1
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Feng B, Zhang Y, Liu T, Chan L, Chen T, Zhao J. Selenium speciation determines the angiogenesis effect through regulating selenoproteins to trigger ROS-mediated cell apoptosis and cell cycle arrest. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020; 10:10154-10170. [PMID: 32929340 PMCID: PMC7481425 DOI: 10.7150/thno.45861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer has a high mortality rate and is resistant to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that facilitates the bioavailability of drugs. In this study, we investigated the effects of NB on chemosensitivity in the A549 human lung adenocarcinoma cell line and to elucidate therapeutic molecular target of NB. Methods: The chemosensitivity effects of NB in A549 cells were examined by MTT assay. The mechanism of NB action was evaluated using flow cytometry and Western blotting assays. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate molecular target of NB. The chemosensitizing capacity of NB in vivo was assessed in nude mice bearing A549 tumors. Results: NB pretreatment sensitized A549 cells to low doxorubicin (DOX) dosage, leading to a 15.7% to 41.5% increase in apoptosis. This increase was correlated with ERK and AKT inactivation and activation of phospho-p38 MAPK, phospho-JNK, and phosphor-p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. MS-SPRi analysis revealed that transient receptor potential melastatin-8 (TRPM8) is the candidate target of NB in potentiating DOX killing potency. Genetically, TRPM8 knock-down significantly suppresses the chemosensitizing effects of NB and inhibits ROS generation through restraining calcium mobilization. Moreover, pretreatment with NB synergistically enhances the anticancer effects of DOX to delay tumor progression in vivo. Conclusions: These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB, and show that NB is a chemosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wenwei Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Chen Z, Lai H, Hou L, Chen T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun (Camb) 2020; 56:179-196. [PMID: 31782422 DOI: 10.1039/c9cc07683b] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organo-seleno compounds (org-Se) have been widely used in antitumor, antiviral, and antiinflammatory therapy; antioxidation and other biological fields. As such, they have made an important contribution to overcoming various kinds of diseases, and researchers are increasingly attracted to org-Se's synthesis and functional design. This review is mainly focused on the design and synthesis of various kinds of org-Se, followed by their anticancer mechanisms such as the mitochondria mediated pathway induced by ROS, death receptor mediated pathways involving p53 phosphorylation, and the activation of the AMPK pathway to promote apoptosis. Org-Se also serves as a sensitizer in chemotherapy and radiotherapy, and an antagonist against the cytotoxic effects induced by chemotherapeutic agents. Finally, we will summarize the development of cancer-targeted org-Se containing complexes, and nanotechnology-based org-Se for anticancer application. This review could provide information for the future design of chemically innovative org-Se with anticancer potential, and shed light on the discovery of nanomaterial-based pharmaceuticals to improve drug development and formation.
Collapse
Affiliation(s)
- Zhen Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
5
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
6
|
Başpınar Küçük H, Banu Salt Z, Mataracı Kara E, Sayık Mehan A, Yusufoğlu AS. Synthesis of novel 1,2,3-thiadizoles and 1,2,3-selenadiazoles as new antimicrobial agents. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1576676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hatice Başpınar Küçük
- Department of Chemistry, Organic Chemistry Division, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Banu Salt
- Department of Chemistry, Organic Chemistry Division, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Emel Mataracı Kara
- Department of Pharmaceutical Microbiology Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Aysema Sayık Mehan
- Department of Chemistry, Organic Chemistry Division, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayşe Sergüzel Yusufoğlu
- Department of Chemistry, Organic Chemistry Division, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Rao S, Lin Y, Du Y, He L, Huang G, Chen B, Chen T. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction. J Mater Chem B 2019; 7:2648-2656. [PMID: 32254998 DOI: 10.1039/c8tb02520g] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinal cord injury (SCI) remains a challenging clinical problem worldwide, due to the lack of effective drugs for precise treatment. Among the complex pathophysiological events following SCI, reactive oxygen species (ROS) overproduction plays a particularly significant role. As therapeutic agents for neurological diseases, tetramethylpyrazine (TMP) and monosialotetrahexosylganglioside (GM1) have been widely used in the clinical treatment of SCI. Our previous studies have reported that functionalized selenium nanoparticles (SeNPs) exhibit excellent antioxidant activity against oxidative stress-related diseases. Therefore, in this study, novel multifunctionalized SeNPs decorated with polysaccharide-protein complex (PTW)/PG-6 peptide and loaded with TMP/GM1 were rationally designed and synthesized, which exhibited a satisfactory size distribution and superior stability. Furthermore, the protective effects of SeNPs@GM1/TMP on PC12 cells against tert-butyl hydroperoxide (t-BOOH)-induced cytotoxicity and the underlying mechanisms were also explored. Flow cytometric analysis indicated that SeNPs@GM1/TMP showed strongly protective effects against t-BOOH-induced G2/M phase arrest and apoptosis. Moreover, we found that SeNPs@GM1/TMP could attenuate ROS overproduction to prevent mitochondria dysfunction via inhibiting the activation of p53 and MAPK pathways. Effects of SeNPs@GM1/TMP on functional recovery after SCI were evaluated by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. The results of hematoxylin-eosin staining and Nissl staining also showed that SeNPs@GM1/TMP provided a neuroprotective effect in SCI rats. This finding suggests that SeNPs@GM1/TMP could be further developed as a promising nanomedicine for efficient SCI treatment.
