1
|
Zhou M, Niu B, Ma J, Ge Y, Han Y, Wu W, Yue C. Intervention and research progress of gut microbiota-immune-nervous system in autism spectrum disorders among students. Front Microbiol 2025; 16:1535455. [PMID: 40143866 PMCID: PMC11936958 DOI: 10.3389/fmicb.2025.1535455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties in social interaction and communication, repetitive and stereotyped behaviors, restricted interests, and sensory abnormalities. Its etiology is influenced by both genetic and environmental factors, with no definitive cause identified and no specific pharmacological treatments available, posing a significant burden on patients' families and society. In recent years, research has discovered that gut microbiota dysbiosis plays a crucial role in the pathogenesis of ASD. The gut microbiota can influence brain function and behavior through the gut-brain axis via the nervous system, immune system, and metabolic pathways. On the one hand, specific gut microbes such as Clostridium and Prevotella species are found to be abnormal in ASD patients, and their metabolic products, like short-chain fatty acids, serotonin, and GABA, are also involved in the pathological process of ASD. On the other hand, ASD patients exhibit immune system dysfunction, with gut immune cells and related cytokines affecting neural activities in the brain. Currently, intervention methods targeting the gut microbiota, such as probiotics, prebiotics, and fecal microbiota transplantation, have shown some potential in improving ASD symptoms. However, more studies are needed to explore their long-term effects and optimal treatment protocols. This paper reviews the mechanisms and interrelationships among gut microbiota, immune system, and nervous system in ASD and discusses the challenges and future directions of existing research, aiming to provide new insights for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Baoming Niu
- School of Petroleum Engineering and Environmental Science, Yan’an University, Yan’an, China
| | - Jiarui Ma
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Yukang Ge
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Yanxin Han
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Wenrui Wu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medical Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
2
|
Chi I, Tsai S, Chen C, Yang AC. Identifying Distinct Developmental Patterns of Brain Complexity in Autism: A Cross-Sectional Cohort Analysis Using the Autism Brain Imaging Data Exchange. Psychiatry Clin Neurosci 2025; 79:98-107. [PMID: 39797542 PMCID: PMC11874071 DOI: 10.1111/pcn.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
AIM Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood. METHODS We analyzed functional magnetic resonance imaging data from 1087 autistic participants and neurotypical controls aged 6 to 30 years within the ABIDE I (Autism Brain Imaging Data Exchange) data set. Sample entropy was calculated to measure brain complexity among 90 brain regions, utilizing an automated anatomical labeling template for voxel parcellation. Participants were grouped using sliding age windows with partial overlaps. We assessed the average brain complexity of the entire brain and brain regions for both groups across age categories. Cluster analysis was conducted using generalized association plots to identify brain regions with similar developmental complexity trajectories. Finally, the relationship between brain region complexity and autistic traits was examined. RESULTS Autistic individuals may tend toward higher whole-brain complexity during adolescence and lower complexity during childhood and adulthood, indicating possible distinct developmental trajectories. However, these results do not remain after Bonferroni correction. Two clusters of brain regions were identified, each with unique patterns of complexity changes over time. Correlations between brain region complexity, age, and autistic traits were also identified. CONCLUSION The study revealed brain complexity trajectories in autistic individuals, providing insight into the neurodiversity of autism and suggesting that age-related changes in brain complexity could be a potential neurodevelopmental marker for the dynamic nature of autism.
Collapse
Affiliation(s)
- I‐Jou Chi
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Shih‐Jen Tsai
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of PsychiatryTaipei Veterans General HospitalTaipeiTaiwan
| | - Chun‐Houh Chen
- Institute of Statistical ScienceAcademia SinicaTaipeiTaiwan
| | - Albert C. Yang
- Institute of Brain ScienceNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical ResearchTaipei Veterans General HospitalTaipeiTaiwan
- Digital Medicine and Smart Healthcare Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Fard YA, Sadeghi EN, Pajoohesh Z, Gharehdaghi Z, Khatibi DM, Khosravifar S, Pishkari Y, Nozari S, Hijazi A, Pakmehr S, Shayan SK. Epigenetic underpinnings of the autistic mind: Histone modifications and prefrontal excitation/inhibition imbalance. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32986. [PMID: 38837296 DOI: 10.1002/ajmg.b.32986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD. The molecular mechanisms involved in E/I imbalance are subject to epigenetic regulation. In ASD, altered enrichment and spreading of histone H3 and H4 modifications such as the activation-linked H3K4me2/3, H3K9ac, and H3K27ac, and repression-linked H3K9me2, H3K27me3, and H4K20me2 in the PFC result in dysregulation of molecules mediating synaptic excitation (ARC, EGR1, mGluR2, mGluR3, GluN2A, and GluN2B) and synaptic inhibition (BSN, EphA7, SLC6A1). Histone modifications are a dynamic component of the epigenetic regulatory elements with a pronounced effect on patterns of gene expression with regards to any biological process. The excitation/inhibition imbalance associated with ASD is based on the excitatory and inhibitory synaptic activity in different regions of the brain, including the PFC, the ultimate outcome of which is highly influenced by transcriptional activity of relevant genes.
