1
|
Hu XS, Jing X, Mei JW, Liu FX, Feng PY, Xu J, Liu YJ. Highly sensitive, anti-freezing and stretchable hydrogels with modified MXene for multifunctional applications. Food Chem 2025; 481:144126. [PMID: 40174383 DOI: 10.1016/j.foodchem.2025.144126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Hydrogels have emerged as ideal materials for sensor fabrication due to their tunable mechanical properties, flexibility, and biocompatibility. However, their high-water content makes them prone to freezing at low temperatures, which compromises their conductivity and mechanical integrity, limiting their use in cold environments. To address this issue, we present a novel hydrogel system consisting of a polyacrylamide (PAM) backbone, a binary solvent system of water and ethylene glycol (EG), and functional materials including polyvinyl alcohol (PVA) and modified MXene. The addition of modified MXene as a conductive filler significantly enhances the hydrogel's conductivity, enabling it to maintain its performance even at low temperatures. Furthermore, the introduction of EG effectively lowers the freezing point of the hydrogel to -36.9 °C, ensuring robust frost resistance. The resulting hydrogel not only shows exceptional low-temperature stability but also exhibits high sensitivity. Moreover, the hydrogel demonstrates rapid responsiveness and high accuracy when being integrated as sensors to detect human motion and ammonia concentrations. These results highlight the potential of MXene-enhanced hydrogels for applications in freshness detection of raw meat and human motion tracking, particularly in cold environments.
Collapse
Affiliation(s)
- Xiang-Shu Hu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jing-Wen Mei
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Fu-Xiang Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiayi Xu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China
| | - Yue-Jun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
2
|
Javaherchi P, Zarepour A, Khosravi A, Heydari P, Iravani S, Zarrabi A. Innovative applications of MXenes in dialysis: enhancing filtration efficiency. NANOSCALE 2025; 17:4301-4327. [PMID: 39810585 DOI: 10.1039/d4nr04329d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
MXenes, a family of two-dimensional transition metal carbides and nitrides, exhibit exceptional properties such as high electrical conductivity, large surface area, and chemical versatility, making them ideal candidates for various dialysis applications. One prominent application of MXenes lies in the efficient removal of toxic metals and harmful dyes from wastewater. Their unique structure allows for rapid adsorption and selective separation, significantly improving purification processes. MXenes show great promise in the therapeutic management of acute kidney injury, where their biocompatibility and ability to facilitate toxin removal can mitigate damage to renal tissues. In hemodialysis, MXenes can enhance membrane performance through improved permeability and selectivity, leading to more effective clearance of waste products. Despite the potential of MXene-based composites in dialysis applications, several challenges loom large on the horizon. The stability of MXenes in physiological environments is a critical concern, as they can undergo oxidation or degradation, which may compromise their functionality over time. The scalability of synthesis processes remains a significant barrier; producing high-quality MXene materials in sufficient quantities for clinical use is not yet fully realized. Moreover, ensuring biocompatibility is paramount, as any adverse reactions could lead to inflammation or other complications in patients. The integration of MXenes into existing dialysis systems requires meticulous engineering to maintain optimal filtration properties while avoiding clogging or fouling. The future of MXenes and their composites in dialysis presents a promising horizon, teeming with potential innovations. The development of hybrid materials that utilize MXenes alongside other nanomaterials can lead to multifunctional systems, capable of addressing multiple challenges faced in dialysis treatments. Advancements in fabrication techniques may allow for tailored porosity, enabling customized dialysis solutions for individual patients. Research into surface modifications and composites can enhance their stability and functionality, potentially overcoming current limitations. The purpose of this review is to provide a comprehensive understanding of the current landscape of MXenes in dialysis, highlighting their applications, challenges, and future directions. This review explores the diverse applications of MXenes in the field of dialysis, focusing on their roles in the removal of toxic metals and dyes, therapy for acute kidney injury, and hemodialysis enhancement.