Collapse
Affiliation(s)
- Siyuan Rao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Xiao Z, Chan L, Zhang D, Huang C, Mei C, Gao P, Huang Y, Liang J, He L, Shi C, Chen T, Luo L. Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. J Mater Chem B 2019. [DOI: 10.1039/c8tb03153c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we synthesize a cRGD peptide-conjugated PLGA nanosystem which is a high-efficiency drug-delivery platform for MR imaging-guided cancer theranostics.
Collapse
|
9
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Lai H, Fu X, Sang C, Hou L, Feng P, Li X, Chen T. Selenadiazole Derivatives Inhibit Angiogenesis-Mediated Human Breast Tumor Growth by Suppressing the VEGFR2-Mediated ERK and AKT Signaling Pathways. Chem Asian J 2018; 13:1447-1457. [DOI: 10.1002/asia.201800110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoyan Fu
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Chengcheng Sang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Liyuan Hou
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
11
|
Zhao J, Zeng D, Liu Y, Luo Y, Ji S, Li X, Chen T. Selenadiazole derivatives antagonize hyperglycemia-induced drug resistance in breast cancer cells by activation of AMPK pathways. Metallomics 2018; 9:535-545. [PMID: 28374040 DOI: 10.1039/c7mt00001d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperglycemia is an important factor for chemoresistance of breast cancer patients with diabetes. In the present study, a novel selenadiazole derivative has been evaluated and found to be able to antagonize the doxorubicin (DOX) resistance of MCF-7 cells under simulated diabetes conditions. Hyperglycemia promotes the proliferation, invasion and migration of MCF-7 cells through activation of ERK and AKT pathways, which could be inhibited by the synthetic selenadiazole derivative. The antitumor effects of the selenadiazole derivative were attributed to its ability to activate AMPK pathways. Furthermore, the high lipophilicity (log P = 1.9) of the synthetic selenadiazole derivative facilitated its uptake by cancer cells and subsequently potentiated the cellular uptake of DOX, leading to a strong enhancment of the antiproliferative activity of DOX on MCF-7 cells by induction of apoptosis. The apoptosis was initiated by the ROS overproduction induced by the cooperation of the selenadiazole derivative and DOX. The excessive ROS then caused damage to DNA, which upregulated the expression of proapoptosis Bcl-2 family proteins and led to fragmentation of mitochondria, which finally caused apoptosis of the cancer cells. Taken together, this study provides a rational strategy for using selenadiazole derivatives to overcome hyperglycemia-induced drug resistance in breast cancer by activation of AMPK-mediated pathways.
