1
|
Rabbani P, Ramkhelawon B, Cronstein BN. Adenosine metabolism and receptors in aging of the skin, musculoskeletal, immune and cardiovascular systems. Ageing Res Rev 2025; 106:102695. [PMID: 39971100 PMCID: PMC11960428 DOI: 10.1016/j.arr.2025.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/26/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Aging populations worldwide face an increasing burden of age-related chronic conditions, necessitating a deeper understanding of the underlying mechanisms. Purine metabolism has emerged as a crucial player in the pathophysiology of aging, affecting various tissues and organs. Dysregulation of purine metabolism, particularly alterations in extracellular adenosine levels and adenosine receptor signaling, contributes to age-related musculoskeletal problems, cardiovascular diseases, inflammation, and impaired immune responses. Changes in purine metabolism are associated with diminished tissue repair and regeneration, altered bone density, and impaired muscle regeneration. Mechanistically, age-related alterations in purine metabolism involve reductions in extracellular adenosine production, impaired autocrine signaling, and dysregulated expression of CD73 and CD39. Targeting adenosine receptors, such as A2A and A2B receptors, emerges as a promising therapeutic approach to mitigate age-related conditions, including sarcopenia, obesity, osteoarthritis, and impaired wound healing. Since we cannot reverse time, understanding the intricate molecular interplay between purine metabolism and aging-related pathologies holds significant potential for developing novel therapeutic strategies to improve the health and quality of life of aging populations. In this review, we compile the findings related to purine metabolism during aging in several tissues and organs and provide insights into how these signals can be manipulated to circumvent the deleterious effects of the passage of time on our body.
Collapse
Affiliation(s)
- Piul Rabbani
- Hansjorg Wyss Department of Plastic Surgery, New York University Langone Health, New York, NY, USA
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York, NY, USA; Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Bruce N Cronstein
- Department of Medicine, Divisions of Rheumatology and Precision Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
2
|
Cingireddy AR, Ramini N, Cingireddy AR. Evaluation of the Efficacy and Safety of Anifrolumab in Moderate-to-Severe Systemic Lupus Erythematosus. Cureus 2024; 16:e63966. [PMID: 39104974 PMCID: PMC11299632 DOI: 10.7759/cureus.63966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease, which poses significant challenges due to its chronic nature and complex clinical manifestations. For patients with moderate-to-severe SLE, anifrolumab, a monoclonal antibody that targets the type 1 interferon receptor (IFNAR), has emerged as a cutting-edge treatment option that can reduce disease activity, prevent organ damage from the illness or side effects resulting from medications, and enhance the quality of life for those living with SLE. Consequently, this drug has received approval from major regulatory agencies. Anifrolumab's safety, effectiveness, and long-term results are assessed in this systematic review using information from clinical trials, real-world research, and retrospective analysis. In particular, clinical investigations, such as the MUSE Phase II and TULIP Phase III trials, showed that anifrolumab significantly improved important outcomes compared to placebo, including the SLE Responder Index, major clinical response, and disease activity ratings. During extended use, anifrolumab demonstrated significant sustained efficacy and a tolerable safety profile, with controllable side events mostly associated with viral infections. Moreover, subgroup analyses, demonstrating that Asian patients and individuals with a strong interferon gene profile are particularly responsive to anifrolumab, underscore the importance of customized treatment methods. Anifrolumab's safety and effectiveness were further validated by real-world data, particularly in patients who reached the Lupus Low Disease Activity State (LLDAS), where the drug decreased glucocorticoid consumption and disease activity. Overall, anifrolumab shows great promise as a treatment for moderate-to-severe SLE, providing significant efficacy together with a manageable safety profile. To fully explore its therapeutic potential and optimize therapy approaches for the management of SLE, further research is necessary, especially in lupus nephritis and other disease subsets.