Collapse
Affiliation(s)
- Pouya Javaherchi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Parisa Heydari
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
3
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Wang Z, Cao Y, Gu T, Wang L, Chen Q, Wang J, Zhao C. Biomimetic Porous MXene Antibacterial Adsorbents with Enhanced Toxins Trapping Ability for Hemoperfusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403271. [PMID: 39039981 DOI: 10.1002/smll.202403271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/04/2024] [Indexed: 07/24/2024]
Abstract
2D transition metal carbides and nitrides, i.e., MXene, are recently attracting wide attentions and presenting competitive performances as adsorbents used in hemoperfusion. Nonetheless, the nonporous texture and easily restacking feature limit the efficient adsorption of toxin molecules inside MXene and between layers. To circumvent this concern, here a plerogyra sinuosa biomimetic porous titanium carbide MXene (P-Ti3C2) is reported. The hollow and hierarchically porous structure with large surface area benefits the maximum access of toxins as well as trapping them inside the spherical cavity. The cambered surface of P-Ti3C2 prevents layers restacking, thus affording better interlaminar adsorption. In addition to enhanced toxin removal ability, the P-Ti3C2 is found to selectively adsorb more middle and large toxin molecules than small toxin molecules. It possibly originates from the rich Ti-deficient vacancies in the P-MXene lattice that increases the affinity with middle/large toxin molecules. Also, the vacancies as active sites facilitate the production of reactive oxygen under NIR irradiation to promote the photodynamic antibacterial performance. Then, the versatility of P-MXene is validated by extension to niobium carbide (P-Nb2C). And the simulated hemoperfusion proves the practicability of the P-MXene as polymeric adhesives-free adsorbents to eliminate the broad-spectrum toxins.
Collapse
Affiliation(s)
- Zhihua Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanhang Cao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Tingxiang Gu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Luping Wang
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiemin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
6
|
Zhu D, Wu Y, Zheng K, Xu H, Chen C, Qiao J, Shen C. Preparation of Ti 3C 2T x modified rare earth doped PbO 2 electrodes for efficient removal of sulfamethoxazole. Sci Rep 2024; 14:8068. [PMID: 38580830 PMCID: PMC10997634 DOI: 10.1038/s41598-024-58893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
In this study, we deposited Ti3C2Tx-modified, rare-earth-doped PbO2 on the surface of a carbon fabric via electrodeposition. The surface morphology and electronic structure of the electrode were characterized with SEM, XRD and XPS. The layered Ti3C2Tx did not change the structure of β-PbO2, and at the same time, it improved the crystallinity of the material and reduced the grains of PbO2. Electrochemical experiments showed that the addition of Ti3C2Tx increased the electrochemical activity of the electrode and produced more H2O2, which contributed to the degradation of pollutants. The efficiency of sulfamethoxazole (SMX) degradation reached 95% after 120 min at pH 3 with a current density of 50 mA/cm2. Moreover, the electrode has good cycling performance, and the degradation efficiency was still 80% after 120 min after 10 cycles of recycling. Based on the intermediates identified by HPLC‒MS, a mechanism for SMX degradation was proposed. Our results will provide a new idea for the development of efficient electrocatalytic degradation of antibiotics.
