1
|
Le Maître M, Guerrier T, Sanges S, Chepy A, Collet A, Launay D. Beyond circulating B cells: Characteristics and role of tissue-infiltrating B cells in systemic sclerosis. Autoimmun Rev 2025; 24:103782. [PMID: 40010623 DOI: 10.1016/j.autrev.2025.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
B cells play a key role in the pathophysiology of systemic sclerosis (SSc). While they are less characterized than their circulating counterparts, tissue-infiltrating B cells may have a more direct pathological role in tissues. In this review, we decipher the multiple evidence of B cells infiltration in the skin and lungs of SSc patients and animal models of SSc but also of other chronic fibrotic diseases with similar pathological mechanisms such as chronic graft versus host disease, idiopathic pulmonary fibrosis or morphea. We also recapitulate the current knowledge about mechanisms of B cells infiltration and their functions in tissues. Finally, we discuss B cell targeted therapies, and their specific impact on infiltrated B cells. Understanding the local consequences of infiltrating B cells is an important step for a better management of patients and the improvement of therapies in SSc.
Collapse
Affiliation(s)
- Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France.
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Sébastien Sanges
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| |
Collapse
|
2
|
Peng M, Lu X, Guo J, Yin X, Zhang J, Li X, Zou Y. A pair of promising immune checkpoints PSGL-1 and VISTA from immunotolerance to immunotherapy. Biomark Res 2024; 12:151. [PMID: 39617949 PMCID: PMC11610313 DOI: 10.1186/s40364-024-00693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/17/2024] [Indexed: 01/25/2025] Open
Abstract
Immune checkpoints are crucial for regulating immune responses and maintaining self-tolerance, as they play a pivotal role in preventing autoimmunity and facilitating tumor immune evasion. This review concentrates on the immune checkpoint molecules PSGL-1 and VISTA. Both molecules are highly expressed in hematopoietic cells, including T cells and myeloid cells. VISTA functions both as a ligand on myeloid cells, where it regulates cytokine production, chemotaxis, and phagocytosis while promoting their differentiation into a tolerogenic phenotype and as a receptor on T cells, where it contributes to T cell quiescence. PSGL-1, which acts as a binding partner for VISTA, further inhibits T-cell activation and fosters tolerance within the acidic tumor microenvironment. Our review provides a comprehensive analysis of the structure, expression, and biological functions of PSGL-1 and VISTA and emphasizes their therapeutic potential in cancer treatment, autoimmune diseases, and transplantation. The dual role of these checkpoints in immune regulation presents novel opportunities for advancing cancer immunotherapy and developing new strategies for managing autoimmune conditions.
Collapse
Affiliation(s)
- Manqing Peng
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Junshuang Guo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xiangli Yin
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China.
| |
Collapse
|
3
|
Maugeri N, Manfredi AA. Platelet HMGB1 steers intravascular immunity and thrombosis. J Thromb Haemost 2024; 22:3336-3345. [PMID: 39173879 DOI: 10.1016/j.jtha.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Platelets navigate the fine balance between homeostasis and injury. They regulate vascular homeostasis and drive repair after injury amidst leukocyte extravasation. Crucially, platelets initiate extracellular traps generation and promote immunothrombosis. In chronic human diseases, platelet action often extends beyond its normative role, sparking sustained reciprocal activation of leukocytes and mural cells, culminating in adverse vascular remodeling. Studies in the last decade have spotlighted a novel key player in platelet activation, the high mobility group box 1 (HMGB1) protein. Despite its initial characterization as a chromatin molecule, anucleated platelets express abundant HMGB1, which has emerged as a linchpin in thromboinflammatory risks and microvascular remodeling. We propose that a comprehensive assessment of platelet HMGB1, spanning quantification of content, membrane localization, and accumulation of HMGB1-expressing vesicles in biological fluids should be integral to dissecting and quantifying platelet activation. This review provides evidence supporting this claim and underscores the significance of platelet HMGB1 as a biomarker in conditions associated with heightened thrombotic risks and systemic microvascular involvement, spanning cardiovascular, autoimmune, and infectious diseases.
