1
|
Gao H, Chen JY, Peng Z, Feng L, Tung CH, Wang W. Bioinspired Iron-Catalyzed Dehydration of Aldoximes to Nitriles: A General N-O Redox-Cleavage Method. J Org Chem 2022; 87:10848-10857. [PMID: 35914249 DOI: 10.1021/acs.joc.2c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by OxdA that operates biocatalytic aldoxime dehydration, we have developed an efficient iron catalyst, Cp*Fe(1,2-Cy2PC6H4O) (1), which rapidly converts various aliphatic and aromatic aldoximes to nitriles with release of H2O at room temperature. The catalysis involves redox activation of the N-O bond by a 1e- transfer from the iron catalyst to the oxime. Such redox-mediated N-O cleavage was demonstrated by the isolation of a ferrous iminato intermediate from the reaction of the ketoxime substrate. This iron-catalyzed acceptorless dehydration approach represents a general method for the preparation of nitriles, and it also delivers salicylonitriles by catalyzing the Kemp elimination reaction.
Collapse
Affiliation(s)
- Hongjie Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jia-Yi Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhiqiang Peng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Nonnhoff J, Gröger H. Process Development of the Copper(II)-Catalyzed Dehydration of a Chiral Aldoxime and Rational Selection of the Co-Substrate. ChemistryOpen 2022; 11:e202100230. [PMID: 34889532 PMCID: PMC8734112 DOI: 10.1002/open.202100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The access towards chiral nitriles remains crucial in the synthesis of several pharmaceuticals. One approach is based on metal-catalyzed dehydration of chiral aldoximes, which are generated from chiral pool-derived aldehydes as substrates, and the use of a cheap and readily available nitrile as co-substrate and water acceptor. Dehydration of N-acyl α-amino aldoximes such as N-Boc-l-prolinal oxime catalyzed by copper(II) acetate provides access to the corresponding N-acyl α-amino nitriles, which are substructures of the pharmaceuticals Vildagliptin and Saxagliptin. In this work, a detailed investigation of the formation of the amide as a by-product at higher substrate loadings is performed. The amide formation depends on the electronic properties of the nitrile co-substrate. We could identify an acceptor nitrile which completely suppressed amide formation at high substrate loadings of 0.5 m even when being used with only 2 equivalents. In detail, utilization of trichloroacetonitrile as such an acceptor nitrile enabled the synthesis of N-Boc-cyanopyrrolidine in a high yield of 92 % and with full retention of the absolute configuration.
Collapse
Affiliation(s)
- Jannis Nonnhoff
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstrasse 2533615BielefeldGermany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and BiotechnologyFaculty of ChemistryBielefeld UniversityUniversitätsstrasse 2533615BielefeldGermany
| |
Collapse
|
3
|
Gröger H, Nonnhoff J. Process Development of a Copper(II)-Catalyzed Dehydration of an N-Acyl Prolinal Oxime: Cascade Process and Application at an Elevated Lab Scale. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1549-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractChiral N-acyl amino nitriles are important structural motifs in several pharmaceuticals such as Vildagliptin or Saxagliptin. Cyanide-free access to such nitriles is provided by a copper-catalyzed dehydration of oximes, which are readily available by condensation of chiral aldehydes resulting from the chiral pool with hydroxylamine. The application in a cascade process without the need for intermediate purification as well as a demonstrated scalability show the robustness of this methodology.