Collapse
Affiliation(s)
| | - Navya Ramini
- Anesthesiology and Critical Care, All India Institute of Medical Sciences, Raipur, IND
| | | |
Collapse
|
3
|
Zhao Q, Hu Q, Meng S, Zhang Q, Wang T, Liu C, Liu D, Jiang Z, Hong X. Metabolic profiling of patients with different idiopathic inflammatory myopathy subtypes reveals potential biomarkers in plasma. Clin Exp Med 2023; 23:3417-3429. [PMID: 37103652 PMCID: PMC10618316 DOI: 10.1007/s10238-023-01073-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Idiopathic inflammatory myopathy (IIM) are heterogeneous autoimmune diseases that primarily affect the proximal muscles. IIM subtypes include dermatomyositis (DM), polymyositis (PM), and anti-synthetase syndrome (ASS). Metabolic disturbances may cause irreversible structural damage to muscle fibers in patients with IIM. However, the metabolite profile of patients with different IIM subtypes remains elusive. To investigate metabolic alterations and identify patients with different IIM subtypes, we comprehensively profiled plasma metabolomics of 46 DM, 13 PM, 12 ASS patients, and 30 healthy controls (HCs) using UHPLC-Q Exactive HF mass spectrometer. Multiple statistical analyses and random forest were used to discover differential metabolites and potential biomarkers. We found that tryptophan metabolism, phenylalanine and tyrosine metabolism, fatty acid biosynthesis, beta-oxidation of very long chain fatty acids, alpha-linolenic acid and linoleic acid metabolism, steroidogenesis, bile acid biosynthesis, purine metabolism, and caffeine metabolism are all enriched in the DM, PM, and ASS groups. We also found that different subtypes of IIM have their unique metabolic pathways. We constructed three models (five metabolites) to identify DM, PM, ASS from HC in the discovery and validation sets. Five to seven metabolites can distinguish DM from PM, DM from ASS, and PM from ASS. A panel of seven metabolites can identify anti-melanoma differentiation-associated gene 5 positive (MDA5 +) DM with high accuracy in the discovery and validation sets. Our results provide potential biomarkers for diagnosing different subtypes of IIM and a better understanding of the underlying mechanisms of IIM.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qiu Hu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Qinguo Zhang
- The Office of Healthcare Committee of Shenzhen Municipal, Shenzhen, 518020, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Cuilian Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
- Shenzhen People's Hospital, The Frist Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
4
|
Bioinformatics-Based Analysis of Key Genes in Steroid-Induced Osteonecrosis of the Femoral Head That Are Associated with Copper Metabolism. Biomedicines 2023; 11:biomedicines11030873. [PMID: 36979852 PMCID: PMC10045807 DOI: 10.3390/biomedicines11030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common disabling disease. Copper has positive effects on cells that regulate bone metabolism. However, the relationship between copper metabolism (CM) and steroid-induced ONFH (SONFH) remains unclear. The GSE123568 dataset was downloaded from the Gene Expression Omnibus. The differentially expressed CM-related SONFH genes (DE-CMR-SONFHGs) were identified via differential analysis and weighted gene coexpression network analysis (WGCNA). Receiver operating characteristic (ROC) analysis was performed for the predictive accuracy of key genes. Targeting drugs and the copper death-related genes (CDRGs) relevant to key genes were investigated. The bioinformatics results were confirmed via quantitative real-time polymerase chain reaction (qRT–PCR) and Western blot (WB) analysis. Two out of 106 DE-CMR-SONFHGs were identified as key genes (PNP and SLC2A1), which had diagnostic value in distinguishing SONFH from control samples and were related to various immune cell infiltrations. Eleven PMP-targeting drugs and five SLC2A1-targeting drugs were identified. The qRT–PCR, as well as WB, results confirmed the downregulation PNP and SLC2A1 and high expression of the CDRGs DLD, PDHB, and MTF1, which are closely related to these two key genes. In conclusion, PNP and SLC2A1 were identified as key genes related to SONFH and may provide insights for SONFH treatment.
