1
|
Parimi MR, Gantala DD, Deepala NA, Bikkina SSY, Reddy JMK, Vangalapati M. Optimization of Bromelain extraction from green papaya (Carica papaya) peel waste and its application in the recovery of silver from waste of X-ray photographic films. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35435-8. [PMID: 39508942 DOI: 10.1007/s11356-024-35435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
As bromelain is a proteolytic enzyme present in many fruits, this study utilises the bromelain content present in unripe papaya (Carica papaya L.) by extraction and characterisation of bromelain extract from the unripe papaya peel waste. The extracted bromelain was utilised in the recovery of silver from waste of X-ray films, since the toxicity of silver directly impacts on the environment to treat and recover silver bromelain enzyme was used as a biocatalyst in this study. Response surface methodology with Box-Behnken design was used to optimise both the parameters included in the recovery of bromelain from papaya waste and silver from X-ray waste. Parameters involved in the recovery of bromelain include incubation time, pH of solution, temperature of solution and concentration of solution; for silver recovery along with the parameters selected for bromelain, recovery weight of X-rays is also considered in the study. Characterisation techniques like XRD, SEM, TGA, BET, FTIR and GC/MS were performed for the samples of bromelain and recovered silver from X-rays. At 30 min of incubation time, pH of 8, with 15 mL of bromelain solution maintained at 80 ℃ with 0.6 g of X-rays gives optimum silver recovery. The optimum recovery of silver was observed to be 96.6%.
Collapse
Affiliation(s)
- Mallika Rani Parimi
- Department of Chemical Engineering, AUCE, Andhra University, Visakhapatnam, Andhra Pradesh, India.
| | - Divya Deepika Gantala
- Department of Chemical Engineering, AUCE, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Naga Akhila Deepala
- Department of Chemical Engineering, AUCE, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | - Sarada Sri Yagna Bikkina
- Department of Chemical Engineering, AUCE, Andhra University, Visakhapatnam, Andhra Pradesh, India
| | | | - Meena Vangalapati
- Department of Chemical Engineering, AUCE, Andhra University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
2
|
Mohd Azmi SI, Kumar P, Sharma N, Sazili AQ, Lee SJ, Ismail-Fitry MR. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods 2023; 12:1336. [PMID: 36981262 PMCID: PMC10047955 DOI: 10.3390/foods12061336] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Papain, bromelain, and ficin are commonly used plant proteases used for meat tenderization. Other plant proteases explored for meat tenderization are actinidin, zingibain, and cucumin. The application of plant crude extracts or powders containing higher levels of compounds exerting tenderizing effects is also gaining popularity due to lower cost, improved sensory attributes of meat, and the presence of bioactive compounds exerting additional benefits in addition to tenderization, such as antioxidants and antimicrobial effects. The uncontrolled plant protease action could cause excessive tenderization (mushy texture) and poor quality due to an indiscriminate breakdown of proteins. The higher cost of separation and the purification of enzymes, unstable structure, and poor stability of these enzymes due to autolysis are some major challenges faced by the food industry. The meat industry is targeting the recycling of enzymes and improving their stability and shelf-life by immobilization, encapsulation, protein engineering, medium engineering, and stabilization during tenderization. The present review critically analyzed recent trends and the prospects of the application of plant proteases in meat tenderization.
Collapse
Affiliation(s)
- Syahira Izyana Mohd Azmi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura 181012, Union Territory of Jammu and Kashmir, India;
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
3
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padova, Italy
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - David Ntieche Woutouoba
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan,The Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Tynybekov Bekzat
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tussupbekova Gulmira
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Chartres, France,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| |
Collapse
|
4
|
The Potential of Selected Agri-Food Loss and Waste to Contribute to a Circular Economy: Applications in the Food, Cosmetic and Pharmaceutical Industries. Molecules 2021; 26:molecules26020515. [PMID: 33478152 PMCID: PMC7835992 DOI: 10.3390/molecules26020515] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The food sector includes several large industries such as canned food, pasta, flour, frozen products, and beverages. Those industries transform agricultural raw materials into added-value products. The fruit and vegetable industry is the largest and fastest-growing segment of the world agricultural production market, which commercialize various products such as juices, jams, and dehydrated products, followed by the cereal industry products such as chocolate, beer, and vegetable oils are produced. Similarly, the root and tuber industry produces flours and starches essential for the daily diet due to their high carbohydrate content. However, the processing of these foods generates a large amount of waste several times improperly disposed of in landfills. Due to the increase in the world’s population, the indiscriminate use of natural resources generates waste and food supply limitations due to the scarcity of resources, increasing hunger worldwide. The circular economy offers various tools for raising awareness for the recovery of waste, one of the best alternatives to mitigate the excessive consumption of raw materials and reduce waste. The loss and waste of food as a raw material offers bioactive compounds, enzymes, and nutrients that add value to the food cosmetic and pharmaceutical industries. This paper systematically reviewed literature with different food loss and waste by-products as animal feed, cosmetic, and pharmaceutical products that strongly contribute to the paradigm shift to a circular economy. Additionally, this review compiles studies related to the integral recovery of by-products from the processing of fruits, vegetables, tubers, cereals, and legumes from the food industry, with the potential in SARS-CoV-2 disease and bacterial diseases treatment.