Collapse
Affiliation(s)
- Norma Maugeri
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy.
| | - Angelo A Manfredi
- Division of Immunology, Transplantation & Infectious Diseases, Istituti di Ricovero e Cura a Carattere Scientifico San Raffaele Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
4
|
Krzyżewska A, Kurakula K. Sex Dimorphism in Pulmonary Arterial Hypertension Associated With Autoimmune Diseases. Arterioscler Thromb Vasc Biol 2024; 44:2169-2190. [PMID: 39145392 DOI: 10.1161/atvbaha.124.320886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pulmonary hypertension is a rare, incurable, and progressive disease. Although there is increasing evidence that immune disorders, particularly those associated with connective tissue diseases, are a strong predisposing factor in the development of pulmonary arterial hypertension (PAH), there is currently a lack of knowledge about the detailed molecular mechanisms responsible for this phenomenon. Exploring this topic is crucial because patients with an immune disorder combined with PAH have a worse prognosis and higher mortality compared with patients with other PAH subtypes. Moreover, data recorded worldwide show that the prevalence of PAH in women is 2× to even 4× higher than in men, and the ratio of PAH associated with autoimmune diseases is even higher (9:1). Sexual dimorphism in the pathogenesis of cardiovascular disease was explained for many years by the action of female sex hormones. However, there are increasing reports of interactions between sex hormones and sex chromosomes, and differences in the pathogenesis of cardiovascular disease may be controlled not only by sex hormones but also by sex chromosome pathways that are not dependent on the gonads. This review discusses the role of estrogen and genetic factors including the role of genes located on the X chromosome, as well as the potential protective role of the Y chromosome in sexual dimorphism, which is prominent in the occurrence of PAH associated with autoimmune diseases. Moreover, an overview of animal models that could potentially play a role in further investigating the aforementioned link was also reviewed.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Poland (A.K.)
| | - Kondababu Kurakula
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Free University Medical Center, the Netherlands (K.K.)
| |
Collapse
|
5
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
6
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
7
|
Lyu MA, Huang M, Zeng K, Li L, Khoury JD, Nishimoto M, Ma H, Sadeghi T, Mukherjee S, Slutsky AS, Flowers CR, Parmar S. Allogeneic cord blood regulatory T cells can resolve lung inflammation. Cytotherapy 2023; 25:245-253. [PMID: 36437190 DOI: 10.1016/j.jcyt.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AIMS CD4+CD25+CD127lo regulatory T cells (Tregs) are responsible for maintaining immune homeostasis. Tregs can be rendered defective and deficient as a result of the immune imbalance seen in lung injury, and such dysfunction can play a major role in continued tissue inflammation. The authors hypothesized that adoptive therapy with healthy allogeneic umbilical cord blood (UCB)-derived Tregs may be able to resolve inflammation. RESULTS Ex vivo-expanded UCB Tregs exhibited a unique phenotype with co-expression of CD45RA+CD45RO+ >80% and lung homing markers, including CD49d. UCB Tregs did not turn pathogenic when exposed to IL-6. Co-culture with increasing doses of dexamethasone led to a synergistic increase in UCB Treg-induced apoptosis of conventional T cells (Tcons), which translated into significantly higher suppression of proliferating Tcons, especially at a lower Treg:Tcon ratio. Multiple injections of UCB Tregs led to their preferential accumulation in lung tissue in an immune injury xenogenic model. A significant decrease in lung resident cytotoxic CD8+ T cells (P = 0.0218) correlated with a sustained decrease in their systemic distribution compared with controls (P < 0.0001) (n = 7 per arm) as well as a decrease in circulating human soluble CD40 ligand level (P = 0.031). Tissue architecture was preserved in the treatment arm, and a significant decrease in CD3+ and CD8+ burden was evident in immunohistochemistry analysis. CONCLUSIONS UCB Treg adoptive therapy is a promising therapeutic strategy for treatment of lung injury.
Collapse
Affiliation(s)
- Mi-Ae Lyu
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Meixian Huang
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Ke Zeng
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Mitsutaka Nishimoto
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Hongbing Ma
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Siddhartha Mukherjee
- Division of Hematology/Oncology, Department of Medicine, New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, New York, USA
| | - Arthur S Slutsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Canada
| | - Christopher R Flowers
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Simrit Parmar
- Department of Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
8
|
The Role of T Cells in Systemic Sclerosis: An Update. IMMUNO 2022. [DOI: 10.3390/immuno2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by microvasculopathy, autoantibodies (autoAbs), and fibrosis. The pathogenesis of the disease is incompletely understood. Microvasculopathy and autoAbs appear very early in the disease process. AutoAbs, such as those directed against DNA topoisomerase I (Topo I), are disease specific and associated with disease manifestations, and indicate activation of the adaptive immune system. B cells are involved in fibrosis in SSc. T cells are also involved in disease pathogenesis. T cells show signs of antigen-induced activation; T cells of TH2 type are increased and produce profibrotic cytokines interleukin (IL)-4, IL-13, and IL-31; CD4+ cytotoxic T lymphocytes are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis; circulating T follicular helper (TFH) cells are increased in SSc produce IL-21 and promote plasmablast antibody production. On the other hand, regulatory T cells are impaired in SSc. These findings provide strong circumstantial evidence for T cell implication in SSc pathogenesis and encourage new T cell-directed therapeutic strategies for the disease.
