1
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
3
|
Courties A, Olmer M, Myers K, Ordoukhanian P, Head SR, Natarajan P, Berenbaum F, Sellam J, Lotz MK. Human-specific duplicate CHRFAM7A gene is associated with more severe osteoarthritis and amplifies pain behaviours. Ann Rheum Dis 2023; 82:710-718. [PMID: 36627169 PMCID: PMC10101906 DOI: 10.1136/ard-2022-223470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVES CHRFAM7A is a uniquely human fusion gene that functions as a dominant negative regulator of alpha 7 acetylcholine nicotinic receptor (α7nAChR) in vitro. This study determined the impact of CHRFAM7A on α7nAChR agonist responses, osteoarthritis (OA) severity and pain behaviours and investigated mechanisms. METHODS Transgenic CHRFAM7A (TgCHRFAM7A) mice were used to determine the impact of CHRFAM7A on knee OA histology, pain severity in OA and other pain models, response to nAchR agonist and IL-1β. Mouse and human cells were used for mechanistic studies. RESULTS Transgenic (Tg) TgCHRFAM7A mice developed more severe structural damage and increased mechanical allodynia than wild type (WT) mice in the destabilisation of medial meniscus model of OA. This was associated with a decreased suppression of inflammation by α7nAchR agonist. TgCHRFAM7A mice displayed a higher basal sensitivity to pain stimuli and increased pain behaviour in the monoiodoacetate and formalin models. Dorsal root ganglia of TgCHRFAM7A mice showed increased macrophage infiltration and expression of the chemokine fractalkine and also had a compromised antinociceptive response to the α7nAchR agonist nicotine. Both native CHRNA7 and CHRFAM7A subunits were expressed in human joint tissues and the CHRFAM7A/CHRNA7 ratio was increased in OA cartilage. Human chondrocytes with two copies of CHRFAM7A had reduced anti-inflammatory responses to nicotine. CONCLUSION CHRFAM7A is an aggravating factor for OA-associated inflammation and tissue damage and a novel genetic risk factor and therapeutic target for pain.
Collapse
Affiliation(s)
- Alice Courties
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
- INSERM UMRS 938, Hôpital Saint-Antoine, Service de rhumatologie, AP-HP, Sorbonne Université, Paris, France
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Kevin Myers
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Phillip Ordoukhanian
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Steven R Head
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Padmaja Natarajan
- Center for Computational Biology & Bioinformatics and Genomics Core, Scripps Research, La Jolla, California, USA
| | - Francis Berenbaum
- INSERM UMRS 938, Hôpital Saint-Antoine, Service de rhumatologie, AP-HP, Sorbonne Université, Paris, France
| | - Jérémie Sellam
- INSERM UMRS 938, Hôpital Saint-Antoine, Service de rhumatologie, AP-HP, Sorbonne Université, Paris, France
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
4
|
Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD. Autonomic Nervous System Dysregulation and Osteoarthritis Pain: Mechanisms, Measurement, and Future Outlook. Curr Rheumatol Rep 2022; 24:175-183. [PMID: 35420372 PMCID: PMC9189055 DOI: 10.1007/s11926-022-01071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The autonomic nervous system is an important regulator of stress responses and exhibits functional changes in chronic pain states. This review discusses potential overlap among autonomic dysregulation, osteoarthritis (OA) progression, and chronic pain. From this foundation, we then discuss preclinical to clinical research opportunities to close gaps in our knowledge of autonomic dysregulation and OA. Finally, we consider the potential to generate new therapies for OA pain via modulation of the autonomic nervous system. RECENT FINDINGS Recent reviews provide a framework for the autonomic nervous system in OA progression; however, research is still limited on the topic. In other chronic pain states, functional overlaps between the central autonomic network and pain processing centers in the brain suggest relationships between concomitant dysregulation of the two systems. Non-pharmacological therapeutics, such as vagus nerve stimulation, mindfulness-based meditation, and exercise, have shown promise in alleviating painful symptoms of joint diseases, and these interventions may be partially mediated through the autonomic nervous system. The autonomic nervous system appears to be dysregulated in OA progression, and further research on rebalancing autonomic function may lead to novel therapeutic strategies for treating OA pain.