Collapse
Affiliation(s)
- Dancheng Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yifan Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Kai Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hao Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Qiao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
7
|
Li Q, Zhu Y, Li Y, Yang J, Bao Z, Tian S, Wang X, Zhang L. Reusable Zwitterionic Porous Organic Polymers for Bilirubin Removal in Serum. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048490 DOI: 10.1021/acsami.3c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we report a straightforward strategy to construct reusable, hemocompatible, and highly efficient bilirubin adsorbents by installing zwitterionic modules into a porous organic polymer (POP) for hemoperfusion application. Three types of zwitterions with different amounts are used to evaluate their impacts on the characteristics of POPs, including carboxybetaine methacrylate (CB), sulfobetaine methacrylate (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC). Results show that zwitterions can improve hemocompatibility, hydrophilicity, and bilirubin uptake of the POP. Among all zwitterionic POPs, POP-CB-40% exhibits the best bilirubin uptake, ∼46.5 times enhancement compared with the non-zwitterionic POP in 100% serum. This enhancement can be attributed to the improved hydrophilicity and protein resistance ability in biological solutions. More importantly, the reusability test shows that POP-CB-40% maintains ∼99% of bilirubin uptake capacity at fifth recycling in 100% serum. Findings in this work provide a guideline for the design of biocompatible and efficient POP-based bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjian Li
- Cardiovascular Department, Tianjin Nankai Hospital, No. 122, Sanwei Road, Nankai District, Tianjin 300102, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Zhun Bao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Liu Y, Yuan Z, Chen Y. Metal-organic framework (UiO-66 and UiO-66-NH 2)-based adsorbents for bilirubin removal used in hemoperfusion. RSC Adv 2023; 13:35078-35087. [PMID: 38046623 PMCID: PMC10691446 DOI: 10.1039/d3ra07212f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Excessive accumulation of bilirubin in patients with hyperbilirubinemia can lead to tissue and organ damage and neurological diseases, and is even life-threatening in severe cases. Hemoperfusion is an effective method for removing bilirubin, but clinically used hemoperfusion adsorbents have unsatisfactory adsorption capacity and kinetics. In order to obtain a safe and efficient bilirubin adsorbent, Zr-based Metal-Organic Framework (MOF) material UiO-66 with high specific surface area and aqueous medium stability was prepared and modified with varying degrees of amination to improve its adsorption capacity. According to adsorption experiments in aqueous solution and simulated plasma, it was confirmed that the unsaturated coordinated zirconium in UiO-66 can effectively induce the aggregation and precipitation of free bilirubin unbound to albumin and the amino group on UiO-66-NH2 has a strong affinity for albumin bound bilirubin. The adsorption effect of UiO-66-NH2 with a high degree of amino modification is significantly stronger than that of UiO-66-NH2 with a low degree of modification. In simulated plasma with a bilirubin concentration of 40 mg dL-1, the adsorption capacities of UiO-66 and UiO-66-NH2-1.9 can reach 69.08 mg g-1 and 81.13 mg g-1. The adsorption isotherm fitting and adsorption kinetics fitting results also show that UiO-66 and UiO-66-NH2 are good adsorbents for bilirubin. In dynamic adsorption, the adsorbents also showed good performance and did not affect the protein in the plasma. The hemolysis test, coagulation time test, and cytotoxicity test confirmed that the bilirubin adsorbents based on UiO-66 and UiO-66-NH2 have good blood compatibility and biocompatibility. This study provides new ideas for the development of a novel bilirubin adsorbent and a theoretical basis for the study of bilirubin adsorption mechanisms.
Collapse
Affiliation(s)
- Yi Liu
- Department of Traditional Chinese Medicine, Jinan Fourth People's Hospital Jinan Shandong PR China
| | - Zhipeng Yuan
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong PR China
| | - Yanrong Chen
- The Affilited Hospital of Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| |
Collapse
|
9
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Yang J, Li J, Lu J, Sheng X, Liu Y, Wang T, Wang C. Synergistically boosting reaction kinetics and suppressing polyselenide shuttle effect by Ti 3C 2T x/Sb 2Se 3 film anode in high-performance sodium-ion batteries. J Colloid Interface Sci 2023; 649:234-244. [PMID: 37348343 DOI: 10.1016/j.jcis.2023.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Antimony selenide (Sb2Se3), with rich resources and high electrochemical activity, including in conversion and alloying reactions, has been regarded as an ideal candidate anode material for sodium-ion batteries. However, the severe volume expansion, sluggish kinetics, and polyselenide shuttle of the Sb2Se3-based anode lead to serious pulverization at high current density, restricting its industrialization. Herein, a unique structure of Sb2Se3 nanowires uniformly anchored between Ti3C2Tx (MXene) nanosheets was prepared by the electrostatic self-assembly method. The MXene can impede the volume expansion of Sb2Se3 nanowires in the sodiation process. Moreover, the Sb2Se3 nanowires can reduce the restacking of Ti3C2Tx nanosheets and enhance electrolyte accessibility. Furthermore, density functional theory calculations confirm the increased reaction kinetics and better sodium storage capability through the composite of Ti3C2Tx with Sb2Se3 and the high adsorption capability of Ti3C2Tx to polyselenides. Therefore, the resultant Sb2Se3/Ti3C2Tx anodes show high rate capability (369.4 mAh/g at 5 A/g) and cycling performance (568.9 and 304.1 mAh/g at 0.1 A/g after 100 cycles and at 1.0 A/g after 500 cycles). More importantly, the full sodium-ion batteries using the Sb2Se3/Ti3C2Tx anode and Na3V2(PO4)3/carbon cathode exhibit high energy/power densities and outstanding cycle performance.