Collapse
|
9
|
González-Sánchez E, Muñoz-Callejas A, Gómez-Román J, San Antonio E, Marengo A, Tsapis N, Bohne-Japiassu K, González-Tajuelo R, Pereda S, García-Pérez J, Cavagna L, González-Gay MÁ, Vicente-Rabaneda E, Meloni F, Fattal E, Castañeda S, Urzainqui A. Everolimus targeted nanotherapy reduces inflammation and fibrosis in scleroderma-related interstitial lung disease (SSc-ILD) developed by PSGL-1 deficient mice. Br J Pharmacol 2022; 179:4534-4548. [PMID: 35726496 DOI: 10.1111/bph.15898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease (ILD) is the main cause of mortality in systemic sclerosis (SSc) and current therapies available are of low efficacy or high toxicity. Thus, the identification of innovative less toxic and high efficacy therapeutic approaches to ILD treatment is a crucial point. P-selectin Glycoprotein Ligand-1 (PSGL-1) interaction with P-selectin initiates leukocyte extravasation and the lack of its expression brings to SSc-like syndrome with high incidence of ILD in aged mice. EXPERIMENTAL APPROACH Aged PSGL-1-/- mice were used to assay the therapeutic efficacy of an innovative nanotherapy with everolimus (Ev), included in liposomes decorated with high MW hyaluronic acid (LipHA+Ev) and administrated intratracheally to specifically target CD44-expressing lung cells. KEY RESULTS PSGL-1-/- mice had increased number of CD45+ and CD45- cells, including alveolar and interstitial macrophages, eosinophils, granulocytes and NK cells, and elevated number of myofibroblasts in broncoalveolar lavage (BAL). CD45+ and CD45- cells expressing proinflammatory and profibrotic cytokines were also increased. PSGL-1-/- mice lung histopathology showed increased immune cell infiltration and apoptosis and exacerbated interstitial and peribronchial fibrosis. Targeted nanotherapy with LipHA+Ev reduced BAL number of myofibroblast, cells producing proinflammatory and profibrotic cytokines, and the degree of lung inflammation at histology. LipHA+Ev treatment also provided an important decrease in severity of peribronchial and interstitial lung fibrosis from moderate to mild injury score. CONCLUSIONS AND IMPLICATIONS Our preclinical study in PSGL-1-/- mice indicates that targeted nanotherapy with LipHA+Ev represents an effective treatment for SSc-ILD, reducing the number of inflammatory and fibrotic cells in BAL and reducing inflammation and fibrosis in lungs.