Collapse
Affiliation(s)
| | | | - Zohreh Pajoohesh
- Faculty of Medicine, Zabol Univeristy of Medical Sciences, Zabol, Iran
| | - Zahra Gharehdaghi
- Department of Pharmacology, Zabol University of Medical Sciences, Zabol, Iran
| | | | | | - Yasamin Pishkari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Nozari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmed Hijazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Sepideh Karkon Shayan
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
5
|
Wei S, Jiang J, Wang D, Chang J, Tian L, Yang X, Ma XR, Zhao JW, Li Y, Chang S, Chi X, Li H, Li N. GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell Rep 2024; 43:114796. [PMID: 39383040 DOI: 10.1016/j.celrep.2024.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/16/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
Impairment in social communication skills is a hallmark feature of autism spectrum disorder (ASD). The role of G-protein-coupled receptor 158 (GPR158) in ASD remains largely unexplored. In this study, we observed that both constitutive and cell-/tissue-specific knockouts of Gpr158 in pyramidal neurons or the medial prefrontal cortex (mPFC) result in impaired novelty preference, while sociability remains unaffected in male mice. Notably, the loss of GPR158 leads to a significant decline in excitatory synaptic transmission, characterized by a reduction in glutamate vesicles, as well as the expression and phosphorylation of GluN2B in the mPFC. We successfully rescue the phenotype of social novelty deficits either by reintroducing GPR158 in the mPFC of Gpr158 deficient mice or by chemogenetic activation of pyramidal neurons where Gpr158 is specifically ablated. Our findings indicate that GPR158 in pyramidal neurons plays a specific role in modulating social novelty and may represent a potential target for treating social disorders.
Collapse
Affiliation(s)
- Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Liusuyan Tian
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiao-Ru Ma
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing-Wei Zhao
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuwen Chang
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China; China-UK Institute for Frontier Science, Shenzhen 518107, China.
| |
Collapse
|
6
|
Chen M, Xu X, Wang F, Xu X. Investigating causality and shared genetic architecture between body mass index and cognitive function: a genome-wide cross-trait analysis and bi-directional Mendelian randomization study. Front Aging Neurosci 2024; 16:1466799. [PMID: 39478699 PMCID: PMC11522962 DOI: 10.3389/fnagi.2024.1466799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background and objectives Observational studies have established a connection between body mass index (BMI) and an increased risk of cognitive decline. However, a comprehensive investigation into the causal relationships between BMI and cognitive function across diverse age groups, as well as the genetic underpinnings of this relationship, has been notably lacking. This study aims to investigate causality and the shared genetic underpinnings of between BMI and cognitive function by conducting a thorough genome-wide analysis, thereby provide valuable insights for developing personalized intervention strategies to promote cognitive health. Methods Genetic associations between BMI and cognitive function were thoroughly investigated through covariate genetic analysis and chained imbalance score regression, utilizing data from genome-wide association studies (GWAS). Bi-directional Mendelian Randomization (MR) was employed to uncover associations and potential functional genes were further scrutinized through Cross-trait meta-analysis and Summary-data-based MR (SMR). Subsequently, a detailed examination of the expression profiles of the identified risk SNPs in tissues and cells was conducted. Results The study found a significant negative correlation between BMI and cognitive function (β = -0.16, P = 1.76E-05), suggesting a causal linkage where higher BMI values were predictive of cognitive impairment. We identified 5 genetic loci (rs6809216, rs7187776, rs11713193, rs13096480, and rs13107325) between BMI and cognitive function by cross-trait meta-analysis and 5 gene-tissue pairs were identified by SMR analysis. Moreover, two novel risk genes TUFM and MST1R were shared by both cross-trait analysis and SMR analysis, which had not been observed in previous studies. Furthermore, significant enrichment of single nucleotide polymorphisms (SNPs) at tissue- and cell-specific levels was identified for both BMI and cognitive function, predominantly within the brain. Conclusion This study uncovers a causal relationship between BMI and cognitive function, with the discovery of TUFM and MST1R as shared genetic factors associated with both conditions. This novel finding offers new insights into the development of preventative strategies for cognitive decline in obese individuals, and further enhances our understanding of the underlying pathophysiology of these conditions. Furthermore, these findings could serve as a guide for the development of innovative therapeutic approaches to address cognitive decline in obese individuals.
