1
|
Sleyp Y, Matthews HS, Vanneste M, Vandenhove L, Delanote V, Hoskens H, Indencleef K, Teule H, Larmuseau MHD, Steyaert J, Devriendt K, Claes P, Peeters H. Toward 3D facial analysis for recognizing Mendelian causes of autism spectrum disorder. Clin Genet 2024; 106:603-613. [PMID: 39056288 DOI: 10.1111/cge.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Recognizing Mendelian causes is crucial in molecular diagnostics and counseling for patients with autism spectrum disorder (ASD). We explored facial dysmorphism and facial asymmetry in relation to genetic causes in ASD patients and studied the potential of objective facial phenotyping in discriminating between Mendelian and multifactorial ASD. In a cohort of 152 ASD patients, 3D facial images were used to calculate three metrics: a computational dysmorphism score, a computational asymmetry score, and an expert dysmorphism score. High scores for each of the three metrics were associated with Mendelian causes of ASD. The computational dysmorphism score showed a significant correlation with the average expert dysmorphism score. However, in some patients, different dysmorphism aspects were captured making the metrics potentially complementary. The computational dysmorphism and asymmetry scores both enhanced the individual expert dysmorphism scores in differentiating Mendelian from non-Mendelian cases. Furthermore, the computational asymmetry score enhanced the average expert opinion in predicting a Mendelian cause. By design, our study does not allow to draw conclusions on the actual point-of-care use of 3D facial analysis. Nevertheless, 3D morphometric analysis is promising for developing clinical dysmorphology applications in diagnostics and training.
Collapse
Affiliation(s)
- Yoeri Sleyp
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Harold S Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Facial Sciences Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Michiel Vanneste
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Karlijne Indencleef
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Hanne Teule
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Maarten H D Larmuseau
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Antwerp Cultural Heritage Sciences, ARCHES, UAntwerpen, Antwerpen, Belgium
- Histories vzw, Ghent, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Facial Sciences Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Kanwal A, Javed K, Ali S, Rubab S, Khan MA, Alasiry A, Marzougui M, Shabaz M. A hybrid framework for detection of autism using ConvNeXt-T and embedding clusters. THE JOURNAL OF SUPERCOMPUTING 2024; 80:8156-8178. [DOI: 10.1007/s11227-023-05761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 08/25/2024]
|
3
|
Quatrosi G, Genovese D, Galliano G, Zoppé H, Amodio E, Bonnet-Brilhault F, Tripi G. Cranio-Facial Characteristics in Autism Spectrum Disorder: A Scoping Review. J Clin Med 2024; 13:729. [PMID: 38337423 PMCID: PMC10856091 DOI: 10.3390/jcm13030729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Autism spectrum disorders (ASD) consist of a complex group of neurodevelopmental disorders characterised by qualitative impairments of social interactions, communication abilities, and a limited, stereotyped, and repetitive selection of interests and activities. In light of the imperative to identify a possible biomarker for ASD, it has been determined that craniofacial anomalies serve as significant risk factors for neurodevelopmental disorders. The aim of this scoping review is to deepen the knowledge of the scientific literature related to cranio-facial characteristics in individuals with ASD, with a particular focus on recent research advancements. The review was performed by employing the search strings (("Autism Spectrum Disorder" OR autism OR ASD OR "Autism Spectrum") AND ("facial morphology" OR "facial phenotype")) on the databases PubMed/MEDLINE, Scopus, and ERIC as of March 9, 2023. The review comprised seven studies whose findings were obtained through quantitative analysis of Euclidean distances between anatomical landmarks. The examination of facial abnormalities represents a possible reliable diagnostic biomarker that could aid in the timely identification of ASD. Phenotypic characteristics that may serve as predictive indicators of the severity of autistic symptoms can be observed in certain individuals with ASD by applying anthropometric and instrumental measurements. The presence of a phenotype characterised by an increased intercanthal distance and a reduced facial midline height appears to be associated with a higher degree of severity in autistic symptoms. In addition, it is worth noting that facial asymmetry and facial masculinity can be considered reliable indicators for predicting a more severe manifestation of symptoms.
Collapse
Affiliation(s)
- Giuseppe Quatrosi
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy;
| | - Dario Genovese
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Giuseppe Galliano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Hugo Zoppé
- UMR 1253 iBrain, Inserm, Université de Tours, 37020 Tours, France; (H.Z.); (F.B.-B.)