Collapse
|
5
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
6
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Fernandez-Ruiz R, Niewold TB. Type I Interferons in Autoimmunity. J Invest Dermatol 2022; 142:793-803. [PMID: 35016780 PMCID: PMC8860872 DOI: 10.1016/j.jid.2021.11.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022]
Abstract
Dysregulated IFN-1 responses play crucial roles in the development of multiple forms of autoimmunity. Many patients with lupus, systemic sclerosis, Sjogren's syndrome, and dermatomyositis demonstrate enhanced IFN-1 signaling. IFN-1 excess is associated with disease severity and autoantibodies and could potentially predict response to newer therapies targeting IFN-1 pathways. In this review, we provide an overview of the signaling pathway and immune functions of IFN-1s in health and disease. We also review the systemic autoimmune diseases classically associated with IFN-1 upregulation and current therapeutic strategies targeting the IFN-1 system.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy B Niewold
- Judith & Stewart Colton Center for Autoimmunity, Department of Medicine Research, NYU Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Cronstein BN. SLE and purine metabolizing ecto-enzymes. EBioMedicine 2021; 74:103688. [PMID: 34773894 PMCID: PMC8601979 DOI: 10.1016/j.ebiom.2021.103688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Bruce N Cronstein
- NYU Grossman School of Medicine, NYU-H+H Clinical and Translational Science Institute, New York, NY 10016
| |
Collapse
|
9
|
Hesse J, Siekierka-Harreis M, Steckel B, Alter C, Schallehn M, Honke N, Schnieringer ML, Wippich M, Braband R, Schneider M, Surowy H, Wieczorek D, Schrader J, Pongratz G. Profound inhibition of CD73-dependent formation of anti-inflammatory adenosine in B cells of SLE patients. EBioMedicine 2021; 73:103616. [PMID: 34666225 PMCID: PMC8524755 DOI: 10.1016/j.ebiom.2021.103616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to a breakdown of tolerance to self-antigens resulting in inflammation and organ damage. The anti-inflammatory activity of CD73-derived adenosine is well documented, however, its role in SLE pathogenesis is unknown. METHODS Human peripheral blood immune cells were obtained from adult SLE patients (SLE) and healthy controls (HC). Expression and activity of purinergic ectoenzymes were assessed by qRT-PCR, flow cytometry and HPLC. Genes encoding purinergic ectoenzymes in SLE patients were analysed with targeted DNA sequencing. FINDINGS Among circulating immune cells (both in HC and SLE), CD73 was most highly expressed on B cells, which was mirrored by high enzymatic activity only in HC. CD73 protein molecular weight was unchanged in SLE, however, the enzymatic activity of CD73 on SLE B cells was almost fully abolished. Accordingly, AMP accumulated in cultured SLE B cells. A similar discrepancy between protein expression and enzymatic activity was observed for NAD-degrading CD38 on SLE B cells. No differences were found in the rate of extracellular ATP degradation and expression of CD39, CD203a/c, and CD157. DNA sequencing identified no coding variants in CD73 in SLE patients. INTERPRETATION We describe a new pathomechanism for SLE, by which inactivation of CD73 on B cells produces less anti-inflammatory adenosine, resulting in immune cell activation. CD73 inactivation was not due to genetic variation but may be related to posttranslational modification. FUNDING The German Research Council, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Hiller Research Foundation, and Cardiovascular Research Institute Duesseldorf.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Magdalena Siekierka-Harreis
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Merle Schallehn
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Nadine Honke
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Marie-Laure Schnieringer
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Madita Wippich
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Rebekka Braband
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Matthias Schneider
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Georg Pongratz
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
Al-Mayouf SM, Alreefi HA, Alsinan TA, AlSalmi G, AlRowais A, Al-Herz W, Alazami AM, Alsonbul A, Al-Mousa H. Lupus manifestations in children with primary immunodeficiency diseases: Comprehensive phenotypic and genetic features and outcome. Mod Rheumatol 2021; 31:1171-1178. [PMID: 33563058 DOI: 10.1080/14397595.2021.1886627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To report the phenotypic, genetic findings and outcome of children with lupus manifestations associated with primary immunodeficiency diseases (PIDs). METHODS Data are retrospectively collected on patients with lupus manifestations and PIDs seen between 1998 and 2019. Data comprised the clinical findings and genetic testing, the response to treatment and the accrual damage related to SLE. RESULTS A total of 39 patients (22 female) were reviewed. Thirty-four patients had lupus manifestations and six patients with SLE-like manifestations. Genetic analysis was performed in 25 patients. Complement deficiency was the most frequent PIDs; 26 patients were C1q deficient, three patients had C3 deficiency, two patients had C4 deficiency and one patient with heterozygous C8b variant. The other seven patients had different PIDs genetic defects that include SCID caused by PNP deficiency, CGD, CVID (PIK3CD), IL-2RB mutation, DNase II deficiency, STAT1 mutation, ISG15 mutation and Griscelli syndrome type 3. Mucocutaneous lesions, arthritis and lung involvement were the main clinical features. 84.1% experienced recurrent infections. The mean accrual damage was 2.7 ± 2.2. There were five deaths because of infection. CONCLUSION This study suggests that patients with lupus manifestations and early onset disease, family history of SLE or recurrent infections should undergo immunological work-up and genetic testing to rule out PIDs.