Collapse
Affiliation(s)
- Jian Yang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jiabao Li
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Jiahui Lu
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Xiaoxue Sheng
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Yu Liu
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Tianyi Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Chengyin Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
11
|
Yao M, Zhang G, Shao D, Ding S, Li L, Li H, Zhou C, Luo B, Lu L. Preparation of chitin/MXene/poly(L-arginine) composite aerogel spheres for specific adsorption of bilirubin. Int J Biol Macromol 2023:125140. [PMID: 37270125 DOI: 10.1016/j.ijbiomac.2023.125140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Currently, hemoperfusion is clinically the most rapid and effective treatment for removing toxins from the blood. The core of hemoperfusion is the sorbent inside the hemoperfusion device. Due to the complex composition of the blood, adsorbents tend to adsorb substances such as proteins in the blood (non-specific adsorption) while adsorbing toxins. Hyperbilirubinemia is caused by excessive levels of bilirubin in the human blood, causing irreversible damage to the patient's brain and nervous system, and even leading to death. High adsorption and high biocompatibility adsorbents with specific bilirubin adsorption are urgently needed to treat hyperbilirubinemia. Herein, poly(L-arginine) (PLA) which can specifically adsorb bilirubin, was introduced into chitin/MXene (Ch/MX) composite aerogel spheres. Ch/MX/PLA prepared by supercritical CO2 technology had higher mechanical properties than Ch/MX and can withstand 50,000 times its own weight. The in vitro simulated hemoperfusion test showed that the adsorption capacity of Ch/MX/PLA was as high as 596.31 mg/g, which was 15.38 % higher than that of Ch/MX. Binary and ternary competitive adsorption tests showed that Ch/MX/PLA also had good adsorption capacity in the presence of a variety of interfering molecules. In addition, hemolysis rate testing and CCK-8 testing confirmed that Ch/MX/PLA had better biocompatibility and hemocompatibility. Ch/MX/PLA can meet the required properties of clinical hemoperfusion sorbents and has the ability to produce mass production. It has good application potential in the clinical treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Mengru Yao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Danchun Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
12
|
Wang C, Ye J, Liang L, Cui X, Kong L, Li N, Cheng Z, Peng W, Yan B, Chen G. Application of MXene-based materials in Fenton-like systems for organic wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160539. [PMID: 36464059 DOI: 10.1016/j.scitotenv.2022.160539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Recently, Fenton-like systems have been widely explored and applied for the removal of organic matter from wastewater. Two-dimensional (2D) MXene-based materials exhibit excellent adsorption and catalysis capacity for organic pollutants removal, which has been reported widely. However, there is no summary on the application of MXene-based materials in Fenton-like systems for organic matter removal. In this review, four types of MXene-based materials were introduced, including 2D MXene, MXene/Metal complex, MXene/Metal oxide complex, and MXene/3D carbon material complex. In addition, the Fenton-like system usually consists of adsorption and degradation processes. The oxidation process might contain hydrogen peroxide (H2O2) or persulfate (PS) oxidants. This review summarizes the performance and mechanisms of organic pollutants adsorption and oxidants activation by MXene-based materials systematically. Finally, the existing problems and future research directions of MXene-based materials are proposed in Fenton-like wastewater treatment systems.