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Emanuele Amodio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
| | - Fréderique Bonnet-Brilhault
- UMR 1253 iBrain, Inserm, Université de Tours, 37020 Tours, France; (H.Z.); (F.B.-B.)
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Gabriele Tripi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 133, 90127 Palermo, Italy; (G.G.); (E.A.); (G.T.)
- Department of Child and Adolescent Psychiatry, EPSM du Loiret/Centre Hospitalier Universitaire d’Orléans, Université d’Orléans, 45100 Orléans, France
| |
Collapse
|
4
|
Kyselicová K, Dukonyová D, Belica I, Ballová DS, Jankovičová V, Ostatníková D. Fingerprint patterns in relation to an altered neurodevelopment in patients with autism spectrum disorder. Dev Psychobiol 2023; 65:e22432. [PMID: 38010306 DOI: 10.1002/dev.22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/29/2023]
Abstract
Dermatoglyphic patterns are permanently established and matured before the 24th week of gestation. Their frequencies and localization might be a good indicator of developmental instability in individuals with an altered neurodevelopment and show potential as biomarkers of autism spectrum disorder (ASD). In this study, fingerprint pattern counts and fluctuating asymmetry in the distribution of patterns are compared between 67 boys diagnosed with ASD (aged 5.11 ± 2.51 years) and 83 control boys (aged 8.58 ± 3.14 years). Boys with ASD had a higher rate of discordance in their fingerprint patterns (p = .0026), showing more often bilateral differences in the occurrence of certain patterns. A chi-square test revealed that the difference in pattern frequencies between boys with ASD and the control group is the most significant in frequencies of whorls, tented arches, and ulnar loops. Boys with ASD have significantly fewer ulnar loops, significantly more whorls, and tented arches in the right hand. The achieved results are in favor of the suggestion that prenatal influences, which play a role in the development of bilateral differences in fingerprint patterns up to the 24th week of gestation, may be a potential cause of an altered neurodevelopment in ASD individuals.
Collapse
Affiliation(s)
- Klaudia Kyselicová
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Dóra Dukonyová
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Ivan Belica
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Dominika Sónak Ballová
- Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Viktória Jankovičová
- Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Daniela Ostatníková
- Academic Research Center for Autism, Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Gkantidis N, Opacic J, Kanavakis G, Katsaros C, Halazonetis D. Facial asymmetry and midsagittal plane definition in 3D: A bias-free, automated method. PLoS One 2023; 18:e0294528. [PMID: 38011159 PMCID: PMC10681257 DOI: 10.1371/journal.pone.0294528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
Symmetry is a fundamental biological concept in all living organisms. It is related to a variety of physical and social traits ranging from genetic background integrity and developmental stability to the perception of physical appearance. Within this context, the study of human facial asymmetry carries a unique significance. Here, we validated an efficient method to assess 3D facial surface symmetry by best-fit approximating the original surface to its mirrored one. Following this step, the midsagittal plane of the face was automatically defined at the midpoints of the contralateral corresponding vertices of the superimposed models and colour coded distance maps were constructed. The method was tested by two operators using facial models of different surface size. The results show that the midsagittal plane definition was highly reproducible (maximum error < 0.1 mm or°) and remained robust for different extents of the facial surface model. The symmetry assessments were valid (differences between corresponding bilateral measurement areas < 0.1 mm), highly reproducible (error < 0.01 mm), and were modified by the extent of the initial surface model. The present landmark-free, automated method to assess facial asymmetry and define the midsagittal plane of the face is accurate, objective, easily applicable, comprehensible and cost effective.
