferon gene signature. Most studies have emphasized the important role of IFN-α in SLE, but our previous study suggested a nonnegligible role of IFN-γ in SLE. Some scholars previously found that IFN-γ is abnormally elevated as early as before the classification of SLE and before the emergence of autoantibodies and IFN-α. Due to the large overlap between IFN-α and IFN-γ, SLE is mostly characterized by expression of the IFN-α gene after onset. Therefore, the role of IFN-γ in SLE may be underestimated. This article mainly reviews the role of IFN-γ in SLE and focuses on the nonnegligible role of IFN-γ in SLE to gain a more comprehensive understanding of the disease.
Collapse
|
11
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
12
|
Paquissi FC, Abensur H. The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Front Med (Lausanne) 2021; 8:654912. [PMID: 34540858 PMCID: PMC8446428 DOI: 10.3389/fmed.2021.654912] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by dysregulation and hyperreactivity of the immune response at various levels, including hyperactivation of effector cell subtypes, autoantibodies production, immune complex formation, and deposition in tissues. The consequences of hyperreactivity to the self are systemic and local inflammation and tissue damage in multiple organs. Lupus nephritis (LN) is one of the most worrying manifestations of SLE, and most patients have this involvement at some point in the course of the disease. Among the effector cells involved, the Th17, a subtype of T helper cells (CD4+), has shown significant hyperactivation and participates in kidney damage and many other organs. Th17 cells have IL-17A and IL-17F as main cytokines with receptors expressed in most renal cells, being involved in the activation of many proinflammatory and profibrotic pathways. The Th17/IL-17 axis promotes and maintains repetitive tissue damage and maladaptive repair; leading to fibrosis, loss of organ architecture and function. In the podocytes, the Th17/IL-17 axis effects include changes of the cytoskeleton with increased motility, decreased expression of health proteins, increased oxidative stress, and activation of the inflammasome and caspases resulting in podocytes apoptosis. In renal tubular epithelial cells, the Th17/IL-17 axis promotes the activation of profibrotic pathways such as increased TGF-β expression and epithelial-mesenchymal transition (EMT) with consequent increase of extracellular matrix proteins. In addition, the IL-17 promotes a proinflammatory environment by stimulating the synthesis of inflammatory cytokines by intrinsic renal cells and immune cells, and the synthesis of growth factors and chemokines, which together result in granulopoiesis/myelopoiesis, and further recruitment of immune cells to the kidney. The purpose of this work is to present the prognostic and immunopathologic role of the Th17/IL-17 axis in Kidney diseases, with a special focus on LN, including its exploration as a potential immunotherapeutic target in this complication.
Collapse
Affiliation(s)
- Feliciano Chanana Paquissi
- Department of Medicine, Clínica Girassol, Luanda, Angola
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo Abensur
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Liao Z, Tang J, Luo L, Deng S, Luo L, Wang F, Yuan X, Hu X, Feng J, Li X. Altered circulating CCR6 +and CXCR3 + T cell subsets are associated with poor renal prognosis in MPO-ANCA-associated vasculitis. Arthritis Res Ther 2021; 23:194. [PMID: 34289887 PMCID: PMC8293504 DOI: 10.1186/s13075-021-02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
Background Effector memory T cells are pivotal effectors of adaptive immunity with enhanced migration characteristics and are involved in the pathogenesis of ANCA-associated vasculitis (AAV). The diversity of effector memory T cells in chemokine receptor expression has been well studied in proteinase 3 (PR3)-AAV. However, few studies have been conducted in myeloperoxidase (MPO)-AAV. Here, we characterized chemokine receptor expression on effector memory T cells from patients with active MPO-AAV. Methods Clinical data from newly diagnosed MPO-AAV patients and healthy subjects were collected and analyzed. Human peripheral blood mononuclear cells (PBMCs) isolated from patients with active MPO-AAV were analyzed by flow cytometry. The production of effector memory T cell-related chemokines in serum was assessed by ELISA. Results We observed decreased percentages of CD4+ and CD8+ T cells in the peripheral blood, accompanied by a significant decrease in CCR6-expressing T cells but an increase in CXCR3+ T cells, in active MPO-AAV. Furthermore, the decrease in CCR6 and increase in CXCR3 expression were mainly limited to effector memory T cells. Consistent with this finding, the serum level of CCL20 was increased. In addition, a decreasing trend in the TEM17 cell frequency, with concomitant increases in the frequencies of CD4+ TEM1 and CD4+ TEM17.1 cells, was observed when T cell functional subsets were defined by chemokine receptor expression. Moreover, the proportions of peripheral CD8+ T cells and CD4+ TEM subsets were correlated with renal prognosis and inflammatory markers. Conclusions Our data indicate that dysregulated chemokine receptor expression on CD4+ and CD8+ effector memory T cells and aberrant distribution of functional CD4+ T cell subsets in patients with active MPO-AAV have critical roles related to kidney survival.