Collapse
Affiliation(s)
- Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Courties A, Petit J, Do A, Legris M, Kouki I, Pigenet A, Sacitharan PK, Ehkirch FP, Berenbaum F, Sellam J. Alpha-7 Nicotinic Receptor Dampens Murine Osteoblastic Response to Inflammation and Age-Related Osteoarthritis. Front Immunol 2022; 13:842538. [PMID: 35479080 PMCID: PMC9037377 DOI: 10.3389/fimmu.2022.842538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteoarthritis (OA) is a whole-joint disease characterized by a low-grade inflammation that is involved in both cartilage degradation and subchondral bone remodeling. Since subchondral bone has a cholinergic innervation and that acetylcholine (Ach) might have an anti-inflammatory effect through the α7 nicotinic Ach receptor (α7nAchR), we aimed (i) to determine the expression of non-neuronal cholinergic system and nicotinic receptor subunits by murine and human osteoblasts, (ii) to address the role of α7nAchR in osteoblastic response to inflammation, and (iii) to study the role of α7nAchR in a spontaneous aging OA model. Methods Primary cultures of WT and α7nAchR knock-out mice (Chrna7-/-) murine osteoblasts and of subchondral bone human OA osteoblasts were performed. The expressions of the non-neuronal cholinergic system and of the nAchR subunits were assessed by PCR. In vitro, IL1β-stimulated WT, Chrna7-/-, and human osteoblasts were pretreated with nicotine. At 24 h, expressions of interleukin-6 (IL6) and metalloproteinase-3 and -13 (MMP), RANK-ligand (RANKL), and osteoprotegerin (OPG) were quantified by qPCR and ELISA. Spontaneous aging OA was evaluated and compared between male WT and Chrna7-/- mice of 9 and 12 months. Results Murine WT osteoblasts express the main components of the cholinergic system and α7 subunit composing α7nAchR. Nicotine partially prevented the IL1β-induced expression and production of IL6, MMP3, and RANKL in WT osteoblasts. The effect for IL6 and MMP was mediated by α7nAchR since nicotine had no effect on Chrna7-/- osteoblasts while the RANKL decrease persisted. Chrna7-/- mice displayed significantly higher cartilage lesions than their WT counterparts at 9 and 12 months, without difference in subchondral bone remodeling. Human OA osteoblasts also expressed the non-neuronal cholinergic system and α7 subunit as well as CHRFAM7A, the dominant negative duplicate of Chrna7. Nicotine pretreatment did not significantly reduce IL6 and MMP3 production in IL-1β-stimulated human osteoarthritic osteoblasts (n = 4), possibly due to CHRFAM7A. Conclusion Cholinergic system counteracts murine osteoblastic response to IL-1β through α7nAchR. Since α7nAchR deletion may limit cartilage degradation during murine age-related OA, enhancing cholinergic system could be a new therapeutic target in OA but may depend on CHRFAM7A expression.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Juliette Petit
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Ariane Do
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Manon Legris
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Inès Kouki
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Pradeep K Sacitharan
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | | | - Francis Berenbaum
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Jérémie Sellam
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
6
|
Yeater T, Zubcevic J, Allen K. Measures of cardiovascular function suggest autonomic nervous system dysregulation after surgical induction of joint injury in the male Lewis rat. Osteoarthritis Cartilage 2022; 30:586-595. [PMID: 35017058 PMCID: PMC9255271 DOI: 10.1016/j.joca.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Functional changes in the autonomic nervous system may help explain variability in the progression of knee osteoarthritis (OA). Thus, the objective of this study was to evaluate autonomic nervous system shifts, measured via heart rate response variables, in rat knee joint injury and OA models. METHODS Cardiovascular characteristics were measured at baseline and bi-weekly for 8 weeks after skin incision, medial collateral ligament transection (MCLT), or MCLT+medial meniscus transection (MCLT+MMT). Heart rate was also assessed during a mild stressor (elevated maze). At endpoint, cardiovascular responses to mechanical knee stimuli were evaluated, as well as responses to 1-phenylbiguanide, a 5HT3A receptor agonist with reported ability to stimulate vagal responses. RESULTS During low activity, a slower heart rate occurred in MCLT (299 ± 10 bpm) and MCLT+MMT (310 ± 10 bpm) animals compared to controls (325 ± 10 bpm). Furthermore, patellar ligament mechanical stimuli produced an immediate decrease in heart rate and blood pressure in all groups. Finally, a larger drop in heart rate was observed in MCLT (252 ± 40 bpm) and MCLT+MMT (263 ± 49 bpm) following administration of 1-phenylbiguanide compared to skin incision (168 ± 45 bpm). CONCLUSIONS Acute mechanical stimulation of the patellar ligament produced drops in heart rate, suggesting a possible joint-brain connection that modulates autonomic responses. With both joint injury, cardiac vagal activation was altered in response to pharmacological stimulation, with chronic longitudinal heart rate reduction. These data provide some preliminary evidence of potential functional shifts in autonomic nervous system function in models of joint injury and OA.