Collapse
Affiliation(s)
- Mingyi Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaoxin Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fang Wang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Chen YCB, Lin HY, Wang LJ, Hung KC, Brunoni AR, Chou PH, Tseng PT, Liang CS, Tu YK, Lin PY, Carvalho AF, Hsu CW, Ni HC. A network meta-analysis of non-invasive brain stimulation interventions for autism spectrum disorder: Evidence from randomized controlled trials. Neurosci Biobehav Rev 2024; 164:105807. [PMID: 38981573 DOI: 10.1016/j.neubiorev.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The efficacy and acceptability of various non-invasive brain stimulation (NIBS) interventions for autism spectrum disorder remain unclear. We carried out a systematic review for randomized controlled trials (RCTs) regarding NIBS for reducing autistic symptoms (INPLASY202370003). Sixteen articles (N = 709) met the inclusion criteria for network meta-analysis. Effect sizes were reported as standardized mean differences (SMDs) or odds ratios with 95 % confidence intervals (CIs). Fourteen active NIBS interventions, including transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and transcranial pulse stimulation were analyzed. Only anodal tDCS over the left dorsolateral prefrontal cortex paired with cathodal tDCS over an extracephalic location (atDCS_F3 + ctDCS_E) significantly improved autistic symptoms compared to sham controls (SMD = - 1.40, 95 %CIs = - 2.67 to - 0.14). None of the NIBS interventions markedly improved social-communication symptoms or restricted/repetitive behaviors in autistic participants. Moreover, no active NIBS interventions exhibited significant dropout rate differences compared to sham controls, and no serious adverse events were reported for any intervention.
Collapse
Affiliation(s)
- Yang-Chieh Brian Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamentoe Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil; Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Po-Han Chou
- Dr. Chou's Mental Health Clinic, Hsinchu, Taiwan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics & Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
9
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
10
|
Zhang Q, Li F, Li T, Lin J, Jian J, Zhang Y, Chen X, Liu T, Gou S, Zhang Y, Liu X, Ji Y, Wang X, Li Q. Nomo1 deficiency causes autism-like behavior in zebrafish. EMBO Rep 2024; 25:570-592. [PMID: 38253686 PMCID: PMC10897165 DOI: 10.1038/s44319-023-00036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Patients with neuropsychiatric disorders often exhibit a combination of clinical symptoms such as autism, epilepsy, or schizophrenia, complicating diagnosis and development of therapeutic strategies. Functional studies of novel genes associated with co-morbidities can provide clues to understand the pathogenic mechanisms and interventions. NOMO1 is one of the candidate genes located at 16p13.11, a hotspot of neuropsychiatric diseases. Here, we generate nomo1-/- zebrafish to get further insight into the function of NOMO1. Nomo1 mutants show abnormal brain and neuronal development and activation of apoptosis and inflammation-related pathways in the brain. Adult Nomo1-deficient zebrafish exhibit multiple neuropsychiatric behaviors such as hyperactive locomotor activity, social deficits, and repetitive stereotypic behaviors. The Habenular nucleus and the pineal gland in the telencephalon are affected, and the melatonin level of nomo1-/- is reduced. Melatonin treatment restores locomotor activity, reduces repetitive stereotypic behaviors, and rescues the noninfectious brain inflammatory responses caused by nomo1 deficiency. These results suggest melatonin supplementation as a potential therapeutic regimen for neuropsychiatric disorders caused by NOMO1 deficiency.
Collapse
Affiliation(s)
- Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Fei Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Tingting Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jia Lin
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Jing Jian
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yinglan Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Ting Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Shenglan Gou
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xiuyun Liu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Yongxia Ji
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China
| | - Xu Wang
- Cancer Institute, Pancreatic Cancer Institute, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, 210013, Shanghai, China.
| |
Collapse
|
11
|
Dwyer P, Vukusic S, Williams ZJ, Saron CD, Rivera SM. "Neural Noise" in Auditory Responses in Young Autistic and Neurotypical Children. J Autism Dev Disord 2024; 54:642-661. [PMID: 36434480 PMCID: PMC10209352 DOI: 10.1007/s10803-022-05797-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Elevated "neural noise" has been advanced as an explanation of autism and autistic sensory experiences. However, functional neuroimaging measures of neural noise may be vulnerable to contamination by recording noise. This study explored variability of electrophysiological responses to tones of different intensities in 127 autistic and 79 typically-developing children aged 2-5 years old. A rigorous data processing pipeline, including advanced visualizations of different signal sources that were maximally independent across different time lags, was used to identify and eliminate putative recording noise. Inter-trial variability was measured using median absolute deviations (MADs) of EEG amplitudes across trials and inter-trial phase coherence (ITPC). ITPC was elevated in autism in the 50 and 60 dB intensity conditions, suggesting diminished (rather than elevated) neural noise in autism, although reduced ITPC to soft 50 dB sounds was associated with increased loudness discomfort. Autistic and non-autistic participants did not differ in MADs, and indeed, the vast majority of the statistical tests examined in this study yielded no significant effects. These results appear inconsistent with the neural noise account.
Collapse
Affiliation(s)
- Patrick Dwyer
- Department of Psychology, UC Davis, Davis, CA, USA.
- Center for Mind and Brain, UC Davis, Davis, CA, USA.