Collapse
Affiliation(s)
- Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Liying Luo
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuanglinzi Deng
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lisa Luo
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fangyuan Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiangning Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinyue Hu
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juntao Feng
- Department of Respiratory and Critical Care Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
14
|
Lu L, Wang Y, Zhou L, Li Y, Zhang X, Hu X, Shi S, He W. Vγ4 T cell-derived IL-17A is essential for amplification of inflammatory cascades in ischemic brain tissue after stroke. Int Immunopharmacol 2021; 96:107678. [PMID: 34162129 DOI: 10.1016/j.intimp.2021.107678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Through amplifying inflammatory cascades, IL-17A produced by γδ T cells potently attracts neutrophils to the site of injury for exacerbating ischemic tissue damage. Our goal was to identify the precise role of γδ T cell subsets in ischemic brain tissue damage of stroke. METHODS In a model of experimental stroke, we analyzed the functions of Vγ1 and Vγ4 T cells on γδ T cell-mediated ischemic brain tissue damage of stroke. RESULTS We identified that, in stroke, Vγ4 T cells are essential for γδ T cell-mediated ischemic brain tissue damage through providing an early source of IL-17A. Both CCL20 and IL-1β/IL-23 are deeply involved in Vγ4 T cell-mediated amplification of inflammatory responses: CCL20 might promote Vγ4 T cells recruit to infract hemisphere, and IL-1β/IL-23 powerfully enhance IL-17A production mediated by the infiltrating Vγ4 T cells. Moreover, Vγ4 T cell-derived IL-17A enhances both CCL20 and IL-1β, and conversely, CCL20 and IL-1β further enhance both recruitment and IL-17A production of IL-17A-positive cells, in a classic positive feedback loop. CONCLUSION Our data suggest that in the setting of ischemic stroke, Vγ4 T cell-derived IL-17A, CCL20 and IL-1β/IL-23 in infract hemisphere coordinately to amplify inflammatory cascades and exacerbate ischemic tissue damage.
Collapse
Affiliation(s)
- Long Lu
- Department of Neurology, North Kuanren General Hospital, Chongqing 401121, China
| | - Yangping Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yashu Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Shugui Shi
- Department of Neurology, North Kuanren General Hospital, Chongqing 401121, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China.
| |
Collapse
|
15
|
Luo Y, Guo J, Zhang P, Cheuk YC, Jiang Y, Wang J, Xu S, Rong R. Mesenchymal Stem Cell Protects Injured Renal Tubular Epithelial Cells by Regulating mTOR-Mediated Th17/Treg Axis. Front Immunol 2021; 12:684197. [PMID: 34122446 PMCID: PMC8194268 DOI: 10.3389/fimmu.2021.684197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
The increase in T helper 17 cell (Th17)-mediated pro-inflammatory response and decrease in regulatory T cell (Treg)-mediated anti-inflammatory effect aggravate renal tubular epithelial cell (RTEC) injury. However, increasing evidence indicated that mesenchymal stem cell (MSC) possessed the ability to control the imbalance between Th17 and Treg. Given that Th17 and Treg are derived from a common CD4+ T cell precursor, we summarize the current knowledge of MSC-mediated inhibition of the mammalian target of rapamycin (mTOR), which is a master regulator of CD4+ T cell polarization. During CD4+ T cell differentiation, mTOR signaling mediates Th17 and Treg differentiation via hypoxia-inducible factor-1α (HIF-1α)-dependent metabolic regulation and signaling pathway, as well as mTOR-mediated phosphorylation of signal transducer and activator of transcription (STAT) 3 and 5. Through interfering with mTOR signaling, MSC restrains CD4+ T cell differentiation into Th17, but in turn promotes Treg generation. Thus, this review indicates that MSC-mediated Th17-to-Treg polarization is expected to act as new immunotherapy for kidney injury.