Collapse
|
5
|
Rico X, Gullón B, Alonso JL, Yáñez R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res Int 2020; 132:109086. [DOI: 10.1016/j.foodres.2020.109086] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
|
6
|
Gimenes NC, Silveira E, Tambourgi EB. An Overview of Proteases: Production, Downstream Processes and Industrial Applications. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1677249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Edgar Silveira
- Biotechnology Institute, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Brazilian Savanna’s, Diversity Research Center, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | | |
Collapse
|
7
|
Cheok CY, Mohd Adzahan N, Abdul Rahman R, Zainal Abedin NH, Hussain N, Sulaiman R, Chong GH. Current trends of tropical fruit waste utilization. Crit Rev Food Sci Nutr 2017; 58:335-361. [PMID: 27246698 DOI: 10.1080/10408398.2016.1176009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
Collapse
Affiliation(s)
- Choon Yoong Cheok
- a Department of Chemical and Petroleum Engineering, Faculty of Engineering , UCSI University , KL Campus (South Wing), Kuala Lumpur , Malaysia
| | - Noranizan Mohd Adzahan
- b Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Russly Abdul Rahman
- c Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Nur Hanani Zainal Abedin
- c Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Norhayati Hussain
- b Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Rabiha Sulaiman
- b Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Gun Hean Chong
- b Faculty of Food Science and Technology, Department of Food Technology , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
8
|
Vicente FA, Lario LD, Pessoa A, Ventura SP. Recovery of bromelain from pineapple stem residues using aqueous micellar two-phase systems with ionic liquids as co-surfactants. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
de Lencastre Novaes LC, Jozala AF, Lopes AM, de Carvalho Santos-Ebinuma V, Mazzola PG, Pessoa Junior A. Stability, purification, and applications of bromelain: A review. Biotechnol Prog 2015; 32:5-13. [DOI: 10.1002/btpr.2190] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Letícia Celia de Lencastre Novaes
- Dept. of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences; University of São Paulo, São Paulo; Brazil
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP); University of Campinas; Campinas Brazil
| | - Angela Faustino Jozala
- Dept. of Pharmacy, School of Pharmaceutical Science; Sorocaba University; Sorocaba Brazil
| | - André Moreni Lopes
- Dept. of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences; University of São Paulo, São Paulo; Brazil
| | | | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences; University of Campinas (UNICAMP), University of Campinas; Campinas Brazil
| | - Adalberto Pessoa Junior
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP); University of Campinas; Campinas Brazil
| |
Collapse
|
10
|
Santos-Ebinuma VC, Lopes AM, Pessoa A, Teixeira MFS. Extraction of natural red colorants from the fermented broth ofPenicillium purpurogenumusing aqueous two-phase polymer systems. Biotechnol Prog 2015; 31:1295-304. [DOI: 10.1002/btpr.2127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Valéria Carvalho Santos-Ebinuma
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences; UNESP-Universidade Estadual Paulista; Araraquara SP Brazil
| | - André Moreni Lopes
- Dept. of Biochemical and Pharmaceutical Technology; University of São Paulo; Avenida Prof. Lineu Prestes 580, B16 05508-900 São Paulo SP Brazil
| | - Adalberto Pessoa
- Dept. of Biochemical and Pharmaceutical Technology; University of São Paulo; Avenida Prof. Lineu Prestes 580, B16 05508-900 São Paulo SP Brazil
| | - Maria Francisca Simas Teixeira
- Culture Collection DPUA/UFAM. Federal University of Amazonas; Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 69077-000 Manaus AM Brazil
| |
Collapse
|
11
|
Spir LG, Ataide JA, De Lencastre Novaes LC, Moriel P, Mazzola PG, De Borba Gurpilhares D, Silveira E, Pessoa A, Tambourgi EB. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations. Biotechnol Prog 2015; 31:937-45. [PMID: 25919128 DOI: 10.1002/btpr.2098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/11/2015] [Indexed: 11/09/2022]
Abstract
Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential.
Collapse
Affiliation(s)
- Lívia Genovez Spir
- Dept. of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Janaína Artem Ataide
- Dept. of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Letícia Celia De Lencastre Novaes
- Dept. of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Patrícia Moriel
- Dept. of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Priscila Gava Mazzola
- Dept. of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | | | - Edgar Silveira
- Genetics and Biochemistry Institute, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Adalberto Pessoa
- Dept. of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Science, University of São Paulo (USP), São Paulo, Brazil
| | | |
Collapse
|
12
|
Santos JH, e Silva FA, Coutinho JA, Ventura SP, Pessoa A. Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|