Collapse
Affiliation(s)
- Chuanbin Wang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lan Liang
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Lingchao Kong
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, PR China.
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Wenchao Peng
- Department of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, PR China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China; School of Science, Tibet University, Lhasa 850012, PR China.
| |
Collapse
|
13
|
Wang Y, Wei R, Zhao W, Zhao C. Bilirubin Removal by Polymeric Adsorbents for Hyperbilirubinemia Therapy. Macromol Biosci 2023; 23:e2200567. [PMID: 36786125 DOI: 10.1002/mabi.202200567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Hyperbilirubinemia, presenting as jaundice, is a life-threatening critical illness in newborn babies and acute severe hepatic failure patients. Over the past few decades, extracorporeal hemoadsorption by adsorbent therapy has been widely applied in the treatment of hyperbilirubinemia. The capability of hemoadsorption depends on the adsorbents. Most of the clinically used bilirubin adsorbents are made up of styrene/divinylbenzene copolymer and quaternary ammonium salt, which usually have poor biocompatibility and weak mechanical strength. To overcome the drawbacks of commercial polymer adsorbents, advanced synthetic and natural polymers with/without nanomaterials have been designed, and novel adsorbent fabrication technologies have also been developed. In this review, the adsorption mechanism of bilirubin adsorbents has been summarized, which is the basic criterion in adsorbent development. Furthermore, the preparation method, adsorption mechanism, relative merits and practicability of the emerging bilirubin adsorbents have been evaluated. Based on the existing studies, this work highlights the future direction of the efforts on how to design and develop bilirubin adsorbents with good overall clinical performance. Perhaps this study can change traditional perspectives and propose new strategies for bilirubin clearance from the aspects of pathogenic mechanisms, metabolic pathways, and material-based innovation.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Yue P, Chen B, Lv X, Zou Y, Cao H, Ma Y, Wang L, Liu Z, Zheng Y, Duan B, Wu S, Ye Q. Biocompatible Composite Microspheres of Chitin/Ordered Mesoporous Carbon CMK3 for Bilirubin Adsorption and Cell Microcarrier Culture. Macromol Biosci 2022; 22:e2100412. [PMID: 35007390 DOI: 10.1002/mabi.202100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/12/2021] [Indexed: 11/12/2022]
Abstract
Extra bilirubin in the blood can provoke serious illness in patients with severe liver disease. Hemoperfusion is an effective method to remove the extra bilirubin, but its application is limited by the low adsorption efficiency and poor biocompatibility of available adsorbent materials. In this study, chitin/ordered mesoporous carbon CMK3 (Ch/CMK3) microspheres were successfully prepared. Results of characterization experiments indicated that these composite microspheres possess a multilayered porous nanofibrous structure with an extremely large specific surface area (300.19 m2 g-1 ) and large pore size. Notably, the Ch/CMK3 microspheres demonstrated a high bilirubin adsorption capacity (228.19 mg g-1 ) in phosphate buffer solution, and an outstanding bilirubin removal ratio (76.78%±4.40%) in the plasma of rabbits with hyperbilirubinemia without affecting the protein components. More importantly, the Ch/CMK3 microspheres showed no effect on other blood components, no cytotoxicity, and no systemic toxicity to mice. Cell coculture experiments revealed that the microspheres could provide a three-dimensional (3D) space to promote cell adhesion, proliferation, and nutrient exchange. These Ch/CMK3 microspheres featuring a strong ability for bilirubin adsorption and good biocompatibility could be a promising candidate in biomedical applications such as hemoperfusion, cell microcarrier, and 3D tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Biao Chen
- Department of Transplant surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yiran Zheng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China
| |
Collapse
|