Collapse
Affiliation(s)
- Yongsheng Luo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jingjing Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Pingbao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yamei Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiyan Wang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Shihao Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
16
|
Ikawa T, Miyagawa T, Fukui Y, Minatsuki S, Maki H, Inaba T, Hatano M, Toyama S, Omatsu J, Awaji K, Norimatsu Y, Watanabe Y, Yoshizaki A, Sato S, Asano Y. Association of serum CCL20 levels with pulmonary vascular involvement and primary biliary cholangitis in patients with systemic sclerosis. Int J Rheum Dis 2021; 24:711-718. [PMID: 33750014 DOI: 10.1111/1756-185x.14103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/20/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
AIM Systemic sclerosis (SSc) is a chronic autoimmune disease resulting in vasculopathy and fibrosis of the skin and major internal organs. Especially, interstitial lung disease and pulmonary arterial hypertension are the leading causes of mortality. C-C motif ligand 20 (CCL20) is known as a homeostatic and inflammatory chemokine, which is associated with fibrosis and angiogenesis and constantly expressed in organs involved in SSc. Therefore, we investigated the potential contribution of CCL20 to the development of SSc. METHOD We conducted cross-sectional analyses of 67 SSc patients and 20 healthy controls recruited in a single center for 9 years. Serum CCL20 levels were measured by enzyme-linked immunosorbent assay. Statistical analyses were performed with the Mann-Whitney U test, the Kruskal-Wallis test followed by Dunn's multiple comparison test, Fisher's exact probability test and the Spearman's rank correlation coefficient. RESULTS SSc patients had significantly higher serum CCL20 levels than healthy controls. In SSc patients, serum CCL20 levels correlated inversely with the percentage of predicated diffusion lung capacity for carbon monoxide and positively with mean pulmonary artery pressure (mPAP). In addition, SSc patients with increased serum CCL20 levels had anti-mitochondrial antibody M2 titer significantly elevated relative to those with normal levels, and SSc patients with asymptomatic primary biliary cholangitis (PBC) possessed higher serum CCL20 levels than those without. Importantly, serum CCL20 levels were associated positively with mPAP values and PBC presence by multivariate regression analysis. CONCLUSION Serum CCL20 levels may be involved in the development of pulmonary vascular involvement leading to pulmonary arterial hypertension and asymptomatic PBC in SSc patients.
Collapse
Affiliation(s)
- Tetsuya Ikawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisataka Maki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Inaba
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Zhang YM, Liu XZ, Zhou XJ, Liu LJ, Shi SF, Hou P, Lv JC, Zhang H. A Functional Variant rs3093023 in CCR6 Is Associated With IgA Nephropathy by Regulating Th17 Cells in a North Han Chinese Population. Front Immunol 2021; 12:600598. [PMID: 33717080 PMCID: PMC7946973 DOI: 10.3389/fimmu.2021.600598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 6 (CCR6) is a susceptibility gene of various immune-related diseases, which was suggested to be shared with immunoglobulin A nephropathy (IgAN). In this study, we aimed to identify the functional variants. First, we analyzed the associations of CCR6 common and rare variants detected by multi-platform chips with IgAN susceptibility using imputation and identified 68 significantly associated common variants located in the regulatory region. Among them, rs3093023 showed both statistical significance (rs3093023-A, odds ratio [OR] = 1.15, P = 2.00 × 10−2) and the expression quantitative trait loci (eQTL) effect (P = 1.45 × 10−3). It was independently replicated (rs3093023-A, OR = 1.18, P = 5.56 × 10−3) and the association was reinforced in the meta-analysis (rs3093023-A, OR = 1.17, P = 6.14 × 10−7). Although rs3093023 was in a strong linkage disequilibrium with the reported CCR6 functional variant dinucleotide polymorphism, CCR6DNP, the alleles of rs3093023 (G>A) rather than of CCR6DNP were shown differential nuclear protein binding effect by electrophoretic mobility shift assay. The RegulomeDB and JASPAR databases predicted Pou2f1 as the potential transcription factor, which was negatively associated with CCR6 mRNA (r = −0.60, P = 3.94 × 10−9). At the mRNA level, the eQTL effect of CCR6 was validated (P = 4.39 × 10−2), and CCR6 was positively associated with the expression of CCR4 and IL-17A rather than that of CXCR3 and IFNG. At the protein level, a higher CCR6+ cell ratio was observed in a risk allele dose-dependent manner in lymphocytes (P = 3.57 × 10−2), CD3+ T cells (P = 4.54 × 10−2), and CD4+ T cells (P = 1.32 × 10−2), but not in CD8+ T cells. Clinical-pathological analysis showed that rs3093023 risk allele was significantly associated with diastolic blood pressure, serum creatinine, and high ratio of tubular atrophy/interstitial fibrosis. Overall, the rs3093023 was prioritized as the function variant in CCR6, which may contribute to IgAN susceptibility by regulating Th17 cells.
