1
|
Hosseinkhani S, Amandadi M, Ghanavatian P, Zarein F, Ataei F, Nikkhah M, Vandenabeele P. Harnessing luciferase chemistry in regulated cell death modalities and autophagy: overview and perspectives. Chem Soc Rev 2024; 53:11557-11589. [PMID: 39417351 DOI: 10.1039/d3cs00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Regulated cell death is a fate of cells in (patho)physiological conditions during which extrinsic or intrinsic signals or redox equilibrium pathways following infection, cellular stress or injury are coupled to cell death modalities like apoptosis, necroptosis, pyroptosis or ferroptosis. An immediate survival response to cellular stress is often induction of autophagy, a process that deals with removal of aggregated proteins and damaged organelles by a lysosomal recycling process. These cellular processes and their regulation are crucial in several human diseases. Exploiting high-throughput assays which discriminate distinct cell death modalities and autophagy are critical to identify potential therapeutic agents that modulate these cellular responses. In the past few years, luciferase-based assays have been widely developed for assessing regulated cell death and autophagy pathways due to their simplicity, sensitivity, known chemistry, different spectral properties and high-throughput potential. Here, we review basic principles of bioluminescent reactions from a mechanistic perspective, along with their implication in vitro and in vivo for probing cell death and autophagy pathways. These include applying luciferase-, luciferin-, and ATP-based biosensors for investigating regulated cell death modalities. We discuss multiplex bioluminescence platforms which simultaneously distinguish between the various cell death phenomena and cellular stress recovery processes such as autophagy. We also highlight the recent technological achievements of bioluminescent tools for the prediction of drug effectiveness in pathways associated with regulated cell death.
Collapse
Affiliation(s)
- Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parisa Ghanavatian
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fateme Zarein
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Jin Y, Wang H, Zhu Y, Feng H, Wang G, Wang S. miR-199a-5p is involved in doxorubicin resistance of non-small cell lung cancer (NSCLC) cells. Eur J Pharmacol 2020; 878:173105. [PMID: 32278855 DOI: 10.1016/j.ejphar.2020.173105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the prevalent and deadly cancers worldwide. Chemotherapy resistance is one of the most challenging problems for NSCLC and other cancer treatment. Recent study suggested that miRNAs are involved in therapeutic functions of chemotherapy during cancer treatment. Our present study established doxorubicin (Dox) resistant NSCLC A549 and H460 cells (named A549Dox/R and H460 Dox/R). We found that miR-199a-5p was significantly down regulated in Dox resistant cells. Over expression of miR-199a-5p can increase the Dox sensitivity of resistant cells. Among various targets of miR-199a-5p, chemoresistance can increase the expression of ABCC1 and HIF-1α. Gain and loss of function studies confirmed that both ABCC1 and HIF-1α were involved in the chemoresistance of NSCLC cells. Collectively, our data showed that miR-199a-5p regulated expression of ABCC1 and HIF-1α were involved in Dox resistance of NSCLC.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Huiyun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Yingqian Zhu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Hui Feng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Guanqun Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