Collapse
Affiliation(s)
- Elena González-Sánchez
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Javier Gómez-Román
- Pathology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Esther San Antonio
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Alessandro Marengo
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Kamila Bohne-Japiassu
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Rafael González-Tajuelo
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Saray Pereda
- Pathology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Javier García-Pérez
- Pneumology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital Universitario de la Princesa, Madrid, Spain
| | - Lorenzo Cavagna
- Rheumatology Department, University and IRCCS Policlinico S. Matteo Foundation, Università degli Studi di Pavia, Pavia, Italy
| | - Miguel Ángel González-Gay
- Rheumatology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Esther Vicente-Rabaneda
- Rheumatology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Federica Meloni
- Internal Medicine Department, Pneumology Division, IRCCS San Matteo Foundation and Università degli Studi di Pavia, Pavia, Italy
| | - Elias Fattal
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain.,Cathedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| |
Collapse
|
10
|
Zhao C, Chen Q, Li W, Zhang J, Yang C, Chen D. Multi-functional platelet membrane-camouflaged nanoparticles reduce neuronal apoptosis and regulate microglial phenotype during ischemic injury. APPLIED MATERIALS TODAY 2022; 27:101412. [DOI: 10.1016/j.apmt.2022.101412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Chaoyue Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
- Changchun Children's Hospital, 1321Beian Road, Changchun, Jilin 130051, China
| | | | | | | | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
11
|
Asano Y. Insights Into the Preclinical Models of SSc. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Manfredi AA, Ramirez GA, Godino C, Capobianco A, Monno A, Franchini S, Tombetti E, Corradetti S, Distler JHW, Bianchi ME, Rovere-Querini P, Maugeri N. Platelet Phagocytosis via P-selectin Glycoprotein Ligand 1 and Accumulation of Microparticles in Systemic Sclerosis. Arthritis Rheumatol 2021; 74:318-328. [PMID: 34279048 DOI: 10.1002/art.41926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE It is unclear why activated platelets and platelet-derived microparticles (MPs) accumulate in the blood of patients with systemic sclerosis (SSc). This study was undertaken to investigate whether defective phagocytosis might contribute to MP accumulation in the blood of patients with SSc. METHODS Blood samples were obtained from a total of 81 subjects, including 25 patients with SSc and 26 patients with stable coronary artery disease (CAD). Thirty sex- and age-matched healthy volunteers served as controls. Studies were also conducted in NSG mice, in which the tail vein of the mice was injected with MPs, and samples of the lung parenchyma were obtained for analysis of the pulmonary microvasculature. Tissue samples from human subjects and from mice were assessed by flow cytometry and immunochemical analyses for determination of platelet-neutrophil interactions, phagocytosis, levels and distribution of P-selectin, P-selectin glycoprotein ligand 1 (PSGL-1), and HMGB1 on platelets and MPs, and concentration of byproducts of neutrophil extracellular trap (NET) generation/catabolism. RESULTS Activated P-selectin+ platelets and platelet-derived HMGB1+ MPs accumulated in the blood of SSc patients but not in the blood of healthy controls. Patients with CAD, a vasculopathy independent of systemic inflammation, had fewer P-selectin+ platelets and a negligible number of MPs. The expression of the receptor for P-selectin, PSGL-1, in neutrophils from SSc patients was significantly decreased, raising the possibility that phagocytes in SSc do not recognize activated platelets, leading to a failure of phagocytosis and continued neutrophil release of MPs. As evidence of this process, activated platelets were not detected in the neutrophils from SSc patients, whereas they were consistently present in the neutrophils from patients with CAD. HMGB1+ MPs elicited generation of NETs, which were only detected in the plasma of SSc patients. In mice, P-selectin-PSGL-1 interaction resulted in platelet phagocytosis in vitro and influenced the ability of MPs to elicit NETs, endothelial activation, and migration of leukocytes through the pulmonary microvasculature. CONCLUSION The clearance of activated platelets via PSGL-1 limits the undesirable effects of MP-elicited neutrophil activation. This balance is disrupted in patients with SSc. Its reconstitution might curb vascular inflammation and prevent fibrosis.
Collapse
Affiliation(s)
- Angelo A Manfredi
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe A Ramirez
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cosmo Godino
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Capobianco
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Franchini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Tombetti
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Corradetti