Collapse
Affiliation(s)
- Yue-Miao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Xing-Zi Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Li-Jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Su-Fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Ping Hou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| |
Collapse
|
18
|
Subburayalu J, Dolff S, Xu S, Sun M, Lindemann M, Heinold A, Heinemann FM, Tervaert JWC, Eisenberger U, Korth J, Brinkhoff A, Kribben A, Witzke O, Wilde B. Characterization of follicular T helper cells and donor-specific T helper cells in renal transplant patients with de novo donor-specific HLA-antibodies. Clin Immunol 2021; 226:108698. [PMID: 33639275 DOI: 10.1016/j.clim.2021.108698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
T follicular helper (TFH) cells are a heterogeneous subset of immunocompetent T helper (TH) cells capable of augmenting B cell responses in lymphoid tissues. In transplantation, exposure to allogeneic tissue activates TFH cells increasing the risk of the emergence of de novo donor-specific HLA-antibodies (dnDSA). These can cause antibody-mediated rejection (AMR) and allograft loss. Follicular regulatory T (TFR) cells counteract TFH cell activity. Here, we investigated the implications of TFH and TFR cells on dnDSA formation after renal transplantation (RTX). Considering TFH cells to be CXCR5+ and IL-21+, we found by flow cytometry that patients with dnDSA produced IL-21 more abundantly compared to healthy volunteers. In in vitro alloreactivity assays, patients with dnDSA featured an enhanced alloreactive TH cell pool in response to donor-specific HLA antigens. Besides, longitudinal investigations suggested enhanced alloreactivity shortly after transplantation increasing the risk of dnDSA development. Taken together, in spite of continuous immunosuppression we report a strong IL-21 response in TFH cells and an expanded reservoir of donor-specific memory TH cells in patients with dnDSA. This warrants further investigations if aberrant TFH cell activation may precede the formation of dnDSA promoting AMR.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Shilei Xu
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510530, China
| | - Ming Sun
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Ute Eisenberger
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Alexandra Brinkhoff
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| |
Collapse
|
19
|
Koga T, Ichinose K, Kawakami A, Tsokos GC. Current Insights and Future Prospects for Targeting IL-17 to Treat Patients With Systemic Lupus Erythematosus. Front Immunol 2021; 11:624971. [PMID: 33597953 PMCID: PMC7882681 DOI: 10.3389/fimmu.2020.624971] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune cell abnormalities which lead to the production of autoantibodies and the deposition of immune complexes. Interleukin (IL)-17-producing cells play an important role in the pathogenesis of the disease, making them an attractive therapeutic target. Studies in lupus-prone mice and of ex vivo cells from patients with SLE humans have shown that IL-17 represents a promising therapeutic target. Here we review molecular mechanisms involved in IL-17 production and Th17 cell differentiation and function and an update on the role of IL-17 in autoimmune diseases and the expected usefulness for targeting IL-17 therapeutically.
Collapse
Affiliation(s)
- Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kunihiro Ichinose
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
21
|
Zhan CS, Chen J, Chen J, Zhang LG, Liu Y, Du HX, Wang H, Zheng MJ, Yu ZQ, Chen XG, Zhang L, Liang CZ. CaMK4-dependent phosphorylation of Akt/mTOR underlies Th17 excessive activation in experimental autoimmune prostatitis. FASEB J 2020; 34:14006-14023. [PMID: 32862457 DOI: 10.1096/fj.201902910rrr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/11/2022]
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is a complicated syndrome characterized by genitourinary pain in the absence of bacterial infection. Th17 cell-driven autoimmunity has been proposed as a cause of CP/CPPS. However, the factors that promote Th17-driven autoimmunity in experimental autoimmune prostatitis (EAP) and the molecular mechanisms are still largely unknown. Here, we showed that Th17 cells were excessively activated, and blockade of IL-17A could effectively ameliorate various symptoms in EAP. Furthermore, we revealed that calcium/calmodulin-dependent kinase Ⅳ (CaMK4), especially Thr196 p-CaMK4 was increased in the Th17 cells of the EAP group, which were activated by intracellular cytosolic Ca2+ . Pharmacologic and genetic inhibition of CaMK4 decreased the proportion of Th17 cells, and the protein and mRNA level of IL-17A, IL-22, and RORγt. The phosphorylation of CaMK4 was dependent on the increase in intracellular cytosolic Ca2+ concentration in Th17 cells. A mechanistic study demonstrated that inhibition of CaMK4 reduced IL-17A production by decreasing the phosphorylation of Akt-mTOR, which was well accepted to positively regulate Th17 differentiation. Collectively, our results demonstrated that Ca2+ -CaMK4-Akt/mTOR-IL-17A axis inhibition may serve as a promising therapeutic strategy for CP/CPPS.