- MIND Institute, UC Davis Health, Sacramento, CA, USA.
| | | | - Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clifford D Saron
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
| | - Susan M Rivera
- Department of Psychology, UC Davis, Davis, CA, USA
- Center for Mind and Brain, UC Davis, Davis, CA, USA
- MIND Institute, UC Davis Health, Sacramento, CA, USA
- College of Behavioral and Social Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
12
|
Jingyi L, Lin W, Yuan C, Lingling Z, Qianqian J, Anlong X, Yansong G. Intravenous transplantation of bone marrow-derived mesenchymal stem cells improved behavioral deficits and altered fecal microbiota composition of BTBR mice. Life Sci 2024; 336:122330. [PMID: 38065352 DOI: 10.1016/j.lfs.2023.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
AIMS It is recognized that autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder with communication deficits as well as multiple social barriers. The core symptoms of ASD are not treatable with current therapeutics. Therefore, finding new treatment strategies for ASD is urgently needed. Mesenchymal stem cells (MSC) have been shown to be a promising therapeutic approach in previous studies. However, the underlying mechanisms of MSC treatment for ASD through gut microbiota remain unclear and require further investigation. MAIN METHODS BTBR mice were used as ASD model and then randomly assigned to the human bone marrow-derived mesenchymal stem cell (hBMMSC) intravenous treatment group or vehicle treatment group. C57BL/6J (C57) mice served as control. Multiple social behavioral tests were performed during the 6-week period and fecal samples were collected at different time points for 16 s rRNA sequencing analysis. KEY FINDINGS The administration of hBMMSC improved social deficits of BTBR mice in the open field test (OFT), light-dark box test (LBT), novel object recognition (NOR), and free social test (FST), while also significantly reducing stereotypic behaviors. Additionally, hBMMSC administration notably reversed the alterations of microbiota abundance in BTBR mice, particularly the Firmicutes/Bacteroidetes ratio. Several specific differential taxa were further selected and showed a correlation with the prognosis and behavioral scores of ASD. SIGNIFICANCE Overall, intravenous treatment with hBMMSC had a beneficial impact on ASD by ameliorating social deficits and modifying microbiota compositions. This outcome indicates that hBMMSC intravenous transplantation could be a promising therapeutic strategy for enhancing ASD symptoms improvements.
Collapse
Affiliation(s)
- Li Jingyi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China
| | - Wang Lin
- Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China
| | - Chen Yuan
- Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China
| | - Zhang Lingling
- Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China
| | - Jiang Qianqian
- Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China
| | - Xu Anlong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Gao Yansong
- Jiuzhitang Maker (Beijing) Cell Technology Co., LTD., Beijing 102600, China; Hunan Provincial Key Laboratory of Critical Quality Attribute of Cell Therapy Products, Changsha, Hunan Province, China.
| |
Collapse
|
13
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
14
|
Rodríguez-Urgellés E, Casas-Torremocha D, Sancho-Balsells A, Ballasch I, García-García E, Miquel-Rio L, Manasanch A, Del Castillo I, Chen W, Pupak A, Brito V, Tornero D, Rodríguez MJ, Bortolozzi A, Sanchez-Vives MV, Giralt A, Alberch J. Thalamic Foxp2 regulates output connectivity and sensory-motor impairments in a model of Huntington's Disease. Cell Mol Life Sci 2023; 80:367. [PMID: 37987826 PMCID: PMC10663254 DOI: 10.1007/s00018-023-05015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Anna Sancho-Balsells
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iván Ballasch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Esther García-García
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Del Castillo
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wanqi Chen
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anika Pupak
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Veronica Brito
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Tornero
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain
| | - Manuel J Rodríguez
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Giralt
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| | - Jordi Alberch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
15
|
Maier S, Nickel K, Lange T, Oeltzschner G, Dacko M, Endres D, Runge K, Schumann A, Domschke K, Rousos M, Tebartz van Elst L. Increased cerebral lactate levels in adults with autism spectrum disorders compared to non-autistic controls: a magnetic resonance spectroscopy study. Mol Autism 2023; 14:44. [PMID: 37978557 PMCID: PMC10655272 DOI: 10.1186/s13229-023-00577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Autism spectrum disorder (ASD) encompasses a heterogeneous group with varied phenotypes and etiologies. Identifying pathogenic subgroups could facilitate targeted treatments. One promising avenue is investigating energy metabolism, as mitochondrial dysfunction has been implicated in a subgroup of ASD. Lactate, an indicator of energy metabolic anomalies, may serve as a potential biomarker for this subgroup. This study aimed to examine cerebral lactate (Lac+) levels in high-functioning adults with ASD, hypothesizing elevated mean Lac+ concentrations in contrast to neurotypical controls (NTCs). MATERIALS AND METHODS Magnetic resonance spectroscopy (MRS) was used to study cerebral Lac+ in 71 adults with ASD and NTC, focusing on the posterior cingulate cortex (PCC). After quality control, 64 ASD and 58 NTC participants remained. Lac+ levels two standard deviations above the mean of the control group were considered elevated. RESULTS Mean PCC Lac+ levels were significantly higher in the ASD group than in the NTC group (p = 0.028; Cohen's d = 0.404), and 9.4% of the ASD group had elevated levels as compared to 0% of the NTCs (p = 0.029). No significant correlation was found between blood serum lactate levels and MRS-derived Lac+ levels. LIMITATIONS A cautious interpretation of our results is warranted due to a p value of 0.028. In addition, a higher than anticipated proportion of data sets had to be excluded due to poor spectral quality. CONCLUSION This study confirms the presence of elevated cerebral Lac+ levels in a subgroup of adults with ASD, suggesting the potential of lactate as a biomarker for mitochondrial dysfunction in a subgroup of ASD. The lower-than-expected prevalence (20% was expected) and moderate increase require further investigation to elucidate the underlying mechanisms and relationships with mitochondrial function.