Zhang W, Ji W, Li T, Liu T, Zhao X. MiR-145 functions as a tumor suppressor in Papillary Thyroid Cancer by inhibiting RAB5C. Int J Med Sci 2020; 17:1992-2001. [PMID: 32788878 PMCID: PMC7415399 DOI: 10.7150/ijms.44723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) accounts for the largest proportion of thyroid cancers; and its morbidity rate has dramatically increased in recent decades. However, the pathogenesis mechanisms of PTC are still not clear. This study aimed to reveal that miR-145 acts as an antitumor miRNA in the progression of PTC. In the present study, the expression of miR-145 was analyzed in 57 paired PTC patient samples. The relationship between clinicopathological features and miR-145 expression were also defined. The tumor suppressive function of miR-145 on PTC cell metastasis, proliferation and apoptosis were revealed in vitro. Also, we used dual luciferase reporter assay to define the relationship of miR-145 and RAB5C. RAB5C was reported to participate in cell invasion and cell motility. We found that miR-145 was downregulated in PTCs, which was negatively correlated with PTC progression and metastasis. MiR-145 inhibited PTC migration, proliferation and promoted apoptosis by directly suppresing RAB5C. In conclusion, miR-145 functions as a tumor suppressor in PTC by inhibiting RAB5C. MiR-145 and RAB5C are potential therapeutic targets in therapy of aggressive PTC cases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Wenyue Ji
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tianshu Li
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ting Liu
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xudong Zhao
- Department of Otolaryngology head and neck surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
4
|
Hei YY, Guo YX, Jiang CS, Wang S, Lu SM, Zhang SQ. The dual luciferase reporter system and RT-qPCR strategies for screening of MicroRNA-21 small-molecule inhibitors. Biotechnol Appl Biochem 2019; 66:755-762. [PMID: 31021480 DOI: 10.1002/bab.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
The therapeutic potential of microRNA-21 (miR-21) small-molecule inhibitors has been of particular interest to medicinal chemists. Moreover, the development of more facile screening methods is lacking. In the present study, two potential screening strategies for miR-21 small-molecule inhibitor including the stem-loop reverse transcription-quantitative PCR and dual luciferase reporter assay system were demonstrated and discussed in detail. A pmirGLO-miR21cswt plasmid and its two different mutants were constructed for dual luciferase reporter assay system. In addition, the sensitivity and specificity of these two methods were validated. Our results demonstrated that both strategies are decent choices for the screening of small-molecule inhibitors for miR-21 and possibly other miRNAs. Eventually, we applied our optimized strategy to discover and characterize several promising compounds such as azobenzene derivate A, enoxacin, and norfloxacin for their potential impact on intracellular miR-21 concentration.
Collapse
Affiliation(s)
- Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yuan-Xu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Cong-Shan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - She-Min Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Shen L, Yi S, Huang L, Li S, Bai F, Lei S, Breitzig M, Czachor A, Sun H, Zheng Q, Wang F. miR-330-3p promotes lung cancer cells invasion, migration, and metastasis by directly targeting hSOD2b. Biotechnol Appl Biochem 2018; 66:21-32. [PMID: 30192404 DOI: 10.1002/bab.1691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Lung cancer is a serious threat to human health. Studies have revealed that human manganese superoxide dismutase (hSOD2) and miRNAs play an essential role in the metastasis process of lung cancer. However, the miRNAs that associated with hSOD2 and involved in metastasis, remain elusive. After databases analysis and dual luciferase reporter validation, we demonstrated that miR-330-3p expression inversely correlated with hSOD2b expression level, and that miR-330-3p directly targeted the 3'untranslated region (3'UTR) of hSOD2b. Furthermore, overexpression of miR-330-3p promoted whereas knockdown of miR-330-3p inhibited invasion/migration and the epithelial-mesenchymal transition (EMT) process of lung cancer cells in vitro. Knockdown of miR-330-3p inhibited metastasis of lung cancer cells in vivo. Moreover, miR-330-3p-mediated enhancement of invasion/migration in 95-D cells could be rescued by over-expression of hSOD2. In conclusion, we demonstrated that miR-330-3p promoted metastasis of lung cancer cells by suppressing hSOD2b expression and unveiled a new clinical application of miR-330-3p in the therapy of lung cancer.