Collapse
Affiliation(s)
- Chang-Sheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
| | - Mei-Juan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Qiang Yu
- Department of Urology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Lee AY, Körner H. CC chemokine receptor 6 (CCR6) in the pathogenesis of systemic lupus erythematosus. Immunol Cell Biol 2020; 98:845-853. [PMID: 32634857 DOI: 10.1111/imcb.12375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
The CC chemokine receptor 6 (CCR6) and its sole chemokine ligand, CCL20, are an intriguing pair that have been implicated in a growing number of inflammatory, autoimmune and malignant disease processes. Recent observations have also highlighted this chemokine axis in the regulation of humoral immune responses. Through this review article, we explore the emerging links of CCR6-CCL20 with an archetypal autoimmune disease of humoral dysregulation: systemic lupus erythematosus (SLE). CCR6 is expressed prominently on several immune cells involved in the pathogenesis of SLE, such as dendritic cells and T-helper 17 cells. CCR6's expression is correlated with disease activity and serological markers of disease severity, suggesting a possible role in disease pathogenesis. However, there are numerous holes in our understanding of the functions of CCR6 and CCL20, and future studies are required to determine if there are any diagnostic, prognostic or monitoring roles for these important molecules.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, The University of Sydney, Westmead, NSW, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
23
|
Comparative transcriptome analysis reveals a potential role for CaMK4 in γδT17 cells from systemic lupus erythematosus patients with lupus nephritis. Int Immunopharmacol 2020; 80:106139. [DOI: 10.1016/j.intimp.2019.106139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/30/2023]
|
24
|
Alganabi M, Zhu H, O'Connell JS, Biouss G, Zito A, Li B, Bindi E, Pierro A. Calcium/calmodulin-dependent protein kinase IV signaling pathway is upregulated in experimental necrotizing enterocolitis. Pediatr Surg Int 2020; 36:271-277. [PMID: 31950358 DOI: 10.1007/s00383-019-04615-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Activation of calcium/calmodulin-dependent protein kinase IV (CaMKIV) has been shown to increase intestinal injury and inhibit epithelial cell proliferation in dextran sulfate sodium (DSS)-induced colitis mice. However, the role of CaMKIV in necrotizing enterocolitis (NEC) is unknown. We aimed to study the expression and activation of CaMKIV in experimental NEC. METHODS Following ethical approval, NEC (n = 10) was induced in C57BL/6 mouse pups by hypoxia, gavage hyperosmolar formula feeding and lipopolysaccharide from postnatal days P5 to 9. Breastfed pups served as control (n = 10). Mouse pups were sacrificed on P9 and the terminal ileum was harvested. Gene NEC injury was scored blindly by three independent investigators. CaMKIV, CREM and IL17 gene expression, and CaMKIV and pCaMKIV protein expression were assessed. The data were compared using Mann-Whitney U test. P < 0.05 was considered significant. RESULTS Intestinal injury was induced in the NEC mice and confirmed by histological scoring and inflammatory cytokine IL6. CaMKIV and its downstream target genes of CREM and IL17 were significantly elevated in NEC mice relative to control. Similarly, phosphorylated-CaMKIV (pCaMKIV), the active form of CaMKIV, was more notably expressed in the NEC ileal tissue relative to control ileal tissue. Elevated pCaMKIV protein expression was also confirmed by western blot. CONCLUSION CaMKIV expression and activation are upregulated in experimental NEC suggesting a potential contributing factor in the pathogenesis of NEC.
Collapse
Affiliation(s)
- Mashriq Alganabi
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Haitao Zhu
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Joshua S O'Connell
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - George Biouss
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Andrea Zito
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Edoardo Bindi
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
25
|
Li L, Chen X, Zhang Y, Li Q, Qi C, Fei X, Zheng F, Gong F, Fang M. Toll-like receptor 2 deficiency promotes the generation of alloreactive Th17 cells after cardiac transplantation in mice. Cell Immunol 2019; 338:9-20. [DOI: 10.1016/j.cellimm.2019.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022]
|
26
|
Koga T, Ichinose K, Kawakami A, Tsokos GC. The role of IL-17 in systemic lupus erythematosus and its potential as a therapeutic target. Expert Rev Clin Immunol 2019; 15:629-637. [PMID: 30874446 DOI: 10.1080/1744666x.2019.1593141] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies production and immune complex deposition with systemic clinical manifestations. Interleukin (IL)-17-producing cells play a crucial role in disease pathogenesis and represent an attractive therapeutic target. Areas covered: This review provides an update on the possibility of targeting IL-17 in SLE. The rational for this approach as well as currently available and future targets are discussed. Expert opinion: Although human expression studies and animal models indicate that IL-17 blocking may be a promising therapeutic strategy for SLE, direct evidence for IL-17 inhibition in SLE patients is unavailable. Biologic therapies and small-molecule drugs that target IL-17 production are required for the achievement of a favorable clinical effect in SLE patients.