Collapse
|
4
|
Chen Z, Mao F, Zheng H, Xiao Q, Ding Z, Wang A, Pei X. Cyanide-free synthesis of aromatic nitriles from aldoximes: Discovery and application of a novel heme-containing aldoxime dehydratase. Enzyme Microb Technol 2021; 150:109883. [PMID: 34489036 DOI: 10.1016/j.enzmictec.2021.109883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Aromatic nitriles are important structural motifs that frequently existed in pharmaceutical drugs. Due to the convenient synthesis of aldoximes from aldehydes, the dehydration of aldoximes to corresponding nitriles by aldoxime dehydratases (Oxds) is considered as a safe and robust enzymatic production route. Although the Oxd genes are widely distributed in microbial kingdom, so far less than ten Oxds were expressed and further characterized. In this study, we found 26 predicted putative Oxd genes from the GenBank database using a genome mining strategy. The Oxd gene from Pseudomonas putida F1 was cloned and functionally expressed in Escherichia coli BL21 (DE3). The amino acid sequence of OxdF1 shows high identities of 33∼85 % to other characterized Oxds, and contained a ferrous heme as the catalytic site. The optimum reaction pH and temperature of recombinant OxdF1 were 7.0 and 35 °C, respectively. OxdF1 was stable in pH 7.0 potassium phosphate buffer at 30 °C, and its half-life was approximately 3.8 h. OxdF1 can efficiently dehydrate aromatic and heterocyclic aldoximes to nitriles, such as 2-bromobenzaldoxime, 2-chloro-6-fluorobenzaldoxime, thiophene-2-carboxaldoxime, and pyridine-3-aldoxime. Therefore, the recombinant OxdF1 shows a potential application in the cyanide-free synthesis of aromatic nitriles.
Collapse
Affiliation(s)
- Zhiji Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feiying Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihao Ding
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Xia YY, Lv QY, Yuan H, Wang JY. Selective oxidation of alcohols to nitriles with high-efficient Co-[Bmim]Br/C catalyst system. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01593-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Wang WD, Wang F, Chang Y, Dong Z. Biomass chitosan-derived nitrogen-doped carbon modified with iron oxide for the catalytic ammoxidation of aromatic aldehydes to aromatic nitriles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Ahmed SM, Hussain FHS, Quadrelli P. 9-Anthraldehyde oxime: a synthetic tool for variable applications. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02695-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Oximes are one of the most important and prolific functional groups in organic chemistry; among them, 9-anthraldehyde oxime represents a valuable example both from the preparative side and the synthetic applications. There are many strategies to prepare 9-anthraldehyde oxime from different functional groups that were summarized in the present review, focusing on the most recent and innovative. The main synthetic applications of 9-anthraldehyde oxime are presented and thoroughly discussed, focusing on the most recent and innovative synthetic strategies.
Graphic abstract
Collapse
|
8
|
Uludag N. An Efficient Synthesis of Nitriles from Aldoximes in the Presence of Trifluoromethanesulfonic Anhydride in Mild Conditions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020090225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Takahashi Y, Tsuji H, Kawatsura M. Nickel-Catalyzed Transformation of Alkene-Tethered Oxime Ethers to Nitriles by a Traceless Directing Group Strategy. J Org Chem 2020; 85:2654-2665. [PMID: 31876416 DOI: 10.1021/acs.joc.9b02705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nickel-catalyzed transformation of alkene-tethered oxime ethers to nitriles using a traceless directing group strategy has been developed. A series of alkene-tethered oxime ethers derived from benzaldehyde and cinnamyl aldehyde derivatives were converted into the corresponding benzonitriles and cinnamonitriles in 46-98% yields using the nickel catalyst system. Control experiments showed that the alkene group tethered to an oxygen atom on the oximes via one methylene unit plays a key role as a traceless directing group during the catalysis.
Collapse
Affiliation(s)
- Yoshiyuki Takahashi
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences , Nihon University , Sakurajosui, Setagaya-ku , Tokyo 156-8550 , Japan
| |
Collapse
|
10
|
Zhang W, Lin JH, Zhang P, Xiao JC. A convenient reagent for the conversion of aldoximes into nitriles and isonitriles. Chem Commun (Camb) 2020; 56:6221-6224. [DOI: 10.1039/d0cc00188k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Described herein is the convenient transformation of aldoximes into nitriles or isonitriles by slightly modifying reaction conditions.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics
- Department of Oncology
- Xiangya Hospital
- Central South University
- Changsha
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
11
|
Li YH, Akula PS, Hong BC, Peng CH, Lee GH. Direct Transformation of Nitroalkanes to Nitriles Enabled by Visible-Light Photoredox Catalysis and a Domino Reaction Process. Org Lett 2019; 21:7750-7754. [PMID: 31513414 DOI: 10.1021/acs.orglett.9b02682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A mild and convenient process for direct transformation of nitroalkanes to the corresponding nitriles was developed using a visible-light photoredox catalysis strategy with household decorative blue LEDs and the additives of Et3N and DIPIBA (or DIPEA). Application of the process in secondary nitroalkanes bearing a β-alcohol resulted in a domino process of the retro-Henry reaction and the subsequent acetalization, aldol, cyanohydrin, and ring-contraction reactions with stereoselectivities. The photocatalytic reaction was demonstrated by a continuous flow method.