Collapse
Affiliation(s)
- Jianfu Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao Z, Gao P, You Y, Chen T. Cancer-Targeting Functionalization of Selenium-Containing Ruthenium Conjugate with Tumor Microenvironment-Responsive Property to Enhance Theranostic Effects. Chemistry 2018; 24:3289-3298. [PMID: 29288592 DOI: 10.1002/chem.201705561] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/20/2022]
Abstract
A mutifunctional ruthenium-based conjugate Ru-BSe was designed and synthesized. The Ru complex with favorable bioimaging function was covalently linked with a cancer-targeted molecule that could be effectively internalized by the tumor to realize enhanced theranostic effects. The pH-response of the Ru conjugate in tumor acidic microenvironment causes ligand substitution and release of therapeutic complex. This activated complex remains inert to the reducing biomolecule-glutathione and terminally locates in mitochondria, in which it triggers oxidative stress, and activates intrinsic apoptosis. Real-time monitoring reveals that this Ru conjugate could selectively accumulate in tumor tissue in vivo, which significantly suppresses tumor progression and alleviate the damage to normal organs, realizing the precise cancer theranosis.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Pan Gao
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, P.R. China
| |
Collapse
|
13
|
Zhang X, Dai C, You Y, He L, Chen T. Tea regimen, a comprehensive assessment of antioxidant and antitumor activities of tea extract produced by Tie Guanyin hybridization. RSC Adv 2018; 8:11305-11315. [PMID: 35542779 PMCID: PMC9079151 DOI: 10.1039/c8ra00151k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/03/2022] Open
Abstract
A comprehensive assessment was conducted in this study to examine the antioxidant and antitumor activities of tea extract produced by Tie Guanyin hybridization. Two radical-scavenging systems of assay in vitro, namely ABTS and DPPH assays, were used to investigate the antioxidant activity of the summer tea and autumn tea extract (STE and ATE) derived from the Jin Guanyin. The results indicated that the major active ingredients were catechins, and the theaflavin is rare in the STE and ATE. Moreover, STE and ATE could significantly suppress the growth of human breast cancer cells MDA-MB-231 in a dose-dependent manner, and wrecked the morphology of mitochondria, activated caspase families, leading to the cancer cell death by both apoptosis and cell cycle arrest pathways. Based on the results from an MDA-MB-231 xenograft nude mice model, STE could effectively prevent the tumor formation, and greatly improve the mice immunity and thus improve their living conditions. Taken together, ATE and STE could act as a healthy and prospective substitute for natural antioxidants and a promising prophylactic agent against cancer. This finding provides a great promising nutritional approach to treat diseases related with oxidative stress. Herein we demonstrate that Jin Guanyin extracts shows antioxidative activity, thus inhibiting ROS generation, promoting mitochondrial fragmentations and caspase activations in cancer cells, finally leading cell apoptosis and cycle arrest.![]()
Collapse
Affiliation(s)
- Xiaobin Zhang
- The First Affiliated Hospital
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chengli Dai
- The First Affiliated Hospital
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yuanyuan You
- The First Affiliated Hospital
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Lizhen He
- The First Affiliated Hospital
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
14
|
Liu C, Fu Y, Li CE, Chen T, Li X. Phycocyanin-Functionalized Selenium Nanoparticles Reverse Palmitic Acid-Induced Pancreatic β Cell Apoptosis by Enhancing Cellular Uptake and Blocking Reactive Oxygen Species (ROS)-Mediated Mitochondria Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4405-4413. [PMID: 28510423 DOI: 10.1021/acs.jafc.7b00896] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Accumulation of palmitic acid (PA) in human bodies could cause damage to pancreatic β cells and lead to chronic diseases by generation of reactive oxygen species (ROS). Therefore, it is of great significance to search for nutrition-available agents with antioxidant activity to protect pancreatic islet cells against PA-induced damage. Phycocyanin (PC) and selenium (Se) have been reported to have excellent antioxidant activity. In this study, PC-functionalized selenium nanoparticles (PC-SeNPs) were synthesized to investigate the in vitro protective effects on INS-1E rat insulinoma β cells against PA-induced cell death. A potent protective effect was achieved by regulation of particle size and PC content. Among three PC-SeNPs (165, 235, and 371 nm), PC-SeNPs-235 nm showed the highest cellular uptake and the best protective activities. For cell cycle analysis, PC-SeNPs showed a better protective effect on PA-induced INS-1E cell apoptosis than PC or SeNPs, and PC-SeNPs-235 nm exhibited the best effect. Further mechanistic studies demonstrated that PA induced overproduction of intracellular ROS, mitochondria fragmentation, activation of caspase-3, -8, and -9, and cleavage of PARP. However, pretreatment of the cells with PC-SeNPs effectively blocked these intracellular events, which suggests that PC-SeNPs could protect INS-1E cells against PA-induced cell apoptosis via attenuating oxidative stress and downstream signaling pathways. This finding provides a great promising nutritional approach for protection against diseases related to islet damage.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Yuanting Fu
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Chang-E Li
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University , Guangzhou 510632, China
| |
Collapse
|
15
|
Du Y, Li H, Chen B, Lai H, Li X, Chen T. Selenadiazole derivatives antagonize glucocorticoid-induced osteoblasts cells apoptosis by blocking ROS-mediated signaling, a new anti-osteoporosis strategy. RSC Adv 2017. [DOI: 10.1039/c7ra01306j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we demonstrate that synthetic selenadiazole derivatives could protect osteoblasts cells against Dex-induced cell apoptosisviaattenuating oxidative stress and downstream signalling pathways.