Collapse
Affiliation(s)
- Sulaiman M Al-Mayouf
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Hajar A Alreefi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Tuqa A Alsinan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ghada AlSalmi
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz AlRowais
- Department of Pediatrics, Pediatric Rheumatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Pediatric Department, Allergy & Clinical Immunology Unit, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Abdullah Alsonbul
- Department of Pediatrics, Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy & Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 2020; 67:87-94. [PMID: 33246136 PMCID: PMC8054829 DOI: 10.1016/j.coi.2020.10.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
Type I interferon (IFN) is a primary pathogenic factor in systemic lupus erythematosus (SLE). Gain-of-function genetic variants in the type I IFN pathway have been associated with risk of disease. Common polygenic as well as rare monogenic influences on type I IFN have been demonstrated, supporting a complex genetic basis for high IFN in many SLE patients. Both SLE-associated autoantibodies and high type I IFN can be observed in the pre-disease state. Patients with SLE and evidence of high type I IFN have more active disease and a greater propensity to nephritis and other severe manifestations. Despite the well-established association between type I IFN and SLE, the specific triggers of type I IFN production, the mechanisms by which IFNs help perpetuate the cycle of autoreactive cells and autoantibody production are not completely clear. This review provides an updated overview of type I IFN in SLE pathogenesis, clinical manifestations, and current therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Mariana Postal
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Jessica F Vivaldo
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Dhanwani R, Takahashi M, Mathews IT, Lenzi C, Romanov A, Watrous JD, Pieters B, Hedrick CC, Benedict CA, Linden J, Nilsson R, Jain M, Sharma S. Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. SCIENCE ADVANCES 2020; 6:eaba3688. [PMID: 32743071 PMCID: PMC7375821 DOI: 10.1126/sciadv.aba3688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Mechanisms linking immune sensing of DNA danger signals in the extracellular environment to innate pathways in the cytosol are poorly understood. Here, we identify a previously unidentified immune-metabolic axis by which cells respond to purine nucleosides and trigger a type I interferon-β (IFN-β) response. We find that depletion of ADA2, an ectoenzyme that catabolizes extracellular dAdo to dIno, or supplementation of dAdo or dIno stimulates IFN-β. Under conditions of reduced ADA2 enzyme activity, dAdo is transported into cells and undergoes catabolysis by the cytosolic isoenzyme ADA1, driving intracellular accumulation of dIno. dIno is a functional immunometabolite that interferes with the cellular methionine cycle by inhibiting SAM synthetase activity. Inhibition of SAM-dependent transmethylation drives epigenomic hypomethylation and overexpression of immune-stimulatory endogenous retroviral elements that engage cytosolic dsRNA sensors and induce IFN-β. We uncovered a previously unknown cellular signaling pathway that responds to extracellular DNA-derived metabolites, coupling nucleoside catabolism by adenosine deaminases to cellular IFN-β production.
Collapse
Affiliation(s)
- Rekha Dhanwani
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | - Ian T. Mathews
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Camille Lenzi
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Artem Romanov
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jeramie D. Watrous
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | - Joel Linden
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
A Case with Purine Nucleoside Phosphorylase Deficiency Suffering from Late-Onset Systemic Lupus Erythematosus and Lymphoma. J Clin Immunol 2020; 40:833-839. [DOI: 10.1007/s10875-020-00800-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022]
|
14
|
Meidan E, Li H, Pan W, Kono M, Yu S, Kyttaris VC, Ioannidis C, Rodriguez Rodriguez N, Crispin JC, Apostolidis SA, Lee P, Manis J, Sharabi A, Tsokos MG, Tsokos GC. Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight 2020; 5:130655. [PMID: 32161189 PMCID: PMC7141385 DOI: 10.1172/jci.insight.130655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 02/12/2020] [Indexed: 12/28/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a serine/threonine phosphatase, has been shown to control T cell function. We found that in vitro-activated B cells and B cells from various lupus-prone mice and patients with systemic lupus erythematosus display increased PP2A activity. To understand the contribution of PP2A to B cell function, we generated a Cd19CrePpp2r1afl/fl (flox/flox) mouse which lacks functional PP2A only in B cells. Flox/flox mice displayed reduced spontaneous germinal center formation and decreased responses to T cell-dependent and T-independent antigens, while their B cells responded poorly in vitro to stimulation with an anti-CD40 antibody or CpG in the presence of IL-4. Transcriptome and metabolome studies revealed altered nicotinamide adenine dinucleotide (NAD) and purine/pyrimidine metabolism and increased expression of purine nucleoside phosphorylase in PP2A-deficient B cells. Our results demonstrate that PP2A is required for optimal B cell function and may contribute to increased B cell activity in systemic autoimmunity.