Collapse
Affiliation(s)
- T.D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - J. Zubcevic
- Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - K.D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA,Address correspondence and reprint requests to: K.D. Allen, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA. Tel: (352)-273-9337. , (K.D. Allen)
| |
Collapse
|
7
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
10
|
Courties A, Petit J, Do A, Legris M, Kouki I, Pigenet A, Sacitharan PK, Ehkirch FP, Berenbaum F, Sellam J. Alpha-7 Nicotinic Receptor Dampens Murine Osteoblastic Response to Inflammation and Age-Related Osteoarthritis. Front Immunol 2022. [PMID: 35479080 DOI: 10.3389/fimmu.2021.761820/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a whole-joint disease characterized by a low-grade inflammation that is involved in both cartilage degradation and subchondral bone remodeling. Since subchondral bone has a cholinergic innervation and that acetylcholine (Ach) might have an anti-inflammatory effect through the α7 nicotinic Ach receptor (α7nAchR), we aimed (i) to determine the expression of non-neuronal cholinergic system and nicotinic receptor subunits by murine and human osteoblasts, (ii) to address the role of α7nAchR in osteoblastic response to inflammation, and (iii) to study the role of α7nAchR in a spontaneous aging OA model. METHODS Primary cultures of WT and α7nAchR knock-out mice (Chrna7-/-) murine osteoblasts and of subchondral bone human OA osteoblasts were performed. The expressions of the non-neuronal cholinergic system and of the nAchR subunits were assessed by PCR. In vitro, IL1β-stimulated WT, Chrna7-/-, and human osteoblasts were pretreated with nicotine. At 24 h, expressions of interleukin-6 (IL6) and metalloproteinase-3 and -13 (MMP), RANK-ligand (RANKL), and osteoprotegerin (OPG) were quantified by qPCR and ELISA. Spontaneous aging OA was evaluated and compared between male WT and Chrna7-/- mice of 9 and 12 months. RESULTS Murine WT osteoblasts express the main components of the cholinergic system and α7 subunit composing α7nAchR. Nicotine partially prevented the IL1β-induced expression and production of IL6, MMP3, and RANKL in WT osteoblasts. The effect for IL6 and MMP was mediated by α7nAchR since nicotine had no effect on Chrna7-/- osteoblasts while the RANKL decrease persisted. Chrna7-/- mice displayed significantly higher cartilage lesions than their WT counterparts at 9 and 12 months, without difference in subchondral bone remodeling. Human OA osteoblasts also expressed the non-neuronal cholinergic system and α7 subunit as well as CHRFAM7A, the dominant negative duplicate of Chrna7. Nicotine pretreatment did not significantly reduce IL6 and MMP3 production in IL-1β-stimulated human osteoarthritic osteoblasts (n = 4), possibly due to CHRFAM7A. CONCLUSION Cholinergic system counteracts murine osteoblastic response to IL-1β through α7nAchR. Since α7nAchR deletion may limit cartilage degradation during murine age-related OA, enhancing cholinergic system could be a new therapeutic target in OA but may depend on CHRFAM7A expression.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Juliette Petit
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Ariane Do
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Manon Legris
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Inès Kouki
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Audrey Pigenet
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Pradeep K Sacitharan
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | | | - Francis Berenbaum
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Jérémie Sellam
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
11
|
Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol 2021; 94:e13092. [PMID: 34780075 DOI: 10.1111/sji.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is a classic neuroimmune pathway, consisting of the vagus nerve, acetylcholine (ACh)-the pivotal neurotransmitter of the vagus nerve-and its receptors. This pathway can activate and regulate the activities of immune cells, inhibit cell proliferation and differentiation, as well as suppress cytokine release, thereby playing an anti-inflammatory role, and widely involved in the occurrence and development of various diseases; recent studies have demonstrated that the CAP may be a new target for the treatment of autoimmune rheumatic diseases. In this review, we will summarize the latest progress with the view of figuring out the role of the cholinergic pathway and how it interacts with inflammatory reactions in several autoimmune rheumatic diseases, and many advances are results from a wide range of experiments performed in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaqi Lv
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| | - Xiaoxiao Ji
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhen Li
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
12
|
Wang Y, Li T, Yang Q, Feng B, Xiang Y, Lv Z, Weng X. LncRNA THUMPD3-AS1 enhances the proliferation and inflammatory response of chondrocytes in osteoarthritis. Int Immunopharmacol 2021; 100:108138. [PMID: 34509934 DOI: 10.1016/j.intimp.2021.108138] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) regulate the occurrence and development of osteoarthritis (OA), whereas the biological roles and mechanisms of the lncRNA THUMPD3-AS1 (THUMPD3 antisense RNA 1) in OA remain still unclear. This study described the role and molecular mechanism of lncRNA THUMPD3-AS1 in regulating OA biology. METHOD The knee normal and OA cartilage tissues from ten participants were sequenced to reveal the differentially expressed lncRNAs. The interleukin (IL)-1β-stimulated C28/I2 cell served as OA cells. Flow cytometry assays, Western blot, enzyme-linked immunosorbent assays were used for our experiments. RESULTS The results revealed that lncRNA THUMPD3-AS1 was downregulated in OA cartilage tissues and IL-1β-stimulated chondrocyte cell line. Overexpression of lncRNA THUMPD3-AS1 alleviated cell apoptosis and facilitated inflammatory responses, whereas knockdown had opposite effects. LncRNA THUMPD3-AS1 markedly increased the cyclin E2, cyclin-dependent kinase 4, B-cell lymphoma 2, tumor necrosis factor-α, nitric oxide, and IL-6 levels, and decreased the caspase-3 level. Furthermore, the target proteins of phosphorylation were identified as nuclear factor-κB p65 and mitogen-activated protein kinase p38, which could be indirectly suppressed by lncRNA THUMPD3-AS1 knockdown. CONCLUSION Our findings highlight the different effects of lncRNA THUMPD3-AS1 on cell apoptosis and inflammatory response, which extend the multiple functions of lncRNA epigenetics in OA biology.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
13
|
Research Progress on the Antiosteoarthritic Mechanism of Action of Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7714533. [PMID: 34630617 PMCID: PMC8497106 DOI: 10.1155/2021/7714533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Background Osteoarthritis (OA) is a clinical joint degenerative disease, the pathogenic factors of which include age, obesity, and mechanical injury. Its main pathological features include cartilage loss, narrowing of joint space, and osteophyte formation. At present, there are a variety of treatment methods for OA. Natural products, which are gradually being applied in the treatment of OA, are advantageous as they present with low toxicity and low costs and act on multiple targets. Methods The terms “natural products,” “osteoarthritis,” and “chondrocytes” were searched in PubMed to screen the related literature in the recent 10 years. Results We comprehensively introduced 62 published papers on 48 natural products involving 6, 3, 5, 12, 4, and 5 kinds of terpenoids, polysaccharides, polyphenols, flavonoids, alkaloids, and saponins, respectively (and others). Conclusion The mechanisms of their anti-OA action mainly involve reducing the production of inflammatory factors, reducing oxidative stress, regulating the metabolism of chondrocytes, promoting the proliferation of chondrocytes, or inhibiting chondrocyte apoptosis. This article summarizes the anti-OA activity of natural products in the last 10 years and provides candidate monomers for further study for use in OA treatment.