Collapse
Affiliation(s)
- Nikolaos Gkantidis
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jasmina Opacic
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Georgios Kanavakis
- Department of Orthodontics and Pediatric Dentistry, UZB–University School of Dental Medicine, University of Basel, Basel, Switzerland
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Demetrios Halazonetis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Developmental instability, fluctuating asymmetry, and human psychological science. Emerg Top Life Sci 2022; 6:311-322. [PMID: 35994000 DOI: 10.1042/etls20220025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Developmental instability (DI) is an individual's inability to produce a specific developmental outcome under a given set of conditions, generally thought to result from random perturbations experienced during development. Fluctuating asymmetry (FA) - asymmetry on bilateral features that, on average, are symmetrical (or asymmetry deviating from that arising from design) - has been used to measure DI. Dating to half a century ago, and accelerating in the past three decades, psychological researchers have examined associations between FA (typically measured on bodily or facial features) and a host of outcomes of interest, including psychological disorders, cognitive ability, attractiveness, and sexual behavior. A decade ago, a meta-analysis on findings from nearly 100 studies extracted several conclusions. On average, small but statistically reliable associations between FA and traits of interest exist. Though modest, these associations are expected to greatly underestimate the strength of associations with underlying DI. Despite the massive sample size across studies, we still lack a good handle on which traits are most strongly affected by DI. A major methodological implication of the meta-analysis is that most studies have been, individually, woefully underpowered to detect associations. Though offering some intriguing findings, much research is the past decade too has been underpowered; hence, the newer literature is also likely noisy. Several large-scale studies are exceptions. Future progress depends on additional large-scale studies and researchers' sensitivity to power issues. As well, theoretical assumptions and conceptualizations of DI and FA driving psychological research may need revision to explain empirical patterns.
Collapse
|
7
|
Tan DW, Gilani SZ, Alvares GA, Mian A, Whitehouse AJO, Maybery MT. An investigation of a novel broad autism phenotype: increased facial masculinity among parents of children on the autism spectrum. Proc Biol Sci 2022; 289:20220143. [PMID: 35317674 PMCID: PMC8941387 DOI: 10.1098/rspb.2022.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The broad autism phenotype commonly refers to sub-clinical levels of autistic-like behaviour and cognition presented in biological relatives of autistic people. In a recent study, we reported findings suggesting that the broad autism phenotype may also be expressed in facial morphology, specifically increased facial masculinity. Increased facial masculinity has been reported among autistic children, as well as their non-autistic siblings. The present study builds on our previous findings by investigating the presence of increased facial masculinity among non-autistic parents of autistic children. Using a previously established method, a 'facial masculinity score' and several facial distances were calculated for each three-dimensional facial image of 192 parents of autistic children (58 males, 134 females) and 163 age-matched parents of non-autistic children (50 males, 113 females). While controlling for facial area and age, significantly higher masculinity scores and larger (more masculine) facial distances were observed in parents of autistic children relative to the comparison group, with effect sizes ranging from small to medium (0.16 ≤ d ≤ .41), regardless of sex. These findings add to an accumulating evidence base that the broad autism phenotype is expressed in physical characteristics and suggest that both maternal and paternal pathways are implicated in masculinized facial morphology.
Collapse
Affiliation(s)
- Diana Weiting Tan
- School of Psychological Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.,Telethon Kids Institute, Edith Cowan University, Perth, Australia
| | - Syed Zulqarnain Gilani
- Centre of AI & ML, School of Sciences, Edith Cowan University, Perth, Australia.,Institute for Nutrition Research, Edith Cowan University, Perth, Australia
| | - Gail A Alvares
- Telethon Kids Institute, Edith Cowan University, Perth, Australia
| | - Ajmal Mian
- Centre of AI & ML, School of Sciences, Edith Cowan University, Perth, Australia
| | | | - Murray T Maybery
- School of Psychological Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Su Z, Liang B, Shi F, Gelfond J, Šegalo S, Wang J, Jia P, Hao X. Deep learning-based facial image analysis in medical research: a systematic review protocol. BMJ Open 2021; 11:e047549. [PMID: 34764164 PMCID: PMC8587597 DOI: 10.1136/bmjopen-2020-047549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/18/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Deep learning techniques are gaining momentum in medical research. Evidence shows that deep learning has advantages over humans in image identification and classification, such as facial image analysis in detecting people's medical conditions. While positive findings are available, little is known about the state-of-the-art of deep learning-based facial image analysis in the medical context. For the consideration of patients' welfare and the development of the practice, a timely understanding of the challenges and opportunities faced by research on deep-learning-based facial image analysis is needed. To address this gap, we aim to conduct a systematic review to identify the characteristics and effects of deep learning-based facial image analysis in medical research. Insights gained from this systematic review will provide a much-needed understanding of the characteristics, challenges, as well as opportunities in deep learning-based facial image analysis applied in the contexts of disease detection, diagnosis and prognosis. METHODS Databases including PubMed, PsycINFO, CINAHL, IEEEXplore and Scopus will be searched for relevant studies published in English in September, 2021. Titles, abstracts and full-text articles will be screened to identify eligible articles. A manual search of the reference lists of the included articles will also be conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was adopted to guide the systematic review process. Two reviewers will independently examine the citations and select studies for inclusion. Discrepancies will be resolved by group discussions till a consensus is reached. Data will be extracted based on the research objective and selection criteria adopted in this study. ETHICS AND DISSEMINATION As the study is a protocol for a systematic review, ethical approval is not required. The study findings will be disseminated via peer-reviewed publications and conference presentations. PROSPERO REGISTRATION NUMBER CRD42020196473.
