1
|
Edgar EV, McGuire K, Pelphrey KA, Ventola P, van Noordt S, Crowley MJ. Early- and Late-Stage Auditory Processing of Speech Versus Non-Speech Sounds in Children With Autism Spectrum Disorder: An ERP and Oscillatory Activity Study. Dev Psychobiol 2024; 66:e22552. [PMID: 39508446 DOI: 10.1002/dev.22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024]
Abstract
Individuals with autism spectrum disorder (ASD) often exhibit greater sensitivity to non-speech sounds, reduced sensitivity to speech, and increased variability in cortical activity during auditory speech processing. We assessed differences in cortical responses and variability in early and later processing stages of auditory speech versus non-speech sounds in typically developing (TD) children and children with ASD. Twenty-eight 4- to 9-year-old children (14 ASDs) listened to speech and non-speech sounds during an electroencephalography session. We measured peak amplitudes for early (P2) and later (P3a) stages of auditory processing and inter-trial theta phase coherence as a marker of cortical variability. TD children were more sensitive to speech sounds during early and later processing stages than ASD children, reflected in larger P2 and P3a amplitudes. Individually, twice as many TD children showed reliable differentiation between speech and non-speech sounds compared to children with ASD. Children with ASD showed greater intra-individual variability in theta responses to speech sounds during early and later processing stages. Children with ASD show atypical auditory processing of fundamental speech sounds, perhaps due to reduced and more variable cortical activation. These atypicalities in the consistency of cortical responses to fundamental speech features may impact the development of cortical networks and have downstream effects on more complex forms of language processing.
Collapse
Affiliation(s)
- Elizabeth V Edgar
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kjersti McGuire
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Kevin A Pelphrey
- UVA Brain Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Pamela Ventola
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefon van Noordt
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Michael J Crowley
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Abualait T, Alabbad M, Kaleem I, Imran H, Khan H, Kiyani MM, Bashir S. Autism Spectrum Disorder in Children: Early Signs and Therapeutic Interventions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1311. [PMID: 39594885 PMCID: PMC11592467 DOI: 10.3390/children11111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in communication, social interaction difficulties, and repetitive behaviors that can hinder a child's development. The growing prevalence of autism necessitates early detection and effective intervention strategies. This review summarizes the current knowledge of early indicators of ASD, including brain development markers and behavioral signs visible in infants. It investigates diagnostic processes, emphasizing the importance of timely detection at 18 to 24 months using established screening tools. We discuss a variety of therapeutic approaches, including behavioral interventions, educational strategies such as music therapy, and technological advancements such as speech-generating devices. Furthermore, we investigate pharmacological options for treating associated symptoms, emphasizing the lack of targeted medications for core ASD symptoms. Finally, we present evidence highlighting the positive effects of early intervention on developmental outcomes, advocating for individualized treatment plans to enhance the well-being of children with ASD. This comprehensive overview aims to inform ongoing ASD research and clinical practices.
Collapse
Affiliation(s)
- Turki Abualait
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Maryam Alabbad
- College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Department of Medical Rehabilitation and Long-Term Care, Al-Ahsa Health Cluster, Al-Ahsa 31982, Saudi Arabia
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan (H.I.)
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan (H.I.)
| | - Hamid Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan;
| | - Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam 32253, Saudi Arabia;
| |
Collapse
|
3
|
Rigato S, De Sepulveda R, Richardson E, Filippetti ML. This is me! Neural correlates of self-recognition in 6- to 8-month-old infants. Child Dev 2024; 95:1797-1810. [PMID: 38613367 DOI: 10.1111/cdev.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Historically, evidence of self-recognition in development has been associated with the "rouge test"; however, this has been often criticized for providing a reductionist picture of self-conscious behavior. With two event-related potential (ERP) experiments, this study investigated the origin of self-recognition. Six- to eight-month-old infants (42 males and 35 females, predominately White, tested in the UK in 2022-2023) were presented with images of their face, another peer's face, and their mother's face (N = 38, Exp.1), and images of their own face morphed into another peer's face (N = 39, Exp.2). Results showed an enhanced P100 in infants' ERP response to their own face compared to others' faces (Exp.1 only), suggesting the presence of an enhanced attentional mechanism to one own's face as early as 6 months.