Collapse
Affiliation(s)
- Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany.
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Thomas Lange
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael Dacko
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Anke Schumann
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Michalis Rousos
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany
| |
Collapse
|
16
|
Chan MMY, Choi CXT, Tsoi TCW, Shea CKS, Yiu KWK, Han YMY. Effects of multisession cathodal transcranial direct current stimulation with cognitive training on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-controlled, randomized EEG study. Brain Stimul 2023; 16:1604-1616. [PMID: 37918630 DOI: 10.1016/j.brs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Few treatment options are available for targeting core symptoms of autism spectrum disorder (ASD). The development of treatments that target common neural circuit dysfunctions caused by known genetic defects, namely, disruption of the excitation/inhibition (E/I) balance, is promising. Transcranial direct current stimulation (tDCS) is capable of modulating the E/I balance in healthy individuals, yet its clinical and neurobiological effects in ASD remain elusive. OBJECTIVE This double-blind, randomized, sham-controlled trial investigated the effects of multisession cathodal prefrontal tDCS coupled with online cognitive remediation on social functioning, information processing efficiency and the E/I balance in ASD patients aged 14-21 years. METHODS Sixty individuals were randomly assigned to receive either active or sham tDCS (10 sessions in total, 20 min/session, stimulation intensity: 1.5 mA, cathode: F3, anode: Fp2, size of electrodes: 25 cm2) combined with 20 min of online cognitive remediation. Social functioning, information processing efficiency during cognitive tasks, and theta- and gamma-band E/I balance were measured one day before and after the treatment. RESULTS Compared to sham tDCS, active cathodal tDCS was effective in enhancing overall social functioning [F(1, 58) = 6.79, p = .012, ηp2 = 0.105, 90% CI: (0.013, 0.234)] and information processing efficiency during cognitive tasks [F(1, 58) = 10.07, p = .002, ηp2 = 0.148, 90% CI: (0.034, 0.284)] in these individuals. Electroencephalography data showed that this cathodal tDCS protocol was effective in reducing the theta-band E/I ratio of the cortical midline structures [F(1, 58) = 4.65, p = .035, ηp2 = 0.074, 90% CI: (0.010, 0.150)] and that this reduction significantly predicted information processing efficiency enhancement (b = -2.546, 95% BCa CI: [-4.979, -0.113], p = .041). CONCLUSION Our results support the use of multisession cathodal tDCS over the left dorsolateral prefrontal cortex combined with online cognitive remediation for reducing the elevated theta-band E/I ratio in sociocognitive information processing circuits in ASD patients, resulting in more adaptive regulation of global brain dynamics that is associated with enhanced information processing efficiency after the intervention.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Caroline K S Shea
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Klaire W K Yiu
- Alice Ho Miu Ling Nethersole Hospital, Hospital Authority, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
17
|
Song Y, Hupfeld KE, Davies-Jenkins CW, Zöllner HJ, Murali-Manohar S, Mumuni AN, Crocetti D, Yedavalli V, Oeltzschner G, Alessi N, Batschelett MA, Puts NAJ, Mostofsky SH, Edden RAE. Brain Glutathione and GABA+ levels in autistic children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559718. [PMID: 37808813 PMCID: PMC10557661 DOI: 10.1101/2023.09.28.559718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a large cohort of children aged 8-12 years with ASD (n=52) and typically developing children (TDC, n=49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.