Collapse
Affiliation(s)
- Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio, Texas, USA
| | - Bin Liang
- Department of Radiation Oncology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China
| | - J Gelfond
- Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, UK
| | - Sabina Šegalo
- Department of Microbiology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jing Wang
- College of Nursing, Florida State University, Tallahassee, Florida, USA
| | - Peng Jia
- Department of Land Surveying and Geo-Informatics, University of Twente, Enschede, Netherlands
- International Initiative on Spatial Lifecourse Epidemiology (ISLE), Enschede, UK
| | - Xiaoning Hao
- Division of Health Security Research, National Health Commission of the People's Republic of China, Beijing, Beijing, China
| |
Collapse
|
9
|
Deep Learning Approach for Screening Autism Spectrum Disorder in Children with Facial Images and Analysis of Ethnoracial Factors in Model Development and Application. Brain Sci 2021; 11:brainsci11111446. [PMID: 34827443 PMCID: PMC8615807 DOI: 10.3390/brainsci11111446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability that can cause significant social, communication, and behavioral challenges. Early intervention for children with ASD can help to improve their intellectual ability and reduces autistic symptoms. Multiple clinical researches have suggested that facial phenotypic differences exist between ASD children and typically developing (TD) children. In this research, we propose a practical ASD screening solution using facial images through applying VGG16 transfer learning-based deep learning to a unique ASD dataset of clinically diagnosed children that we collected. Our model produced a 95% classification accuracy and 0.95 F1-score. The only other reported study using facial images to detect ASD was based on the Kaggle ASD Facial Image Dataset, which is an internet search-produced, low-quality, and low-fidelity dataset. Our results support the clinical findings of facial feature differences between children with ASD and TD children. The high F1-score achieved indicates that it is viable to use deep learning models to screen children with ASD. We concluded that the racial and ethnic-related factors in deep-learning based ASD screening with facial images are critical to solution viability and accuracy.
Collapse
|
10
|
Tan DW, Gilani SZ, Boutrus M, Alvares GA, Whitehouse AJO, Mian A, Suter D, Maybery MT. Facial asymmetry in parents of children on the autism spectrum. Autism Res 2021; 14:2260-2269. [PMID: 34529361 DOI: 10.1002/aur.2612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
Greater facial asymmetry has been consistently found in children with autism spectrum disorder (ASD) relative to children without ASD. There is substantial evidence that both facial structure and the recurrence of ASD diagnosis are highly heritable within a nuclear family. Furthermore, sub-clinical levels of autistic-like behavioural characteristics have also been reported in first-degree relatives of individuals with ASD, commonly known as the 'broad autism phenotype'. Therefore, the aim of the current study was to examine whether a broad autism phenotype expresses as facial asymmetry among 192 biological parents of autistic individuals (134 mothers) compared to those of 163 age-matched adults without a family history of ASD (113 females). Using dense surface-modelling techniques on three dimensional facial images, we found evidence for greater facial asymmetry in parents of autistic individuals compared to age-matched adults in the comparison group (p = 0.046, d = 0.21 [0.002, 0.42]). Considering previous findings and the current results, we conclude that facial asymmetry expressed in the facial morphology of autistic children may be related to heritability factors. LAY ABSTRACT: In a previous study, we showed that autistic children presented with greater facial asymmetry than non-autistic children. In the current study, we examined the amount of facial asymmetry shown on three-dimensional facial images of 192 parents of autistic children compared to a control group consisting of 163 similarly aged adults with no known history of autism. Although parents did show greater levels of facial asymmetry than those in the control group, this effect is statistically small. We concluded that the facial asymmetry previously found in autistic children may be related to genetic factors.