Collapse
Affiliation(s)
- Yanxin Du
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Hong Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Bolai Chen
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
16
|
Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in Cancer Therapy: An Overview. Adv Cancer Res 2017; 136:259-302. [PMID: 29054421 DOI: 10.1016/bs.acr.2017.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.
Collapse
Affiliation(s)
| | | | - Andreza Fabro de Bem
- Center of Biological Sciences (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Kenneth D Tew
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Rafael Radi
- Center for Free Radical and Biomedical Research (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
17
|
Yang J, Wu Y, Shen Y, Zhou C, Li YF, He RR, Liu M. Enhanced Therapeutic Efficacy of Doxorubicin for Breast Cancer Using Chitosan Oligosaccharide-Modified Halloysite Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26578-26590. [PMID: 27628202 DOI: 10.1021/acsami.6b09074] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Halloysite nanotubes (HNTs) are natural aluminosilicates with unique hollow lumen structure, also having high specific area, good biocompatibility, nontoxicity, and low price. Here, we designed a chitosan oligosaccharide-grafted HNTs (HNTs-g-COS) as a doxorubicin (DOX) carrier for treating breast cancer both in vitro and in vivo. The structure of HNTs-g-COS was first characterized by various methods. HNTs-g-COS showed positively charged surface and improved hemocompatibility. DOX-loaded HNTs-g-COS (DOX@HNTs-g-COS) released in cell lysate in a controlled manner. The IC50 value of DOX@HNTs-g-COS toward MCF-7 cells was 1.17 μg mL-1, while it was 2.43 μg mL-1 for free DOX. DOX@HNTs-g-COS increased the apoptosis effects of MCF-7 cells as shown in flow cytometry results. Also, reactive oxygen species of cells induced by DOX@HNTs-g-COS were drug-dose-dependent. DOX@HNTs-g-COS could enter the MCF-7 cells and induce mitochondrial damage as well as attack the nuclei. The in vivo antitumor effect of DOX@HNTs-g-COS was investigated in 4T1-bearing mice. The tumor-inhibition ratio of DOX@HNTs-g-COS was 83.5%, while it was 46.1% for free DOX. All mice treated with DOX@HNTs-g-COS survived over 60 days. DOX@HNTs-g-COS showed fewer ruptured cardiomyocytes and no obvious systemic toxicity. Therefore, the rational designed HNTs nanocarrier for chemotherapy drug showed promising applications in tumor treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Yanping Wu
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Yan Shen
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Yi-Fang Li
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Rong-Rong He
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Mingxian Liu
- Department of Materials Science and Engineering and ‡College of Pharmacy, Jinan University , Guangzhou 510632, China
| |
Collapse
|
18
|
Liu Z, Chan L, Chen L, Bai Y, Chen T. Facile Fabrication of Near-Infrared-Responsive and Chitosan-Functionalized Cu2
Se Nanoparticles for Cancer Photothermal Therapy. Chem Asian J 2016; 11:3032-3039. [DOI: 10.1002/asia.201600976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Liu
- Chemistry Department; Jinan University; Guangzhou 510632 China
| | - Leung Chan
- Chemistry Department; Jinan University; Guangzhou 510632 China
| | - Liyan Chen
- Chemistry Department; Jinan University; Guangzhou 510632 China
| | - Yan Bai
- Chemistry Department; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Chemistry Department; Jinan University; Guangzhou 510632 China
| |
Collapse
|
19
|
You Y, Yang L, He L, Chen T. Tailored mesoporous silica nanosystem with enhanced permeability of the blood-brain barrier to antagonize glioblastoma. J Mater Chem B 2016; 4:5980-5990. [PMID: 32263487 DOI: 10.1039/c6tb01329e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer-targeted drug delivery systems with permeability of the blood-brain barrier (BBB) have become of great interest for the rational design of high-efficiency anticancer agents. Herein, a tailored mesoporous silica nanoparticles (MSNs) nanosystem modified by RGD (arginine-glycine-aspartate) peptide was designed and tested for use as a carrier of anticancer agents, by using a novel organic selenium compound BSeC as a model molecule. As expected, the nanosystem (BSeC@MSNs-RGD) could effectively enhance the BBB permeability and the cellular uptake of BSeC in tumor cells. The internalized BSeC@MSNs-RGD triggered mitochondrial dysfunction and intracellular ROS overproduction, which subsequently activated the p53 and MAPKs pathways. Moreover, the nanosystem could inhibit the U87 tumor spheroids growth, significantly prolong the blood circulation time of the loaded drug in vivo and effectively reduce its in vivo toxicity. Taken together, this study provides a strategy for the rational design of a tailored nanomedicine with enhanced BBB permeability to treat human brain glioma.