Collapse
Affiliation(s)
- Esra Meidan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Michihito Kono
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Shuilian Yu
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Vasileios C. Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Christina Ioannidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Noe Rodriguez Rodriguez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Jose C. Crispin
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - John Manis
- Division of Transfusion Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, USA
| |
Collapse
|
15
|
Interferons ( IFN-A/-B/-G) Genetic Variants in Patients with Mixed Connective Tissue Disease (MCTD). J Clin Med 2019; 8:jcm8122046. [PMID: 31766529 PMCID: PMC6947393 DOI: 10.3390/jcm8122046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022] Open
Abstract
Mixed connective tissue disease (MCTD) is a rare complex autoimmune disease in which autoantigens are recognized by endosomal TLRs. Their activation induces a higher secretion of the type I interferons, IFN-γ and the up-regulation of the INF-inducible genes. The present study aimed to investigate whether SNPs that are located in the IFN-A, IFN-B, and IFN-G genes are associated with MCTD. 145 MCTD patients and 281 healthy subjects were examined for IFN-A, IFN-B, and IFN-G genetic variants by TaqMan SNP genotyping assay. ELISA determined IFN-α/-β/-γ serum levels. Among the seven tested SNPs, four polymorphisms: IFN-A rs10757212, IFN-A rs3758236, IFN-G rs2069705, IFN-G rs2069718, as well as INF-G rs1861493A/rs2069705A/rs2069718G haplotype were significantly associated with a predisposition for MCTD. Raynaud's phenomenon, erosive arthritis, swollen hands and fingers, and sclerodactyly were significantly more frequently observed in MCTD patients with IFN-G rs2069718 G allele than in patients with IFN-G rs2069718 A allele. We also found that anti-U1-A autoantibodies most frequently occurred in MCTD patients with rs2069718 GA genotype, while the IFN-G rs2069705 AG and rs2069718 GA genotypes might be a marker of anti-Ro60 presence in MCTD patients. Our results indicate that IFN-G genetic variants may be potential genetic biomarkers for MCTD susceptibility and severity.
Collapse
|
16
|
Davenne T, Bridgeman A, Rigby RE, Rehwinkel J. Deoxyguanosine is a TLR7 agonist. Eur J Immunol 2019; 50:56-62. [PMID: 31608988 PMCID: PMC6972671 DOI: 10.1002/eji.201948151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Toll‐like receptor 7 (TLR7) is an innate immune sensor for single‐strand RNA (ssRNA). Recent structural analysis revealed that TLR7 has an additional binding site for nucleosides such as guanosine, and is activated when both guanosine and ssRNA bind. The nucleoside binding site also accommodates imidazoquinoline derivatives such as R848, which activate TLR7 in the absence of ssRNA. Here, we report that deoxyguanosine (dG) triggered cytokine production in murine bone marrow derived macrophages and plasmacytoid dendritic cells, as well as in human peripheral blood mononuclear cells, including type I interferons and pro‐inflammatory factors such as TNF and IL‐6. This signalling activity of dG was dependent on TLR7 and its adaptor MyD88 and did not require amplification via the type I interferon receptor. dG‐triggered cytokine production required endosomal maturation but did not depend on the concurrent provision of RNA. We conclude that dG induces an inflammatory response through TLR7 and propose that dG is an RNA‐independent TLR7 agonist.