Collapse
Affiliation(s)
- Diana Weiting Tan
- School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Syed Zulqarnain Gilani
- School of Sciences, Edith Cowan University, Perth, Western Australia, Australia.,School of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Maryam Boutrus
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Gail A Alvares
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Ajmal Mian
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - David Suter
- School of Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Murray T Maybery
- School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Boutrus M, Gilani Z, Maybery MT, Alvares GA, Tan DW, Eastwood PR, Mian A, Whitehouse AJO. Brief Report: Facial Asymmetry and Autistic-Like Traits in the General Population. J Autism Dev Disord 2021; 51:2115-2123. [PMID: 32844273 DOI: 10.1007/s10803-020-04661-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Atypical facial morphology, particularly increased facial asymmetry, has been identified in some individuals with Autism Spectrum Conditions (ASC). Many cognitive, behavioural and biological features associated with ASC also occur on a continuum in the general population. The aim of the present study was to examine subthreshold levels of autistic traits and facial morphology in non-autistic individuals. Facial asymmetry was measured using three-dimensional facial photogrammetry, and the Autism-spectrum Quotient was used to measure autistic-like traits in a community-ascertained sample of young adults (n = 289). After accounting for covariates, there were no significant associations observed between autistic-like traits and facial asymmetry, suggesting that any potential facial morphology differences linked to ASC may be limited to the clinical condition.
Collapse
Affiliation(s)
- Maryam Boutrus
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia. .,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia. .,School of Psychological Science, University of Western Australia, Perth, Australia.
| | - Zulqarnain Gilani
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia.,School of Science, Edith Cowan University, Perth, Australia
| | - Murray T Maybery
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| | - Diana W Tan
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.,School of Psychological Science, University of Western Australia, Perth, Australia
| | - Peter R Eastwood
- School of Human Sciences, Centre for Sleep Science, University of Western Australia, Perth, Australia.,Department of Pulmonary Physiology & Sleep Medicine, West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth,, Australia
| | - Ajmal Mian
- Computer Sciences and Software Engineering, University of Western Australia, Perth, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, WA, 6008, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, Australia
| |
Collapse
|
12
|
A Pre-registered Meta-analysis Based on Three Empirical Studies Reveals No Association Between Prenatal (Amniotic) Cortisol Exposure and Fluctuating Asymmetry in Human Infants. Evol Biol 2021. [DOI: 10.1007/s11692-020-09523-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDevelopmental instability (DI) reflects an organism’s inability to develop an ideal phenotype when challenged by genetic and environmental insults. DI can be estimated via the proxy measure of fluctuating asymmetry (FA), i.e., the small random deviations from perfect bilateral symmetry observed in the morphology of paired traits. The mechanisms involved in the genesis of FA in human populations are relatively unknown, though animal research indicates that hormonal processes may be involved. As maternal stress during pregnancy is detrimental to various developmental processes, elevated prenatal cortisol may represent a causal factor in the subsequent emergence of an asymmetrical phenotype. The main purpose of this pre-registered meta-analysis based on three empirical studies was to investigate whether mid-trimester amniotic cortisol levels predict subsequent FA in finger lengths of infants from Germany, Portugal, and the UK. No statistically significant relationships were observed, and meta-analytic combination of the effect size estimates yielded a null result. We did, however, detect significant positive correlations between the cortisol present in the amniotic fluid and maternal plasma in the Portuguese cohort, and observed that FA in the German cohort was significantly lower at 70-months than at either 9- or 20-months. Taken together, the current findings run contrary to animal research showing that elevated prenatal corticosterone exposure leads to increased FA. However, this may be because a single cortisol assay obtained via amniocentesis is an inadequate proxy for average gestational exposure, and/or that prenatal cortisol levels at an earlier (i.e., first rather than second trimester) stage of pregnancy is what explains variance in subsequent FA.