Collapse
|
14
|
Yang T, Wang D, Chen X, Liang Y, Guo F, Wu C, Jia L, Hou Z, Li W, He Z, Wang X. 18F-ASEM Imaging for Evaluating Atherosclerotic Plaques Linked to α7-Nicotinic Acetylcholine Receptor. Front Bioeng Biotechnol 2021; 9:684221. [PMID: 34277585 PMCID: PMC8280778 DOI: 10.3389/fbioe.2021.684221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Background Atherosclerosis is a chronic vascular inflammatory procedure alongside with lipid efflux disorder and foam cell formation. α7-Nicotinic acetylcholine receptor (α7nAChR) is a gated-calcium transmembrane channel widely expressed in neuron and non-neuron cells, such as monocytes and macrophages, activated T cells, dendritic cells, and mast cells. 18F-ASEM is an inhibitor targeted to α7nAChR that had been successfully applied in nervous system diseases. Previous studies had highlighted that α7nAChR was related to the emergency of vulnerable atherosclerotic plaques with excess inflammation cells. Thus, 18F-ASEM could be a complementary diagnostic approach to atherosclerotic plaques. Materials and Methods The synthesis of ASEM precursor and 18F-labeling had been performed successfully. We had established the ApoE–/– mice atherosclerotic plaques model (fed with western diet) and New Zealand rabbits atherosclerotic models (balloon-sprained experiment and western diet). After damage of endothelial cells and primary plaque formation, 18F-ASEM imaging of atherosclerotic plaques linked to α7nAChR had been conducted. In vivo micro-PET/CT imaging of ApoE–/– mice and the control group was performed 1 h after injection of 18F-ASEM (100–150 μCi); PET/CT imaging for rabbits with atherosclerotic plaques and control ones was also performed. Meanwhile, we also conducted CT scan on the abdominal aorta of these rabbits. After that, the animals were sacrificed, and the carotid and abdominal aorta were separately taken out for circular sections. The paraffin-embedded specimens were sectioned with 5 μm thickness and stained with hematoxylin–eosin (H&E) and oil red. Results In vivo vessel binding of 18F-ASEM and α7nAChR expression in the model group with atherosclerosis plaques was significantly higher than that in the control group. PET/CT imaging successfully identified the atherosclerotic plaques in ApoE–/– mice and model rabbits, whereas no obvious signals were detected in normal mice or rabbits. Compared with 18F-FDG, 18F-ASEM had more significant effect on the early monitoring of inflammation in carotid atherosclerotic plaques of ApoE–/– mice and model rabbits. 18F-ASEM had relatively more palpable effect on the imaging of abdominal aorta with atherosclerosis in rabbits. H&E and oil red staining identified the formation of atherosclerotic plaques in model animals, which provided pathological basis for the evaluation of imaging effects. Conclusion We first confirmed 18F-ASEM as radiotracer with good imaging properties for precise identification of atherosclerotic diseases.
Collapse
Affiliation(s)
- Tao Yang
- Department of Cardiovascular Surgery, Fu Wai Hospital, Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dawei Wang
- Department of Nuclear Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Xiangyi Chen
- Department of Nuclear Medicine, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China.,Yichang Central People's Hospital, Yichang, China
| | - Yingkui Liang
- Department of Nuclear Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Feng Guo
- Department of Nuclear Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Chunxiao Wu
- Department of Cardiovascular Surgery, Fu Wai Hospital, Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Department of Cardiovascular Surgery, Fu Wai Hospital, Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Hou
- Department of Cardiovascular Surgery, Fu Wai Hospital, Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin City, China
| | - ZuoXiang He
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xin Wang
- Department of Cardiovascular Surgery, Fu Wai Hospital, Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Courties A, Boussier J, Hadjadj J, Yatim N, Barnabei L, Péré H, Veyer D, Kernéis S, Carlier N, Pène F, Rieux-Laucat F, Charbit B, Bondet V, Duffy D, Berenbaum F, Terrier B, Sellam J. Regulation of the acetylcholine/α7nAChR anti-inflammatory pathway in COVID-19 patients. Sci Rep 2021; 11:11886. [PMID: 34088975 PMCID: PMC8178312 DOI: 10.1038/s41598-021-91417-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
The cholinergic system has been proposed as a potential regulator of COVID-19-induced hypercytokinemia. We investigated whole-blood expression of cholinergic system members and correlated it with COVID-19 severity. Patients with confirmed SARS-CoV-2 infection and healthy aged-matched controls were included in this non-interventional study. A whole blood sample was drawn between 9-11 days after symptoms onset, and peripheral leukocyte phenotyping, cytokines measurement, RNA expression and plasma viral load were determined. Additionally, whole-blood expression of native alpha-7 nicotinic subunit and its negative dominant duplicate (CHRFAM7A), choline acetyltransferase and acetylcholine esterase (AchE) were determined. Thirty-seven patients with COVID-19 (10 moderate, 11 severe and 16 with critical disease) and 14 controls were included. Expression of CHRFAM7A was significantly lower in critical COVID-19 patients compared to controls. COVID-19 patients not expressing CHRFAM7A had higher levels of CRP, more extended pulmonary lesions and displayed more pronounced lymphopenia. COVID-19 patients without CHRFAM7A expression also showed increased TNF pathway expression in whole blood. AchE was also expressed in 30 COVID-19 patients and in all controls. COVID-19-induced hypercytokinemia is associated with decreased expression of the pro-inflammatory dominant negative duplicate CHRFAM7A. Expression of this duplicate might be considered before targeting the cholinergic system in COVID-19 with nicotine.