Collapse
Affiliation(s)
- Yu-Hsun Li
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Pavan Sudheer Akula
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Chieh-Hung Peng
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei , 106 , Taiwan, R.O.C
| |
Collapse
|
12
|
Wu Y, Zhang Y, Yang Z, Jiao J, Zheng X, Feng W, Zhang M, Cheng H, Tang L. Dual Roles of tert-Butyl Nitrite in the Transition Metal- and External Oxidant-Free Trifluoromethyloximation of Alkenes. CHEMSUSCHEM 2019; 12:3960-3966. [PMID: 31359635 DOI: 10.1002/cssc.201901856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Indexed: 06/10/2023]
Abstract
By employing tert-butyl nitrite as both nitrogen source and oxidant, the trifluoromethyloximation of alkenes proceeds smoothly in a free-radical process. The developed difunctionalization reaction enables practical and efficient synthesis of a wide range of α-CF3 ketoximes in moderate yields with excellent regioselectivity. This method features the use of readily available and stable alkenes as substrates and inexpensive CF3 SO2 Na as a CF3 reagent, no involvement of transition metals or external oxidant, and room-temperature conditions. Moreover, a scale-up of the reaction, further transformation of the products into various valuable CF3 -containing compounds, and removal of the trifluoromethyl group are readily achieved.
Collapse
Affiliation(s)
- Ya Wu
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Yanli Zhang
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Jingchao Jiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Xiaoke Zheng
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Weisheng Feng
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Mengsha Zhang
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| |
Collapse
|
13
|
Meng H, Gao S, Luo M, Zeng X. Iron and Phenol Co-Catalysis for Rapid Synthesis of Nitriles under Mild Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hong Meng
- Key Laboratory of Green Chemistry and Technology (MOE); College of Chemistry; Sichuan University; 610064 Chengdu People's Republic of China
| | - Sen Gao
- Key Laboratory of Green Chemistry and Technology (MOE); College of Chemistry; Sichuan University; 610064 Chengdu People's Republic of China
| | - Meiming Luo
- Key Laboratory of Green Chemistry and Technology (MOE); College of Chemistry; Sichuan University; 610064 Chengdu People's Republic of China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry and Technology (MOE); College of Chemistry; Sichuan University; 610064 Chengdu People's Republic of China
| |
Collapse
|
14
|
Pujari PL, Thorat PV, Mahipal AB, Bhondwe RS. Highly Efficient Microwave-assisted One-Pot Synthesis of Aromatic Nitriles from Aromatic Aldehydes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019050191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Fang WY, Qin HL. Cascade Process for Direct Transformation of Aldehydes (RCHO) to Nitriles (RCN) Using Inorganic Reagents NH 2OH/Na 2CO 3/SO 2F 2 in DMSO. J Org Chem 2019; 84:5803-5812. [PMID: 30868885 DOI: 10.1021/acs.joc.8b03164] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple, mild, and practical process for direct conversion of aldehydes to nitriles was developed feathering a wide substrate scope and great functional group tolerability (52 examples, over 90% yield in most cases) using inorganic reagents (NH2OH/Na2CO3/SO2F2) in DMSO. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable nitriles in a pot, atom, and step-economical manner without transition metals. This protocol will serve as a robust tool for the installation of cyano-moieties to complicated molecules.
Collapse
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering, and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan 430070 , P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering, and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan 430070 , P. R. China
| |
Collapse
|
16
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. Applications of sulfuryl fluoride (SO2F2) in chemical transformations. Org Chem Front 2019. [DOI: 10.1039/c9qo00747d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of novel methodologies concerning the chemical, biological and medicinal applications of sulfuryl fluoride (SO2F2) gas have dramatically improved year by year.