Collapse
Affiliation(s)
- Yulu Song
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Kathleen E Hupfeld
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Christopher W Davies-Jenkins
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Helge J Zöllner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | | | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Georg Oeltzschner
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Natalie Alessi
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mitchell A Batschelett
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- MRC Center for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard A E Edden
- The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
18
|
Wang M, Xu D, Zhang L, Jiang H. Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review. Diagnostics (Basel) 2023; 13:3027. [PMID: 37835770 PMCID: PMC10571992 DOI: 10.3390/diagnostics13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early diagnosis and intervention can remodel the neural structure of the brain and improve quality of life but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature and review the abnormal changes in brain structural-functional networks, perfusion, neuronal metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and precise intervention. Structural MRI revealed morphological differences, abnormal developmental trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along the perivascular space index reflected impaired glymphatic system function in children with ASD. Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Lili Zhang
- Department of Child Health Care, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| |
Collapse
|
19
|
Schormans AL, Allman BL. An imbalance of excitation and inhibition in the multisensory cortex impairs the temporal acuity of audiovisual processing and perception. Cereb Cortex 2023; 33:9937-9953. [PMID: 37464944 DOI: 10.1093/cercor/bhad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/20/2023] Open
Abstract
The neural integration of closely timed auditory and visual stimuli can offer several behavioral advantages; however, an overly broad window of temporal integration-a phenomenon observed in various neurodevelopmental disorders-could have far-reaching perceptual consequences. Non-invasive studies in humans have suggested that the level of GABAergic inhibition in the multisensory cortex influences the temporal window over which auditory and visual stimuli are bound into a unified percept. Although this suggestion aligns with the theory that an imbalance of cortical excitation and inhibition alters multisensory processing, no prior studies have performed experimental manipulations to determine the causal effects of a reduction of GABAergic inhibition on audiovisual temporal perception. To that end, we used a combination of in vivo electrophysiology, neuropharmacology, and translational behavioral testing in rats to provide the first mechanistic evidence that a reduction of GABAergic inhibition in the audiovisual cortex is sufficient to disrupt unisensory and multisensory processing across the cortical layers, and ultimately impair the temporal acuity of audiovisual perception and its rapid adaptation to recent sensory experience. Looking forward, our findings provide support for using rat models to further investigate the neural mechanisms underlying the audiovisual perceptual alterations observed in neurodevelopmental disorders, such as autism, schizophrenia, and dyslexia.
Collapse
Affiliation(s)
- Ashley L Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Plueckebaum H, Meyer L, Beck AK, Menn KH. The developmental trajectory of functional excitation-inhibition balance relates to language abilities in autistic and allistic children. Autism Res 2023; 16:1681-1692. [PMID: 37493078 DOI: 10.1002/aur.2992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Autism is a neurodevelopmental condition that has been related to an overall imbalance between the brain's excitatory (E) and inhibitory (I) systems. Such an EI imbalance can lead to structural and functional cortical deviances and thus alter information processing in the brain, ultimately giving rise to autism traits. However, the developmental trajectory of EI imbalances across childhood and adolescence has not been investigated yet. Therefore, its relationship to autism traits is not well understood. In the present study, we determined a functional measure of the EI balance (f-EIB) from resting-state electrophysiological recordings for a final sample of 92 autistic children from 6 to 17 years of age and 100 allistic (i.e., non-autistic) children matched by age, sex, and nonverbal-IQ. We related the developmental trajectory of f-EIB to behavioral assessments of autism traits as well as language ability. Our results revealed differential EI trajectories for autistic compared to allistic children. Importantly, the developmental trajectory of f-EIB values related to individual language ability. In particular, elevated excitability in late childhood and early adolescence was linked to decreased listening comprehension. Our findings provide evidence against a general EI imbalance in autistic children when correcting for non-verbal IQ. Instead, we show that the developmental trajectory of EI balance shares variance with autism trait development at a specific age range. This is consistent with the proposal that the late development of inhibitory brain activity is a key substrate of autism traits.
Collapse
Affiliation(s)
- Hannah Plueckebaum
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Ann-Kathrin Beck
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Katharina H Menn
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| |
Collapse
|
21
|
Demler VF, Sterner EF, Wilson M, Zimmer C, Knolle F. Association between increased anterior cingulate glutamate and psychotic-like experiences, but not autistic traits in healthy volunteers. Sci Rep 2023; 13:12792. [PMID: 37550354 PMCID: PMC10406950 DOI: 10.1038/s41598-023-39881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
Despite many differences, autism spectrum disorder and schizophrenia spectrum disorder share environmental risk factors, genetic predispositions as well as neuronal abnormalities, and show similar cognitive deficits in working memory, perspective taking, or response inhibition. These shared abnormalities are already present in subclinical traits of these disorders. The literature proposes that changes in the inhibitory GABAergic and the excitatory glutamatergic system could explain underlying neuronal commonalities and differences. Using magnetic resonance spectroscopy (1H-MRS), we investigated the associations between glutamate concentrations in the anterior cingulate cortex (ACC), the left/right putamen, and left/right dorsolateral prefrontal cortex and psychotic-like experiences (Schizotypal Personality Questionnaire) and autistic traits (Autism Spectrum Quotient) in 53 healthy individuals (26 women). To investigate the contributions of glutamate concentrations in different cortical regions to symptom expression and their interactions, we used linear regression analyses. We found that only glutamate concentration in the ACC predicted psychotic-like experiences, but not autistic traits. Supporting this finding, a binomial logistic regression predicting median-split high and low risk groups for psychotic-like experiences revealed ACC glutamate levels as a significant predictor for group membership. Taken together, this study provides evidence that glutamate levels in the ACC are specifically linked to the expression of psychotic-like experiences, and may be a potential candidate in identifying early risk individuals prone to developing psychotic-like experiences.