Collapse
Affiliation(s)
- Alice Courties
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
- Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012, Paris, France
| | | | - Jérôme Hadjadj
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015, Paris, France
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital Cochin, 75014, Paris, France
| | - Nader Yatim
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital Cochin, 75014, Paris, France
| | - Laura Barnabei
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015, Paris, France
| | - Hélène Péré
- Université de Paris, INSERM, U970, PARCC, 75015, Paris, France
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
| | - David Veyer
- Laboratoire de Virologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France
- Unité de Génomique Fonctionnelle des Tumeurs Solides, Centre de Recherche des Cordeliers, INSERM, Université Paris, 75005, Paris, France
| | - Solen Kernéis
- Equipe Mobile d'Infectiologie, Hôpital Cochin, AP-HP, APHP-CUP, 75014, Paris, France
- Université de Paris, INSERM, IAME, 75006, Paris, France
- Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), 75015, Paris, France
| | - Nicolas Carlier
- Department of Pulmonology, Hôpital Cochin, AP-HP, APHP-CUP, 75014, Paris, France
| | - Frédéric Pène
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Service de Médecine Intensive-Réanimation, Hôpital Cochin, AP-HP-CUP, 75014, Paris, France
| | - Frédéric Rieux-Laucat
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Cytometry and Biomarkers UTechS, CRT, 75015, Paris, France
| | - Vincent Bondet
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015, Paris, France
- Institut Pasteur, Cytometry and Biomarkers UTechS, CRT, 75015, Paris, France
| | - Francis Berenbaum
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France
- Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital Cochin, 75014, Paris, France
- Université de Paris, INSERM, U970, PARCC, 75015, Paris, France
| | - Jérémie Sellam
- Sorbonne Université, INSERM UMR 938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, AP-HP, Paris, France.
- Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
16
|
Cao X, Wang Y, Gao L. CHRFAM7A Overexpression Attenuates Cerebral Ischemia-Reperfusion Injury via Inhibiting Microglia Pyroptosis Mediated by the NLRP3/Caspase-1 pathway. Inflammation 2021; 44:1023-1034. [PMID: 33405023 DOI: 10.1007/s10753-020-01398-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is an inflammation-related disease. CHRFAM7A can regulate inflammatory responses. Therefore, the present study investigated the mechanism of CHRFAM7A in cerebral I/R injury. CHRFAM7A expression and inflammatory cytokine levels in patients with cerebral I/R injury and oxygen-glucose deprivation/reperfusion (OGD/R)-treated microglia were detected. The proliferation, inflammatory cytokine expressions, nod-like receptor protein 3 (NLRP3) level, cell pyroptosis, and viability and lactate dehydrogenase (LDH) activity in OGD/R-treated microglia were detected after CHRFAM7A overexpression. The NLRP3/Caspase-1 pathway was activated to assess the effect of CHRFAM7A on microglia. Expressions of microglial M1 phenotype marker iNOS and M2 marker Arg1 were detected. Downregulated CHRFAM7A and elevated inflammatory cytokine levels were observed in patients with cerebral I/R injury and OGD/R-treated microglia. In OGD/R-treated microglia, CHRFAM7A overexpression promoted cell proliferation and viability, reduced inflammation and LDH activity, and inhibited NLRP3 inflammasome activation and cell pyroptosis. Mechanically, CHRFAM7A inhibited microglia pyroptosis via inhibiting the NLRP3/Caspase-1 pathway and reduced cell inflammatory injury via promoting microglia polarization from M1 to M2. Overall, CHRFAM7A overexpression attenuated cerebral I/R injury by inhibiting microglia pyroptosis in a NLRP3/Caspase-1 pathway-dependent manner and promoting microglia polarization to M2 phenotype.