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Alba GA, Samokhin AO, Wang RS, Zhang YY, Wertheim BM, Arons E, Greenfield EA, Lundberg Slingsby MH, Ceglowski JR, Haley KJ, Bowman FP, Yu YR, Haney JC, Eng G, Mitchell RN, Sheets A, Vargas SO, Seo S, Channick RN, Leary PJ, Rajagopal S, Loscalzo J, Battinelli EM, Maron BA. NEDD9 Is a Novel and Modifiable Mediator of Platelet-Endothelial Adhesion in the Pulmonary Circulation. Am J Respir Crit Care Med 2021; 203:1533-1545. [PMID: 33523764 PMCID: PMC8483217 DOI: 10.1164/rccm.202003-0719oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Data on the molecular mechanisms that regulate platelet-pulmonary endothelial adhesion under conditions of hypoxia are lacking, but may have important therapeutic implications. Objectives: To identify a hypoxia-sensitive, modifiable mediator of platelet-pulmonary artery endothelial cell adhesion and thrombotic remodeling. Methods: Network medicine was used to profile protein-protein interactions in hypoxia-treated human pulmonary artery endothelial cells. Data from liquid chromatography-mass spectrometry and microscale thermophoresis informed the development of a novel antibody (Ab) to inhibit platelet-endothelial adhesion, which was tested in cells from patients with chronic thromboembolic pulmonary hypertension (CTEPH) and three animal models in vivo. Measurements and Main Results: The protein NEDD9 was identified in the hypoxia thrombosome network in silico. Compared with normoxia, hypoxia (0.2% O2) for 24 hours increased HIF-1α (hypoxia-inducible factor-1α)-dependent NEDD9 upregulation in vitro. Increased NEDD9 was localized to the plasma-membrane surface of cells from control donors and patients with CTEPH. In endarterectomy specimens, NEDD9 colocalized with the platelet surface adhesion molecule P-selectin. Our custom-made anti-NEDD9 Ab targeted the NEDD9-P-selectin interaction and inhibited the adhesion of activated platelets to pulmonary artery endothelial cells from control donors in vitro and from patients with CTEPH ex vivo. Compared with control mice, platelet-pulmonary endothelial aggregates and pulmonary hypertension induced by ADP were decreased in NEDD9-/- mice or wild-type mice treated with the anti-NEDD9 Ab, which also decreased chronic pulmonary thromboembolic remodeling in vivo. Conclusions: The NEDD9-P-selectin protein-protein interaction is a modifiable target with which to inhibit platelet-pulmonary endothelial adhesion and thromboembolic vascular remodeling, with potential therapeutic implications for patients with disorders of increased hypoxia signaling pathways, including CTEPH.
Collapse
Affiliation(s)
- George A Alba
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Andriy O Samokhin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Rui-Sheng Wang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ying-Yi Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Elena Arons
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | - Frederick P Bowman
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yen-Rei Yu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - John C Haney
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George Eng
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Richard N Mitchell
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, and
| | - Anthony Sheets
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, and
| | - Sara O Vargas
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Duke University, Durham, North Carolina
| | - Sachiko Seo
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Richard N Channick
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| | - Peter J Leary
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, California; and
| | - Sudarshan Rajagopal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Joseph Loscalzo
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Bradley A Maron
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Awaji K, Miyagawa T, Fukui Y, Toyama S, Omatsu J, Norimatsu Y, Ikawa T, Watanabe Y, Yoshizaki A, Sato S, Asano Y. A potential contribution of decreased serum galectin-10 levels to systemic inflammation and pulmonary vascular involvement in systemic sclerosis. Exp Dermatol 2021; 30:959-965. [PMID: 33719171 DOI: 10.1111/exd.14320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Galectin-10 (Gal-10) is a key molecule involved in eosinophil-mediated suppression of T-cell immune response. Systemic sclerosis (SSc) is characterized by T helper (Th) 2/Th17 immune response and impaired function of regulatory T cells, but the pathological role of Gal-10 has not been studied so far. Therefore, we investigated the clinical correlation of serum Gal-10 levels in SSc patients. METHODS Serum Gal-10 levels were determined by enzyme-linked immunosorbent assay in 38 patients with diffuse cutaneous SSc (dcSSc), 30 with limited cutaneous SSc and 20 healthy controls. Clinical correlations of serum Gal-10 levels were examined. RESULTS Serum Gal-10 levels were significantly lower in SSc patients than in healthy controls, especially in dcSSc patients, and inversely correlated with skin score, the percentage of predicted diffusion lung capacity for carbon monoxide and estimated right ventricular systolic pressure (RVSP). Furthermore, serum Gal-10 levels had negative correlations with leucocyte counts and inflammatory parameters. Multivariate regression analysis identified C-reactive protein and RVSP as explanatory parameters for serum Gal-10 levels. CONCLUSION Decreased serum Gal-10 levels may reflect the impairment of eosinophil-mediated regulatory system for T-cell immune response in SSc, possibly contributing to pulmonary vascular involvement leading to pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