Collapse
Affiliation(s)
- Yuanyuan You
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | |
Collapse
|
20
|
Huang W, Wu H, Li X, Chen T. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents. Chem Asian J 2016; 11:2301-11. [PMID: 27325381 DOI: 10.1002/asia.201600757] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Indexed: 11/09/2022]
Abstract
Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Jinan University, Guangzhou, 510631, P.R China
| | - Hualian Wu
- Department of Chemistry, Jinan University, Guangzhou, 510631, P.R China
| | - Xiaoling Li
- Department of Chemistry, Jinan University, Guangzhou, 510631, P.R China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510631, P.R China.
| |
Collapse
|
21
|
Zhou B, Huang Y, Yang F, Zheng W, Chen T. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis. Chem Asian J 2016; 11:1008-19. [DOI: 10.1002/asia.201501277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/28/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Binwei Zhou
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Yanyu Huang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Fang Yang
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Wenjie Zheng
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| |
Collapse
|
22
|
Ideno M, Sasaki S, Kobayashi M, Futagi Y, Narumi K, Iseki K. Influence of high glucose state on bromopyruvate-induced cytotoxity by human colon cancer cell lines. Drug Metab Pharmacokinet 2016; 31:67-72. [DOI: 10.1016/j.dmpk.2015.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
|
23
|
Liu M, Chang Y, Yang J, You Y, He R, Chen T, Zhou C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J Mater Chem B 2016; 4:2253-2263. [DOI: 10.1039/c5tb02725j] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new HNTs-based drug delivery system to improve the bioavailability of curcumin for cancer therapy is proposed.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yanzhou Chang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jing Yang
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yuanyuan You
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Rui He
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
24
|
Ma C, Liu X, Cheng S, Li Q, Zhang R. A novel 4-fluorobenzenetelluronic trimethyltin ester: synthesis, characterization and in vitro cytotoxicity assessment. NEW J CHEM 2016. [DOI: 10.1039/c6nj00288a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel 4-fluorobenzenetelluronic trimethyltin ester (Me3Sn)4[p-F-PhTe(μ-O)(OH)O2]2 (1) has been prepared and structurally characterized, and apoptotic cytotoxicity assessments for A549 cells are made.