Collapse
Affiliation(s)
- Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
17
|
Gbadebo O, Smith D, Harnett G, Donegan G, O'Leary P. Surprising and Highly Efficient Use of Methylmagnesium Chloride as a Non-Nucleophilic Base in the Deprotonation and Alkylation of sp 3
Centres Adjacent to Nitriles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Omolola Gbadebo
- SMACT, School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Dennis Smith
- SMACT, School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| | - Ger Harnett
- Roche Ireland Ltd.; Clarecastle Co Clare Ireland
| | | | - Patrick O'Leary
- SMACT, School of Chemistry; National University of Ireland Galway; University Road Galway Ireland
| |
Collapse
|
18
|
Yan Y, Xu X, Jie X, Cheng J, Bai R, Shuai Q, Xie Y. Selective and facile synthesis of α,β-unsaturated nitriles and amides with N-hydroxyphthalimide as the nitrogen source. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. Chembiochem 2018; 19:768-779. [PMID: 29333684 DOI: 10.1002/cbic.201700571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Indexed: 11/05/2022]
Abstract
Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high-volume, low-price sectors, such as polymers, to low-volume, high-price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas-phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a "synthetic platform technology". Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2-arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme.
Collapse
Affiliation(s)
- Tobias Betke
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.,Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Jun Higuchi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Philipp Rommelmann
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Keiko Oike
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Taiji Nomura
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
20
|
Zhang D, Huang Y, Zhang E, Yi R, Chen C, Yu L, Xu Q. Pd/Mn Bimetallic Relay Catalysis for Aerobic Aldoxime Dehydration to Nitriles. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongliang Zhang
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
| | - Yaping Huang
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
| | - Erlei Zhang
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou, Zhejiang 325035 People's Republic of China
| | - Rong Yi
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
| | - Chao Chen
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
| | - Lei Yu
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
| | - Qing Xu
- School of Chemistry and Chemical Engineering and Institute of Pesticide of School of Horticulture and Plant Protection; Yangzhou University; Yangzhou, Jiangsu 225002 People's Republic of China
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou, Zhejiang 325035 People's Republic of China
| |
Collapse
|
21
|
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY. Metal-Involving Synthesis and Reactions of Oximes. Chem Rev 2017; 117:13039-13122. [PMID: 28991449 DOI: 10.1021/acs.chemrev.7b00264] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review classifies and summarizes the past 10-15 years of advancements in the field of metal-involving (i.e., metal-mediated and metal-catalyzed) reactions of oximes. These reactions are diverse in nature and have been employed for syntheses of oxime-based metal complexes and cage-compounds, oxime functionalizations, and the preparation of new classes of organic species, in particular, a wide variety of heterocyclic systems spanning small 3-membered ring systems to macroheterocycles. This consideration gives a general outlook of reaction routes, mechanisms, and driving forces and underlines the potential of metal-involving conversions of oxime species for application in various fields of chemistry and draws attention to the emerging putative targets.
Collapse
Affiliation(s)
- Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Marina Ya Demakova
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University , Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
22
|
Rommelmann P, Betke T, Gröger H. Synthesis of Enantiomerically Pure N-Acyl Amino Nitriles via Catalytic Dehydration of Oximes and Application in a de Novo Synthesis of Vildagliptin. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp Rommelmann
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Tobias Betke
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Harald Gröger
- Chair of Organic Chemistry
I, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
23
|
Hyodo K, Togashi K, Oishi N, Hasegawa G, Uchida K. Brønsted Acid Catalyzed Nitrile Synthesis from Aldehydes Using Oximes via Transoximation at Ambient Temperature. Org Lett 2017; 19:3005-3008. [DOI: 10.1021/acs.orglett.7b01263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kengo Hyodo
- Department of Material Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Kosuke Togashi
- Department of Material Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Naoki Oishi
- Department of Material Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Genna Hasegawa
- Department of Material Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| | - Kingo Uchida
- Department of Material Chemistry,
Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan
| |
Collapse
|