Collapse
Affiliation(s)
- Verena F Demler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Elisabeth F Sterner
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Franziska Knolle
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Bagcioglu E, Solmaz V, Erbas O, Özkul B, Çakar B, Uyanikgil Y, Söğüt İ. Modafinil Improves Autism-like Behavior in Rats by Reducing Neuroinflammation. J Neuroimmune Pharmacol 2023; 18:9-23. [PMID: 37043086 DOI: 10.1007/s11481-023-10061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023]
Abstract
To evaluate the ameliorating effect of Modafinil on neuroinflammation, behavioral, and histopathological alterations in rats induced by propionic acid (PPA). Thirty male Wistar rats were used in the study, divided into 3 groups of ten subjects. One group served as a control, the subjects in the other two were given 250 mg/kg/day of PPA by intraperitoneal injection over the course of 5 days to induce autism. The experimental design was as follows: Group 1: Normal control (orally-fed control, n = 10); Group 2 (PPA + saline, n = 10): PPA and 1 ml/kg/day % 0.9 NaCl saline via oral gavage; Group 3 (PPA + Modafinil, n = 10) PPA and 30 mg/kg/day Modafinil (Modiodal tablets 100 mg, Cephalon) via oral gavage. All of the groups were investigated for behavioral, biochemical, and histological abnormality. Autism-like behaviors were reduced significantly in the rats treated with PPA. TNF-α, Nerve Growth Factor (NGF), IL-17, IL-2, and NF-KB levels as well as MDA levels and lactate were significantly higher in those treated with PPA compared to the control group. Using immunohistochemical methods, the number of neurons and GFAP immunoreactivity was significantly altered in PPA-treated rats compared to the control. Using Magnetic Resonance Spectroscopy (MRS), we found that lactate levels were significantly higher in the PPA-treated rats, while creatinine levels were significantly decreased. In the rats administered with Modafinil, behavior, neuroinflammation, and histopathological changes brought about by PPA were significantly reversed. Our results demonstrate the potential role of Modafinil in ameliorating PPA-induced neuroinflammation in rats.
Collapse
Affiliation(s)
- Erman Bagcioglu
- Department of Clinical Psychology, Ruhr University, Bochum, Germany.
| | - Volkan Solmaz
- Department of Neurophysiology, Cologne University, Cologne, Germany
| | - Oytun Erbas
- Department of Physiology, Istanbul Bilim University School of Medicine, Istanbul, Turkey
| | - Bahattin Özkul
- Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Burak Çakar
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - İbrahim Söğüt
- Department of Biochemistry, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
23
|
Briend F, Barantin L, Cléry H, Cottier JP, Bonnet-Brilhault F, Houy-Durand E, Gomot M. Glutamate levels of the right and left anterior cingulate cortex in autistics adults. Prog Neuropsychopharmacol Biol Psychiatry 2023:110801. [PMID: 37245585 DOI: 10.1016/j.pnpbp.2023.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The neurobiology of Autism Spectrum Disorder (ASD) is still unknown. Alteration in glutamate metabolism might translate into an imbalance of the excitation/inhibition equilibrium of cortical networks that in turn are related to autistic symptoms, but previous studies using voxel located in bilateral anterior cingulate cortex (ACC) failed to show abnormalities in total glutamate level. Due to the functional differences in the right and left ACC, we sought to determine whether a difference between right and left ACC glutamate levels could be found when comparing ASD patients and control subjects. METHODS Using single-voxel proton magnetic resonance spectroscopy (1H-MRS), we analyzed the glutamate + glutamine (Glx) concentrations in the left and right ACC of 19 ASD patients with normal IQs and 25 matched control subjects. RESULTS No overall group differences in Glx were shown, in the left ACC (p = 0.24) or in the right ACC (p = 0.11). CONCLUSIONS No significant alterations in Glx levels were detected in the left and right ACC in high-functioning autistic adults. In the excitatory/inhibitory imbalance framework, our data reinforce the critical need to analyze the GABAergic pathway, for better understanding of basic neuropathology in autism.