Collapse
Affiliation(s)
- Tomohiro Koga
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,b Center for Bioinformatics and Molecular Medicine , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Kunihiro Ichinose
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Atsushi Kawakami
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - George C Tsokos
- c Division of Rheumatology and Clinical Immunology, Department of Medicine , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
27
|
Dysregulated T Cell Activation and Aberrant Cytokine Expression Profile in Systemic Lupus Erythematosus. Mediators Inflamm 2019; 2019:8450947. [PMID: 31007604 PMCID: PMC6441516 DOI: 10.1155/2019/8450947] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/26/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates a critical role for T cells and relevant cytokines in the pathogenesis of systemic lupus erythematosus (SLE). However, the specific contribution of T cells together with the related circulating cytokines in disease pathogenesis and organ involvement is still not clear. In the current study, we investigated relevant molecule expressions and cytokine levels in blood samples from 49 SLE patients and 22 healthy control subjects. The expression of HLA-DR and costimulatory molecules on T cells was evaluated by flow cytometry. Concentrations of serum C-reactive protein, erythrocyte sedimentation rate, anti-double-stranded DNA (anti-dsDNA) antibody, total lgG, complement 3, and complement 4 were measured. Serum cytokines and chemokines were measured by a cytometric bead array assay. Elevated frequencies of HLA-DR+ T cells and ICOS+ T cells were observed in SLE patients with positive anti-dsDNA antibodies compared with those in healthy controls (P < 0.001). The expression of HLA-DR+ T cells was positively correlated with SLEDAI (r = 0.15, P < 0.01). Furthermore, levels of serum IL-6, MCP-1, TNFRI, IL-10, IL-12, and CCL20 were higher in SLE patients compared with healthy controls. In addition, patients with hematologic manifestations displayed elevated frequencies of HLA-DR+ T cells and ICOS+ T cells. Patients with renal manifestations had a decreased frequency of TIGIT+ T cells. These results suggested a dysregulated T cell activity and cytokine expression profiles in SLE subjects. We also developed a chemokine and cytokine profiling strategy to predict the activity of SLE, which has clinical implication for better monitoring the flares and remission during the course of SLE and for assessing therapeutic interventions.
Collapse
|
28
|
Yang Y, Liu K, Chen Y, Gong Y, Liang Y. Indoleamine 2,3-Dioxygenase (IDO) Regulates Th17/Treg Immunity in Experimental IgA Nephropathy. Folia Biol (Praha) 2019; 65:101-108. [PMID: 31464185 DOI: 10.14712/fb2019065020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide. Current studies have shown that the Th17/Treg immune balance may be involved in the occurrence of IgAN, but the exact mechanism is still unclear. Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyses degradation of tryptophan (Trp) through the kynurenine (Kyn) pathway; it can control inflammation and immune response by inducing Trp starvation. IDO may be a key molecule in regulating the Th17/Treg immune balance. However, it is not clear whether IDO is involved in the IgAN disease occurrence by regulating the Th17/Treg immune balance. In this study, an IgAN mouse model was established. The mice were intraperitoneally inoculated with IDO inhibitor 1-MT or agonist ISS-ODN to observe whether the IDO signalling pathway participates in the occurrence and development of IgAN by regulating the Th17/Treg immune balance. The results showed that IDO inhibitor 1-MT significantly increased renal injury and glomerular IgA accumulation and up-regulated Th17/Treg and Th17-related cytokine expression in IgAN mice, while ISS-ODN significantly decreased renal injury and glomerular IgA accumulation, down-regulated Th17/Treg expression and inhibited Th17-related cytokine expression in IgAN mice. In conclusion, IDO was involved in the occurrence and progress of IgAN by regulating the Th17/ Treg balance.
Collapse
Affiliation(s)
- Y Yang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - K Liu
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Chen
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Gong
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| | - Y Liang
- Department of Nephrology, Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P. R. China
| |
Collapse
|
29
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
30
|
Zhong W, Jiang Z, Wu J, Jiang Y, Zhao L. CCR6 + Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status. PeerJ 2018; 6:e4294. [PMID: 29441231 PMCID: PMC5808313 DOI: 10.7717/peerj.4294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) disease has been shown to be associated with the generation of multiple auto-antibodies. Among these, anti-dsDNA antibodies (anti-DNAs) are specific and play a pathogenic role in SLE. Indeed, anti-DNA+ SLE patients display a worse disease course. The generation of these pathogenic anti-DNAs has been attributed to the interaction between aberrant T helper (Th) cells and autoimmune B cells. Thus, in this study we have investigated whether CCR6+Th cells have the ability to differentiate SLE patients based on anti-DNA status, and if their distribution has any correlation with disease activity. Methods We recruited 25 anti-DNA+ and 25 anti-DNA− treatment-naive onset SLE patients, matched for various clinical characteristics in our nested matched case-control study. CCR6+ Th cells and their additional subsets were analyzed in each patient by flow cytometry. Results Anti-DNA+ SLE patients specifically had a higher percentage of Th cells expressing CCR6 and CXCR3. Further analysis of CCR6+ Th cell subsets showed that anti-DNA+ SLE patients had elevated proportions of Th9, Th17, Th17.1 and CCR4/CXCR3 double-negative (DN) cells. However, the proportions of CCR6− Th subsets, including Th1 and Th2 cells, did not show any association with anti-DNA status. Finally, we identified a correlation between CCR6+ Th subsets and clinical indicators, specifically in anti-DNA+ SLE patients. Conclusions Our data indicated that CCR6+ Th cells and their subsets were elevated and correlated with disease activity in anti-DNA+ SLE patients. We speculated that CCR6+ Th cells may contribute to distinct disease severity in anti-DNA+ SLE patients.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Jiang Wu
- College of Electrical Engineering and Instrumentation, Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ling Zhao
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
31
|
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a multifunctional serine/threonine kinase that regulates gene expression by activating transcription factors in a wide range of immune cells including T cells and antigen-presenting cells. The function of CaMK4 is suggested to be abnormal mainly in systemic lupus erythematosus (SLE), which is characterized by autoantibody production, immune complex formation, and immune dysregulation. Although accumulating evidence indicates that CaMK4 plays important roles in the immune responses, the precise molecular mechanisms underlying the development of autoimmune diseases and inflammatory disorders have not been established. In this review, we briefly summarize the role of CaMK4 in immune responses. We also discuss T-cell signaling pathways that control interleukin (IL)-17 production in patients with lupus nephritis and in glomerulonephritis in lupus-prone mice. A better understanding of the signaling and gene regulation of CaMK4 will lead to the identification of novel therapeutic targets in Th17 driven-autoimmune diseases.