Collapse
Affiliation(s)
- Xiangyuan Cao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, No. 301 Yanchangzhong Road, Shanghai, 200072, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, No. 301 Yanchangzhong Road, Shanghai, 200072, China.
| |
Collapse
|
17
|
Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis 2021; 12:448. [PMID: 33953172 PMCID: PMC8100296 DOI: 10.1038/s41419-021-03726-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA) is the most common chronic joint disease in the elderly population. Growing evidence indicates that a balance between autophagy and apoptosis in chondrocytes plays a key role in OA’s cartilage degradation. Thus, drugs targeting the balance between apoptosis and autophagy are potential therapeutic approaches for OA treatment. In previous studies, we found that the activation of α7 nicotinic acetylcholine receptors (α7-nAChRs) alleviated monosodium iodoacetate (MIA)-induced joint degradation and osteoarthritis pain. To explore the potential functions of α7-nAChRs in autophagy and apoptosis signaling in knee OA, we compared the expression of α7-nAChRs in human knee articular cartilage tissues from normal humans and OA patients. We found that knee joint cartilage tissues of OA patients showed decreased α7-nAChRs and an imbalance between autophagy and apoptosis. Next, we observed that α7-nAChRs deficiency did not affect cartilage degradation in OA development but reversed the beneficial effects of nicotine on mechanical allodynia, cartilage degradation, and an MIA-induced switch from autophagy to apoptosis. Unlike in vivo studies, we found that primary chondrocytes from α7-nAChRs knockout (KO) mice showed decreased LC3 levels under normal conditions and were more sensitive toward MIA-induced apoptosis. Finally, we found that α7-nAChRs deficiency increased the phosphorylation of mTOR after MIA treatment, which can also be observed in OA patients’ tissues. Thus, our findings not only confirmed that nicotine alleviated MIA-induced pain behavior and cartilage degradation via stimulating the α7-nAChRs/mTOR signal pathway but found the potential role of α7-nAChRs in mediating the balance between apoptosis and autophagy.
Collapse
|
18
|
Lauwers M, Courties A, Sellam J, Wen C. The cholinergic system in joint health and osteoarthritis: a narrative-review. Osteoarthritis Cartilage 2021; 29:643-653. [PMID: 33609692 DOI: 10.1016/j.joca.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) poses a major health and economic burden worldwide due to an increasing number of patients and the unavailability of disease-modifying drugs. In this review, the latest understanding of the involvement of the cholinergic system in joint homeostasis and OA will be outlined. First of all, the current evidence on the presence of the cholinergic system in the normal and OA joint will be described. Cholinergic innervation as well as the non-neuronal cholinergic system are detected. In a variety of inflammatory diseases, the classic cholinergic anti-inflammatory pathway lately received a lot of attention as via this pathway cholinergic agonists can reduce inflammation. The role of this cholinergic anti-inflammatory pathway in the context of OA will be discussed. Activation of this pathway improved the progression of the disease. Secondly, chondrocyte hypertrophy plays a pivotal role in osteophyte formation and OA development; the impact of the cholinergic system on hypertrophic chondroblasts and endochondral ossification will be evaluated. Cholinergic stimulation increased chondrocyte proliferation, delayed chondrocyte differentiation and caused early mineralisation. Moreover, acetylcholinesterase and butyrylcholinesterase affect the endochondral ossification via an acetylcholine-independent pathway. Thirdly, subchondral bone is critical for cartilage homeostasis and metabolism; the cholinergic system in subchondral bone homeostasis and disorders will be explored. An increase in osteoblast proliferation and osteoclast apoptosis is observed. Lastly, current therapeutic strategies for OA are limited to symptom relief; here the impact of smoking on disease progression and the potential of acetylcholinesterase inhibitors as candidate disease-modifying drug for OA will be discussed.