Collapse
Affiliation(s)
- Chunlin Ma
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Xinglong Liu
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Shuang Cheng
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Qianli Li
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| | - Rufen Zhang
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng 252059
- P. R. China
| |
Collapse
|
25
|
Yang Y, Deng S, Zeng Q, Hu W, Chen T. Highly stable selenadiazole derivatives induce bladder cancer cell apoptosis and inhibit cell migration and invasion through the activation of ROS-mediated signaling pathways. Dalton Trans 2016; 45:18465-18475. [PMID: 27711726 DOI: 10.1039/c6dt02045c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein highly stable selenadiazole derivatives were synthesized and found to be able to induce bladder cancer cell apoptosis and inhibit cell migration and invasion through the activation of ROS-mediated pathways.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| | - Shulin Deng
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| | - Qinsong Zeng
- Department of Urology
- General Hospital of Guangzhou Military Command of PLA
- Guangzhou 510010
- China
| | - Weilie Hu
- Department of Urology
- General Hospital of Guangzhou Military Command of PLA
- Guangzhou 510010
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| |
Collapse
|
26
|
Chan L, Huang Y, Chen T. Cancer-targeted tri-block copolymer nanoparticles as payloads of metal complexes to achieve enhanced cancer theranosis. J Mater Chem B 2016; 4:4517-4525. [DOI: 10.1039/c6tb00514d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
You Y, Hu H, He L, Chen T. Differential Effects of Polymer-Surface Decoration on Drug Delivery, Cellular Retention, and Action Mechanisms of Functionalized Mesoporous Silica Nanoparticles. Chem Asian J 2015; 10:2744-54. [DOI: 10.1002/asia.201500769] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Yuanyuan You
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Hao Hu
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Lizhen He
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510631 P.R. China
| |
Collapse
|
28
|
Yang L, Li W, Huang Y, Zhou Y, Chen T. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics. Macromol Rapid Commun 2015. [DOI: 10.1002/marc.201500243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liye Yang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Wenying Li
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Yanyu Huang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Yangliang Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
29
|
Mhaidat NM, Al-Smadi M, Al-Momani F, Alzoubi KH, Mansi I, Al-Balas Q. Synthesis, antimicrobial and in vitro antitumor activities of a series of 1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3645-52. [PMID: 26316694 PMCID: PMC4540747 DOI: 10.2147/dddt.s86054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three derivatives of substituted 1,2,3-thia- or 1,2,3-selenadiazole (4a–c) were prepared and characterized by different chemical techniques. These compounds were evaluated for their antimicrobial and antitumor activities. Compounds 4a (propenoxide derivative), 4b (carbaldehyde derivative), and 4c (benzene derivative) were active against the yeast-like fungi Candida albicans. Compound 4a was active against gram-negative Escherichia coli, and compound 4c was active against the gram-positive Staphylococcus aureus. For the antitumor activity, both compounds 4b and 4c were active against all tested tumor cell lines, namely, SW480, HCT116, C32, MV3, HMT3522, and MCF-7. The activity of compound 4c was greater than that of compound 4b and more than that of the reference antitumor 5-flourouracil against the SW480, HCT116, and MCF-7 tumor cell lines. In conclusion, a number of the prepared 1,2,3-thia- or 1,2,3-selenadiazole compounds showed promising antifungal, antibacterial, and in vitro antitumor activities. Further investigations are required to explore the mechanism by which active compound are inducing their cytotoxicity.
Collapse
Affiliation(s)
- Nizar M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan ; Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Mousa Al-Smadi
- Department of Applied Chemical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Fouad Al-Momani
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Iman Mansi
- Faculty of Pharmaceutical Sciences, Hashemite University, Zarqa, Jordan
| | - Qosay Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
30
|
Wang Y, Li W, Yang Y, Zeng Q, Wong KH, Li X, Chen T. An integrin-targeting nanosystem as a carrier of the selenadiazole derivative to induce ROS-mediated apoptosis in bladder cancer cells, from rational design to action mechanisms. J Mater Chem B 2015; 3:9374-9382. [DOI: 10.1039/c5tb01929j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein an integrin-targeting nanosystem is rationally designed and used as a carrier of a selenadiazole derivative to induce ROS-mediated apoptosis in bladder cancer cells.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wenying Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yahui Yang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Qinsong Zeng
- Department of Urology
- General Hospital of Guangzhou Military Command of PLA
- Guangzhou 510010
- China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- Hong Kong
- Shenzhen Key Laboratory of Food Biological Safety Control
| | - Xiaoling Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
31
|
He L, Ji S, Lai H, Chen T. Selenadiazole derivatives as theranostic agents for simultaneous cancer chemo-/radiotherapy by targeting thioredoxin reductase. J Mater Chem B 2015; 3:8383-8393. [DOI: 10.1039/c5tb01501d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we have identified selenadiazole derivatives as effective and safe theranostic agents for simultaneous cancer chemo-/radiotherapy.
Collapse
Affiliation(s)
- Lizhen He
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Shengbin Ji
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|