Collapse
Affiliation(s)
- Lianghua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Shanze Yi
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Luyuan Huang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Shuaiguang Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Fang Bai
- School of Life Sciences, Shenzhen University, Shenzhen, People's Republic of China
| | - Sijia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Mason Breitzig
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Alexander Czachor
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, People's Republic of China.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Hesari Z, Nourbakhsh M, Hosseinkhani S, Abdolvahabi Z, Alipour M, Tavakoli-Yaraki M, Ghorbanhosseini SS, Yousefi Z, Jafarzadeh M, Yarahmadi S. Down-regulation of NAMPT expression by mir-206 reduces cell survival of breast cancer cells. Gene 2018; 673:149-158. [PMID: 29886033 DOI: 10.1016/j.gene.2018.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/10/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme for all living cells. Nicotinamide phosphoribosyltransferase (NAMPT) functions as a key enzyme in the salvage pathway of NAD biosynthesis. Cancer cells have higher rate of NAD consumption and therefore NAMPT is essential for their survival. Thus, we investigated the effect of NAMPT inhibition by miR-206 on breast cancer cell survival. Breast cancer cells were transfected with miR-206 mimic, inhibitor and their negative controls. NAMPT levels were assessed by real-time PCR as well as western blotting. Cell survival assay and quantification of NAD level were performed by using colorimetric methods. Apoptosis assay was performed by labeling cells with Annexin V-FITC and propidium iodide followed by the flow cytometric analysis. Bioinformatics analysis was done to assess whether NAMPT 3'-UTR is a direct target of miR-206 and the results were confirmed by the luciferase reporter assay. NAMPT 3'-UTR was shown to be a direct target of miR-206. miR-206 reduced NAMPT expression at the protein level, leading to a significant decrease in the intracellular NAD level and subsequent decline in cell survival and induction of apoptosis. Targeting of NAMPT-mediated NAD salvage pathway by miR-206 might provide a new insight in the possible molecular mechanism of breast cancer cell growth regulation. This pathway might provide a new approach for breast cancer therapy.
Collapse
Affiliation(s)
- Zahra Hesari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Nano biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Jiang R, Zhao C, Gao B, Xu J, Song W, Shi P. Mixomics analysis of breast cancer: Long non-coding RNA linc01561 acts as ceRNA involved in the progression of breast cancer. Int J Biochem Cell Biol 2018; 102:1-9. [PMID: 29890225 DOI: 10.1016/j.biocel.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed at finding the long non-coding RNA (lncRNA), miRNA and mRNA which played critical roles in breast cancer (BrCa) by using mixOmics R package. METHOD The BrCa dataset were obtained from TCGA and then analyzed using "DESeq2" R package. Multivariate analyses were performed with the "mixOmics" R package and the first component of the stacked partial least-Squares discriminant analysis results were used for searching the interested lncRNA, miRNA and mRNA. qRT-PCR was applied to identify the bioinformatics results in four BrCa cell lines (MCF7, BT-20, ZR-75-1, and MX-1) and the breast epithelial cell line MCF-10 A. Then cells (MCF-1 and MX-1) were transfected with si-linc01561, miR-145-5p mimics and si-MMP11 to further investigate the effects of linc01561, miR-145-5p and MMP11 on the BrCa cells proliferation and apoptosis. RESULTS MixOmics results showed that linc01561, miR-145-5p and MMP11 might play important roles in BrCa. qRT-PCR results identified that in BrCa cell lines, linc01561 and MMP11 were higher expressed while miR-145-5p was lower expressed compared with those in epithelial cell line. The linc01561 inhibition elevated miR-145-5p expression and then suppressed MMP11 expression. Moreover, linc01561 inhibition suppressed the BrCa cells proliferation and promoted the apoptosis, which was realized by up-regulating expression of miR-145-5p and down-regulating expression of MMP11. CONCLUSION In summary, the findings of this study, based on ceRNA theory, combining the research foundation of miR-145-5p and MMP11, and taking linc01561 as a new study point, provide new insight into molecular-level reversing proliferation and apoptosis of BrCa.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Chunming Zhao
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Shi
- Department of Thyroid and Breast Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
8
|
Shayestehpour M, Moghim S, Salimi V, Jalilvand S, Yavarian J, Romani B, Mokhtari-Azad T. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240:207-214. [PMID: 28867494 DOI: 10.1016/j.virusres.2017.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/22/2017] [Accepted: 08/30/2017] [Indexed: 11/28/2022]
Abstract
MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID50. No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells.
Collapse
Affiliation(s)
- Mohammad Shayestehpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Bizhan Romani
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada; Cellular & Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 6135715794, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran.
| |
Collapse
|