Collapse
Affiliation(s)
- M Lauwers
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - A Courties
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMRS_938, Sorbonne Université, Saint-Antoine Hospital, Paris, France.
| | - J Sellam
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMRS_938, Sorbonne Université, Saint-Antoine Hospital, Paris, France.
| | - C Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
19
|
Temporal proteomic changes induced by nicotine in human cells: A quantitative proteomics approach. J Proteomics 2021; 241:104244. [PMID: 33895337 DOI: 10.1016/j.jprot.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nicotine is a prominent active compound in tobacco and many smoking cessation products. Some of the biological effects of nicotine are well documented in in vitro and in vivo systems; however, data are scarce concerning the time-dependent changes on protein and phosphorylation events in response to nicotine. Here, we profiled the proteomes of SH-SY5Y and A549 cell lines subjected to acute (15 min, 1 h and 4 h) or chronic (24 h, 48 h) nicotine exposures. We used sample multiplexing (TMTpro16) and quantified more than 9000 proteins and over 7000 phosphorylation events per cell line. Among our findings, we determined a decrease in mitochondrial protein abundance for SH-SY5Y, while we detected alterations in several immune pathways, such as the complement system, for A549 following nicotine treatment. We also explored the proposed association between smoking (specifically nicotine) and SARS-CoV2. Here, we found several host proteins known to interact with viral proteins that were affected by nicotine in a time dependent manner. This dataset can be mined further to investigate the potential role of nicotine in different biological contexts. SIGNIFICANCE: Smoking is a major public health issue that is associated with several serious chronic, yet preventable diseases, including stroke, heart disease, type 2 diabetes, cancer, and susceptibility to infection. Tobacco smoke is a complex mixture of thousands of different compounds, among which nicotine is the main addictive compound. The biological effects of nicotine have been reported in several models, however very little data are available concerning the temporal proteomic and phosphoproteomic changes in response to nicotine. Here, we provide a dataset exploring the potential role of nicotine on different biological processes over time, including implications in the study of SARS-CoV2.
Collapse
|
20
|
Courties A, Berenbaum F, Sellam J. Vagus nerve stimulation in musculoskeletal diseases. Joint Bone Spine 2021; 88:105149. [PMID: 33548494 DOI: 10.1016/j.jbspin.2021.105149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 01/21/2023]
Abstract
The vagus nerve is the main nerve of the parasympathetic autonomic nervous system. Beyond its vegetative functions, the vagus nerve possesses anti-inflammatory and analgesic properties. Initially developed in the treatment of refractory epilepsy, vagus nerve stimulation (VNS) is currently being evaluated in several musculoskeletal diseases. VNS can be invasive by placing an electrode around the cervical vagus nerve and connected to a generator implanted subcutaneously or non-invasive stimulating the cervical vagus nerve branch percutaneously (auricular or cervical). In rheumatoid arthritis (RA) patients, VNS has been shown to dampen the inflammatory response of circulatory peripheral cells. Several open-labeled small pilot studies have demonstrated that VNS, either invasive or transcutaneous, is associated with a significant decrease of RA disease activity. As well, other studies have shown that VNS could limit fatigue in Sjogren's syndrome and systemic lupus, or decrease pain in fibromyalgia as well as in erosive hand osteoarthritis. However, some questions remain, such as the settings of stimulation, the duration of treatment, or the optimal stimulation route. Finally, randomized controlled trials versus sham stimulation with large samples of patients are mandatory to definitively conclude about the efficacy of VNS.
Collapse
Affiliation(s)
- Alice Courties
- INSERM UMRS 938, service de rhumatologie, Sorbonne Université, hôpital Saint-Antoine, AP-HP, Paris, France
| | - Francis Berenbaum
- INSERM UMRS 938, service de rhumatologie, Sorbonne Université, hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jérémie Sellam
- INSERM UMRS 938, service de rhumatologie, Sorbonne Université, hôpital Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|