Collapse
Affiliation(s)
- Silvia Rigato
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - Rita De Sepulveda
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - Eleanor Richardson
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | | |
Collapse
|
4
|
Ma YY, Gao Y, Wu HQ, Liang XY, Li Y, Lu H, Liu CZ, Ning XL. OPM-MEG Measuring Phase Synchronization on Source Time Series: Application in Rhythmic Median Nerve Stimulation. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1426-1434. [PMID: 38530717 DOI: 10.1109/tnsre.2024.3381173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The magnetoencephalogram (MEG) based on array optically pumped magnetometers (OPMs) has the potential of replacing conventional cryogenic superconducting quantum interference device. Phase synchronization is a common method for measuring brain oscillations and functional connectivity. Verifying the feasibility and fidelity of OPM-MEG in measuring phase synchronization will help its widespread application in the study of aforementioned neural mechanisms. The analysis method on source-level time series can weaken the influence of instantaneous field spread effect. In this paper, the OPM-MEG was used for measuring the evoked responses of 20Hz rhythmic and arrhythmic median nerve stimulation, and the inter-trial phase synchronization (ITPS) and inter-reginal phase synchronization (IRPS) of primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) were analysed. The results find that under rhythmic condition, the evoked responses of SI and SII show continuous oscillations and the effect of resetting phase. The values of ITPS and IRPS significantly increase at the stimulation frequency of 20Hz and its harmonic of 40Hz, whereas the arrhythmic stimulation does not exhibit this phenomenon. Moreover, in the initial stage of stimulation, the ITPS and IRPS values are significantly higher at Mu rhythm in the rhythmic condition compared to arrhythmic. In conclusion, the results demonstrate the ability of OPM-MEG in measuring phase pattern and functional connectivity on source-level, and may also prove beneficial for the study on the mechanism of rhythmic stimulation therapy for rehabilitation.
Collapse
|
5
|
Deguire F, López-Arango G, Knoth IS, Côté V, Agbogba K, Lippé S. EEG repetition and change detection responses in infancy predict adaptive functioning in preschool age: a longitudinal study. Sci Rep 2023; 13:9980. [PMID: 37340003 DOI: 10.1038/s41598-023-34669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are mostly diagnosed around the age of 4-5 years, which is too late considering that the brain is most susceptive to interventions during the first two years of life. Currently, diagnosis of NDDs is based on observed behaviors and symptoms, but identification of objective biomarkers would allow for earlier screening. In this longitudinal study, we investigated the relationship between repetition and change detection responses measured using an EEG oddball task during the first year of life and at two years of age, and cognitive abilities and adaptive functioning during preschool years (4 years old). Identification of early biomarkers is challenging given that there is a lot of variability in developmental courses among young infants. Therefore, the second aim of this study is to assess whether brain growth is a factor of interindividual variability that influences repetition and change detection responses. To obtain variability in brain growth beyond the normative range, infants with macrocephaly were included in our sample. Thus, 43 normocephalic children and 20 macrocephalic children were tested. Cognitive abilities at preschool age were assessed with the WPPSI-IV and adaptive functioning was measured with the ABAS-II. Time-frequency analyses were conducted on the EEG data. Results indicated that repetition and change detection responses in the first year of life predict adaptive functioning at 4 years of age, independently of head circumference. Moreover, our findings suggested that brain growth explains variability in neural responses mostly in the first years of life, so that macrocephalic children did not display repetition suppression responses, while normocephalic children did. This longitudinal study demonstrates that the first year of life is an important period for the early screening of children at risk of developing NDDs.
Collapse
Affiliation(s)
- Florence Deguire
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada.
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada.
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada.
| | - Gabriela López-Arango
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Inga Sophia Knoth
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Valérie Côté
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
- École de technologie supérieure, University of Quebec, 1100 Notre-Dame W, Montreal, QC, Canada
| | - Sarah Lippé
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC, Canada
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, Canada
| |
Collapse
|
6
|
Dawson G, Rieder AD, Johnson MH. Prediction of autism in infants: progress and challenges. Lancet Neurol 2023; 22:244-254. [PMID: 36427512 PMCID: PMC10100853 DOI: 10.1016/s1474-4422(22)00407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorder (henceforth autism) is a neurodevelopmental condition that can be reliably diagnosed in children by age 18-24 months. Prospective longitudinal studies of infants aged 1 year and younger who are later diagnosed with autism are elucidating the early developmental course of autism and identifying ways of predicting autism before diagnosis is possible. Studies that use MRI, EEG, and near-infrared spectroscopy have identified differences in brain development in infants later diagnosed with autism compared with infants without autism. Retrospective studies of infants younger than 1 year who received a later diagnosis of autism have also showed an increased prevalence of health conditions, such as sleep disorders, gastrointestinal disorders, and vision problems. Behavioural features of infants later diagnosed with autism include differences in attention, vocalisations, gestures, affect, temperament, social engagement, sensory processing, and motor abilities. Although research findings offer insight on promising screening approaches for predicting autism in infants, individual-level predictions remain a future goal. Multiple scientific challenges and ethical questions remain to be addressed to translate research on early brain-based and behavioural predictors of autism into feasible and reliable screening tools for clinical practice.
Collapse
Affiliation(s)
- Geraldine Dawson
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Amber D Rieder
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| |
Collapse
|
7
|
Zhang S, Chen D, Tang Y, Li X. Learning graph-based relationship of dual-modal features towards subject adaptive ASD assessment. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|