Collapse
Affiliation(s)
- Tomohiro Koga
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan.,b Center for Bioinformatics and Molecular Medicine , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Atsushi Kawakami
- a Unit of Advanced Preventive Medical Sciences , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| |
Collapse
|
32
|
Liu J, Zheng X, Deng H, Xu B, Chen L, Wang Q, Zhou Q, Zhang D, Wu C, Jiang J. Expression of CCR6 in esophageal squamous cell carcinoma and its effects on epithelial-to-mesenchymal transition. Oncotarget 2017; 8:115244-115253. [PMID: 29383156 PMCID: PMC5777768 DOI: 10.18632/oncotarget.23318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common esophageal cancer associated with poor prognosis. We detected the expression of C-C motif chemokine receptor 6 (CCR6) and epithelial-to-mesenchymal transition (EMT) markers in esophageal tissues/cells, and evaluated the effects of CCR6 on ESCC cells proliferation, migration and invasion in response to C-C motif chemokine ligand 20 (CCL20) treatment. Our data showed CCR6 was highly expressed in ESCC cell lines (ECA-109 and TE-1), whereas kept in a low expression in normal cell lines HEEC (P < 0.001). CCL20 stimulus induced a significant decrease in the proliferation ability of ESCC (P < 0.05). The healing speed of CCL20 group was significantly higher than control in ECA-109 (P < 0.01), whereas significantly lower in αCCR6+CCL20 group than CCL20 group (P < 0.05).The number of cells permeabling through the polycarbonate membrane in CCL20 group was higher than control (P < 0.01). The cell number in αCCR6+CCL20 group was significantly reduced compared to CCL20 group in ECA-109 (P < 0.05). Moreover, after CCL20 stimulated in ECA-109, both mRNA and protein level of E-cadherin significantly decreased compared to control, while Vimentin was significantly higher. In αCCR6+CCL20 group, mRNA and protein level of E-cadherin significantly increased compared to CCL20 group, while Vimentin was much lower than CCL20 group. There was no significant difference in TE-1. In summary, high expression of CCR6 existed in the lymph node metastasis and TNM stage of ESCC. CCR6 play an important role in the regulation of tumor cell proliferation, invasion and migration. CCR6 may participate in regulating the occurrence of EMT in ESCC.
Collapse
Affiliation(s)
- Jian Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Haifeng Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Wang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Qi Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.,Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| |
Collapse
|
33
|
Zhong W, Jiang Y, Ma H, Wu J, Jiang Z, Zhao L. Elevated levels of CCR6 + T helper 22 cells correlate with skin and renal impairment in systemic lupus erythematosus. Sci Rep 2017; 7:12962. [PMID: 29021537 PMCID: PMC5636893 DOI: 10.1038/s41598-017-13344-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a variety of pathological features. Our study investigated the potential role of CCR6+ T cells in organ impairment of SLE patients. We analyzed CCR6+/- T cell subset populations and compared the concentrations of IL-22, IFN-γ, TNF-α, and IL-17A cytokines in 67 patients with newly diagnosed SLE and 26 healthy controls. We found that SLE patients had elevated percentages of CCR6+ T, CCR6+ Th22, Th17, Th17.1, and CCR6- Th2 cell subsets, along with increased concentrations of IL-22, IFN-γ, TNF-α, and IL-17 cytokines. Higher levels of CCR6+ T and CCR6+ Th22 cells, along with plasma IL-22 were observed in SLE patients with sole skin and/or renal impairment. The percentage of Th22 cells also correlated with Revised Cutaneous Lupus Erythematosus Disease Area and Severity Index (RCLASI) and IgG levels, and inversely correlated with C3 levels in SLE patients with sole skin impairment. SLE patients with sole renal impairment showed a correlation between the percentage of Th22 cells and ESR levels. Our data indicated that CCR6+ Th22 cells may contribute to the pathogenesis of new onset SLE patients with skin or renal impairment, and CCR6 may, thus, be a possible therapeutic target for SLE treatment.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China
| | - Yanfang Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, First Hospital, Jilin University, Changchun, 130021, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Department of Central Laboratory, First Hospital, Jilin University, Changchun, 130021, China
| | - Hongshuang Ma
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China
| | - Jiang Wu
- College of Electrical Engineering and Instrumentation, Jilin University, Changchun, 130021, China
| | - Zhenyu Jiang
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China.