Collapse
Affiliation(s)
- Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
18
|
An update on the role of type I interferons in systemic lupus erythematosus and Sjögren's syndrome. Curr Opin Rheumatol 2019; 30:471-481. [PMID: 29889694 DOI: 10.1097/bor.0000000000000524] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) share several clinical and laboratory features, including an overexpression of type I interferon (IFN) regulated genes. The genetic background to this IFN signature and the role of the type I IFN system in the disease process have been partly clarified. Here, we summarize the latest information concerning the type I IFN system in both diseases. RECENT FINDINGS A number of gene variants in the type I IFN signalling pathways associate with an increased risk for both SLE and pSS in several ethnicities. The function of some risk gene variants has been elucidated, as well as the importance of epigenetic changes in type I IFN regulated genes. MicroRNA-451 and miR-302d have been shown to target IFN regulatory factor 8 and 9, suggesting that noncoding RNAs can control the IFN system. A prominent type I IFN activation is related to several disease manifestations, and in SLE to a more severe disease phenotype. Phase II studies in SLE suggest beneficial effects of blocking the type I IFN receptor. SUMMARY The activated type I IFN system in SLE and pSS has a strong genetic component, is important in the disease etiopathogenesis and can be targeted.
Collapse
|
19
|
Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med 2019; 6:e000336. [PMID: 31205729 PMCID: PMC6541752 DOI: 10.1136/lupus-2019-000336] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFN) can have dual and opposing roles in immunity, with effects that are beneficial or detrimental to the individual depending on whether IFN pathway activation is transient or sustained. Determinants of IFN production and its functional consequences include the nature of the microbial or nucleic acid stimulus, the type of nucleic acid sensor involved in inducing IFN, the predominant subtype of type I IFN produced and the immune ecology of the tissue at the time of IFN expression. When dysregulated, the type I IFN system drives many autoimmune and non-autoimmune inflammatory diseases, including SLE and the tissue inflammation associated with chronic infection. The type I IFN system may also contribute to outcomes for patients affected by solid cancers or myocardial infarction. Significantly more research is needed to discern the mechanisms of induction and response to type I IFNs across these diseases, and patient endophenotyping may help determine whether the cytokine is acting as 'friend' or 'foe', within a particular patient, and at the time of treatment. This review summarises key concepts and discussions from the second International Summit on Interferons in Inflammatory Diseases, during which expert clinicians and scientists evaluated the evidence for the role of type I IFNs in autoimmune and other inflammatory diseases.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Lars Ronnblom
- Section of Rheumatology, Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Systems Analysis of the Liver Transcriptome in Adult Male Zebrafish Exposed to the Plasticizer (2-Ethylhexyl) Phthalate (DEHP). Sci Rep 2018; 8:2118. [PMID: 29391432 PMCID: PMC5794889 DOI: 10.1038/s41598-018-20266-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/15/2018] [Indexed: 02/08/2023] Open
Abstract
The organic compound diethylhexyl phthalate (DEHP) represents a high production volume chemical found in cosmetics, personal care products, laundry detergents, and household items. DEHP, along with other phthalates causes endocrine disruption in males. Exposure to endocrine disrupting chemicals has been linked to the development of several adverse health outcomes with apical end points including Non-Alcoholic Fatty Liver Disease (NAFLD). This study examined the adult male zebrafish (Danio rerio) transcriptome after exposure to environmental levels of DEHP and 17α-ethinylestradiol (EE2) using both DNA microarray and RNA-sequencing technologies. Our results show that exposure to DEHP is associated with differentially expressed (DE) transcripts associated with the disruption of metabolic processes in the liver, including perturbation of five biological pathways: ‘FOXA2 and FOXA3 transcription factor networks’, ‘Metabolic pathways’, ‘metabolism of amino acids and derivatives’, ‘metabolism of lipids and lipoproteins’, and ‘fatty acid, triacylglycerol, and ketone body metabolism’. DE transcripts unique to DEHP exposure, not observed with EE2 (i.e. non-estrogenic effects) exhibited a signature related to the regulation of transcription and translation, and ruffle assembly and organization. Collectively our results indicate that exposure to low DEHP levels modulates the expression of liver genes related to fatty acid metabolism and the development of NAFLD.
Collapse
|