González-Tajuelo R, González-Sánchez E, Silván J, Muñoz-Callejas A, Vicente-Rabaneda E, García-Pérez J, Castañeda S, Urzainqui A. Relevance of PSGL-1 Expression in B Cell Development and Activation. Front Immunol 2020; 11:588212. [PMID: 33281818 PMCID: PMC7689347 DOI: 10.3389/fimmu.2020.588212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/03/2022] Open
Abstract
PSGL-1 is expressed in all plasma cells, but only in a small percentage of circulating B cells. Patients with systemic sclerosis (SSc) show reduced expression of PSGL-1 in B cells and increased prevalence of pulmonary arterial hypertension. PSGL-1 deficiency leads to a SSc-like syndrome and SSc-associated pulmonary hypertension in female mice. In this work, the expression of PSGL-1 was assessed during murine B cell development in the bone marrow and in several peripheral and spleen B cell subsets. The impact of PSGL-1 absence on B cell biology was also evaluated. Interestingly, the percentage of PSGL-1 expressing cells and PSGL-1 expression levels decreased in the transition from common lymphoid progenitors to immature B cells. PSGL-1−/− mice showed reduced frequencies of peripheral B cells and reduced B cell lineage-committed precursors in the bone marrow. In the spleen of WT mice, the highest percentages of PSGL-1+ populations were shown by Breg (90%), B1a (34.7%), and B1b (19.1%), while only 2.5–8% of B2 cells expressed PSGL-1; however, within B2 cells, the class-switched subsets showed the highest percentages of PSGL-1+ cells. Interestingly, PSGL-1−/− mice had increased IgG+ and IgD+ subsets and decreased IgA+ population. Of note, the percentage of PSGL-1+ cells was increased in all the B cell subclasses studied in peritoneal fluid. Furthermore, PSGL-1 engagement during in vitro activation with anti-IgM and anti-CD40 antibodies of human peripheral B cells, blocked IL-10 expression by activated human B cells. Remarkably, PSGL-1 expression in circulating plasma cells was reduced in pulmonary arterial hypertension patients. In summary, although the expression of PSGL-1 in mature B cells is low, the lack of PSGL-1 compromises normal B cell development and it may also play a role in the maturation and activation of peripheral naïve B cells.
Collapse
Affiliation(s)
- Rafael González-Tajuelo
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Esther Vicente-Rabaneda
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Javier García-Pérez
- Pulmunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Santos Castañeda
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain.,Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| |
Collapse
|
17
|
Zhang X, Zhu M, Jiang XL, Liu X, Liu X, Liu P, Wu XX, Yang ZW, Qin T. P-selectin glycoprotein ligand 1 deficiency prevents development of acute pancreatitis by attenuating leukocyte infiltration. World J Gastroenterol 2020; 26:6361-6377. [PMID: 33244198 PMCID: PMC7656215 DOI: 10.3748/wjg.v26.i41.6361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is rapid-onset pancreatic inflammation that causes local and systemic inflammatory response syndrome (SIRS) with high morbidity and mortality, but no approved therapies are currently available. P-selectin glycoprotein ligand 1 (PSGL-1) is a transmembrane glycoprotein to initiate inflammatory responses. We hypothesized that PSGL-1 may be involved in the development of AP and would be a new target for the treatment of AP.
AIM To investigate the role and mechanism of PSGL-1 in the development of AP.
METHODS The PSGL-1 expression on leukocytes was detected in peripheral blood of AP patients and volunteers. Pancreatic injury, inflammatory cytokines expression, and inflammatory cell infiltration was measured in AP mouse models induced with PSGL-1 knockout (PSGL-1-/-) and wild-type (PSGL-1+/+) mice. Leukocyte-endothelial cell adhesion was measured in a peripheral blood mononuclear cell (PBMC)-endothelial cell coculture system.
RESULTS The expression of PSGL-1 on monocytes and neutrophils was significantly increased in AP patients. Compared with PSGL-1+/+ mice, PSGL-1-/- AP mice induced by caerulein exhibited lower serum amylase, less Interleukin-1beta (IL-1beta) and Interleukin-6 (IL-6) expression, less neutrophil and macrophage infiltration, and reduced peripheral neutrophil and monocyte accounts. PSGL-1 deficiency alleviated leukocyte-endothelial cell adhesion via IL-6 but not IL-1beta.
CONCLUSION PSGL-1 deficiency effectively inhibits the development of AP by preventing leukocyte-endothelial cell adhesion via IL-6 stimulation and may become a potential therapeutic target for treating AP.
Collapse
Affiliation(s)
- Xu Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Ming Zhu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-Liang Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xing Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Xue Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Pan Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| | - Xian-Xian Wu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Zhi-Wei Yang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical Collage (PUMC), Beijing 100021, China
| | - Tao Qin
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450003, Henan Province, China
- Department of Hepato-Biliary-Pancreatic Surgery, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China
| |
Collapse
|