| | - Ling Zhao
- Department of Rheumatology, First Hospital, Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Krebs CF, Schmidt T, Riedel JH, Panzer U. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol 2017; 13:647-659. [PMID: 28781371 DOI: 10.1038/nrneph.2017.112] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD4+ T cells are important drivers of tissue damage in immune-mediated renal diseases, such as anti-glomerular basement membrane glomerulonephritis, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis. The discovery of a distinct, IL-17-producing CD4+ T-cell lineage termed T helper type 17 (TH17) cells has markedly advanced current understanding of the pathogenic mechanisms of organ-specific immunity and the pathways that lead to target organ damage. TH17 cells are characterized by the expression of the transcription factor RORγt, the production of the pro-inflammatory cytokines IL-17A, IL-17F, IL-22, and high expression of the chemokine receptor C-C-motif chemokine receptor 6 (CCR6). An emerging body of evidence from experimental models and human studies supports a key role for these cells in the development of renal damage, and has led to the identification of targets to inhibit the production of TH17 cells in the intestine, their migration, or their actions within the kidney. Here, we describe the identification, regulation, and function of TH17 cells and their associated pathways in immune-mediated kidney diseases, with a particular focus on the mechanisms underlying renal tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with autoimmune kidney disease.
Collapse
Affiliation(s)
- Christian F Krebs
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Tilman Schmidt
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jan-Hendrik Riedel
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ulf Panzer
- III. Medizinische Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
35
|
|
36
|
Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 2017; 49:247-258. [DOI: 10.1016/j.pathol.2017.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/26/2016] [Accepted: 01/19/2017] [Indexed: 01/13/2023]
|
37
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Suárez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. T cells and autoimmune kidney disease. Nat Rev Nephrol 2017; 13:329-343. [PMID: 28287110 DOI: 10.1038/nrneph.2017.34] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells. T cells might become activated by autoantigens in the periphery and become polarized to secrete inflammatory cytokines before entering the kidney where they have the opportunity to expand owing to the presence of costimulatory molecules and activating cytokines. Alternatively, naive T cells could enter the kidney where they become activated after encountering autoantigen and expand locally. As not all individuals with a peripheral autoimmune response to kidney antigens develop glomerulonephritis, the contribution of local kidney factors expressed or produced by kidney cells is probably of crucial importance. Improved understanding of the biochemistry and molecular biology of T cells in patients with glomerulonephritis offers unique opportunities for the recognition of treatment targets for autoimmune kidney disease.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - Sean J Bradley
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - David Klatzmann
- Sorbonne Universités, Pierre and Marie Curie University, INSERM UMR_S 959, 83 Boulevard de l'Hôpital, F-75013, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 83 boulevard de l'Hôpital, F-75013, Paris, France
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| |
Collapse
|
39
|
Suárez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol 2016; 43:32-38. [PMID: 27636649 DOI: 10.1016/j.coi.2016.09.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
Systemic Lupus Erythematosus is an autoimmune disorder caused by a complex combination of genetic, epigenetic and environmental factors. Different polymorphisms and epigenetic modifications lead to altered gene expression and function of several molecules which lead to abnormal T cell responses. Metabolic and functional alterations result in peripheral tolerance failures and biased differentiation of T cells into pro-inflammatory and B cell-helper phenotypes as well as the accumulation of disease-promoting memory T cells. Understanding these T cell alterations and their origins is necessary to develop more accurate patient classification systems and to discover new therapeutic targets.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Sean J Bradley
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
41
|
Koga T, Ichinose K, Tsokos GC. T cells and IL-17 in lupus nephritis. Clin Immunol 2016; 185:95-99. [PMID: 27109641 DOI: 10.1016/j.clim.2016.04.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complicated autoimmune disorder characterized by autoantibodies production, immune complex formation, and immune dysregulation, resulting in damage of multiple organs including the kidney. Lupus nephritis (LN) is the most common severe manifestation of SLE involving the majority of patients. Even though there are a number of reports indicating that interleukin-17 (IL-17) and Th17 cells play important roles in the pathogenesis of LN, the precise molecular mechanisms underline the development of LN have not been totally elucidated. In this review, we briefly summarize general characteristics of T and IL-17 cells in SLE. In addition, we discuss in detail T cell signaling pathways which control IL-17 production in patients with LN and in glomerulonephritis in lupus-prone mice. A better understanding of signaling and gene regulation defects in LN will lead to the identification of novel therapeutic targets and predictive biomarkers for diagnosis and prognosis of this disease.
Collapse
Affiliation(s)
- Tomohiro Koga
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|