Collapse
Affiliation(s)
- Frédéric Briend
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| | - Laurent Barantin
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Department of Radiology, Tours Hospital, Tours, France
| | - Helen Cléry
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France
| | - Jean-Philippe Cottier
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Department of Radiology, Tours Hospital, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | - Marie Gomot
- UMR 1253 iBrain, Inserm, Université de Tours, Tours, France; Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| |
Collapse
|
24
|
Zhou R, Xie X, Wang J, Ma B, Hao X. Why do children with autism spectrum disorder have abnormal visual perception? Front Psychiatry 2023; 14:1087122. [PMID: 37255685 PMCID: PMC10225551 DOI: 10.3389/fpsyt.2023.1087122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with severe impairment in social functioning. Visual information processing provides nonverbal cues that support social interactions. ASD children exhibit abnormalities in visual orientation, continuous visual exploration, and visual-spatial perception, causing social dysfunction, and mechanisms underlying these abnormalities remain unclear. Transmission of visual information depends on the retina-lateral geniculate nucleus-visual cortex pathway. In ASD, developmental abnormalities occur in rapid expansion of the visual cortex surface area with constant thickness during early life, causing abnormal transmission of the peak of the visual evoked potential (P100). We hypothesized that abnormal visual perception in ASD are related to the abnormal visual information transmission and abnormal development of visual cortex in early life, what's more, explored the mechanisms of abnormal visual symptoms to provide suggestions for future research.
Collapse
Affiliation(s)
- Rongyi Zhou
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinyue Xie
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiaojiao Wang
- Henan Provincial People's Hospital, Henan Institute of Ophthalmology, Zhengzhou, China
| | - Bingxiang Ma
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Hao
- Renmin University of China, Beijing, China
| |
Collapse
|
25
|
Pang EW, Hammill C, Taylor MJ, Near J, Schachar R, Crosbie J, Arnold PD, Anagnostou E, Lerch JP. Cerebellar gamma-aminobutyric acid: Investigation of group effects in neurodevelopmental disorders. Autism Res 2023; 16:535-542. [PMID: 36626308 DOI: 10.1002/aur.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
Neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) are thought to arise in part from the disruption in the excitatory/inhibitory balance of gamma-aminobutyric acid (GABA) and glutamate in the brain. Recent evidence has shown the involvement of the cerebellum in cognition and affect regulation, and cerebellar atypical function or damage is reported frequently in NDDs. Magnetic resonance spectroscopy studies have reported decreases in GABA in cortical brain areas in the NDDs, however, GABA levels in the cerebellum have not been examined. To determine possible group effects, we used a MEGA-PRESS acquisition to investigate GABA+ levels in a cerebellar voxel in 343 individuals (aged 2.5-22 years) with ASD, ADHD, OCD and controls. Using a mixed effects model, we found no significant differences between groups in GABA+ concentration. Our findings suggest that cerebellar GABA+ levels do not differentiate NDD groups.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Chris Hammill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- Diagnostic Imaging/Neuroscience and Mental Health, Hospital for Sick Children, Toronto and Departments of Medical Imaging and Psychology, University of Toronto, Toronto, Canada
| | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Russell Schachar
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Jennifer Crosbie
- Department of Psychiatry/Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Umesawa Y, Matsushima K, Fukatsu R, Terao Y, Ide M. Hand-foot coordination is significantly influenced by motion direction in individuals with autism spectrum disorder. Autism Res 2023; 16:40-51. [PMID: 36317815 DOI: 10.1002/aur.2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/10/2022] [Indexed: 01/13/2023]
Abstract
Generally, when individuals attempt to move two limbs rhythmically in the opposite direction (e.g., flex the left hand and extend the left foot along the sagittal plane), the movements tend to be instead performed in the same direction. This phenomenon, known as directional constraint, can be harnessed to examine the difficulties in movement coordination exhibited by most individuals with autism spectrum disorder (ASD). While such difficulties have already been investigated through standardized clinical assessments, they have not been examined through kinematic methods. Thus, we employed a clinical assessment scale in an experimentally controlled environment to investigate whether stronger directional constraint during the rhythmic movement of two limbs is more pronounced and associated with decreased movement coordination in individuals with ASD. ASD and typically developing (TD) participants were asked to rhythmically move two limbs either in the same or opposite directions. In addition, the coordination skills of participants were assessed using the Bruininks-Oseretsky Test of Motor Proficiency Second Edition (BOT-2). Subjects with ASD showed significantly stronger directional constraint than TD participants during the contralateral and ipsilateral movement of the hand and foot. According to the pooled data from both groups, participants who showed stronger directional constraint during these two movement conditions also exhibited poorer coordinated movement skills in the BOT-2. These results suggest that people with ASD may have difficulties in inhibiting the neural signals that synchronize the direction of inter-limb movements, thus resulting in coordination disabilities. LAY SUMMARY: Individuals with autism spectrum disorder (ASD) often exhibit difficulties in coordinated movements. We asked those with ASD and typically developing (TD) participants to move two limbs (e.g., left hand and left foot) either in the same or the opposite direction. Results demonstrated that participants with ASD had more difficulties in counteracting the tendency of their hand and foot to synchronously move in the same direction. Our findings suggested that difficulties to suppress synchronized movements of the hand and foot result in coordination disabilities.
Collapse
Affiliation(s)
- Yumi Umesawa
- Department of Medical Physiology, Faculty of Medicine, Kyorin University, Tokyo, Japan.,Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Kanae Matsushima
- Faculty of Rehabilitation, Kansai Medical University, Osaka, Japan
| | - Reiko Fukatsu
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Masakazu Ide
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|