Collapse
|
13
|
Miłkowska K, Nenko I, Klimek M, Galbarczyk A, Jasienska G. Season of birth and biomarkers of early-life environment. Am J Hum Biol 2020; 33:e23532. [PMID: 33166028 DOI: 10.1002/ajhb.23532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/21/2020] [Accepted: 10/22/2020] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Early-life conditions play an important role in human development, affecting health status and survival. Conditions in utero partly depend on the external environment and thus vary in relation to the season of birth. The aim of this study was to investigate if people born in different seasons of the year differ in values of biomarkers that reflect conditions during fetal development. METHODS The study was conducted among Polish rural women recruited at the Mogielica Human Ecology Study Site. The participants were 234 women aged 45 to 92 (mean = 60.2; SD = 10.44). The indicators of early-life environment analyzed in the study were: Absolute Finger Ridge Count (AFRC), the difference between mean number of ridge counts in both thumbs and both little fingers (Md15), overall facial fluctuating asymmetry (OFA), central facial asymmetry (CFA), right and left hand 2D:4D. RESULTS Values of biomarkers of fetal development did not vary among groups of women born in different seasons of the year. CONCLUSIONS Lack of differences in values of biomarkers according to birth season may indicate that: (a) season of birth is not a good indicator of early-life conditions; (b) tested biomarkers do not reliably reflect the prenatal environment; (c) season of birth does not fully overlap with the sensitive periods of biomarker development and thus fails to capture differences in developmental conditions.
Collapse
Affiliation(s)
- Karolina Miłkowska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Ilona Nenko
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Klimek
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Galbarczyk
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Grazyna Jasienska
- Department of Environmental Health, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
14
|
Tan DW, Foo YZ, Downs J, Finlay-Jones A, Leonard H, Licari MK, Mullan N, Symons M, Varcin KJ, Whitehouse AJ, Alvares GA. A preliminary investigation of the effects of prenatal alcohol exposure on facial morphology in children with Autism Spectrum Disorder. Alcohol 2020; 86:75-80. [PMID: 32243902 DOI: 10.1016/j.alcohol.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
Alcohol exposure during pregnancy has been associated with altered brain development and facial dysmorphology. While Autism Spectrum Disorder (ASD) is not specifically related to distinct facial phenotypes, recent studies have suggested certain facial characteristics such as increased facial masculinity and asymmetry may be associated with ASD and its clinical presentations. In the present study, we conducted a preliminary investigation to examine facial morphology in autistic children with (n = 37; mean age = 8.21 years, SD = 2.72) and without (n = 100; mean age = 8.37 years, SD = 2.47) prenatal alcohol exposure. Using three-dimensional facial scans and principal component analysis, we identified a facial shape associated with prenatal alcohol exposure in autistic children. However, variations in the alcohol-related facial shape were generally not associated with behavioral and cognitive outcomes. These findings suggest that while early exposure to alcohol may influence the development of facial structures, it does not appear to be associated with ASD phenotypic variability. Importantly, although these findings do not implicate a role for prenatal alcohol exposure in the etiology of ASD, further research is warranted to investigate the link between prenatal alcohol exposure and facial morphology differences among neurodevelopmental conditions.
Collapse
|
15
|
A broad autism phenotype expressed in facial morphology. Transl Psychiatry 2020; 10:7. [PMID: 32066706 PMCID: PMC7026150 DOI: 10.1038/s41398-020-0695-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder is a heritable neurodevelopmental condition diagnosed based on social and communication differences. There is strong evidence that cognitive and behavioural changes associated with clinical autism aggregate with biological relatives but in milder form, commonly referred to as the 'broad autism phenotype'. The present study builds on our previous findings of increased facial masculinity in autistic children (Sci. Rep., 7:9348, 2017) by examining whether facial masculinity represents as a broad autism phenotype in 55 non-autistic siblings (25 girls) of autistic children. Using 3D facial photogrammetry and age-matched control groups of children without a family history of ASD, we found that facial features of male siblings were more masculine than those of male controls (n = 69; p < 0.001, d = 0.81 [0.36, 1.26]). Facial features of female siblings were also more masculine than the features of female controls (n = 60; p = 0.005, d = 0.63 [0.16, 1.10]). Overall, we demonstrated for males and females that facial masculinity in non-autistic siblings is increased compared to same-sex comparison groups. These data provide the first evidence for a broad autism phenotype expressed in a physical characteristic, which has wider implications for our understanding of the interplay between physical and cognitive development in humans.
Collapse
|