1
|
Wu W, Chen M, Li C, Zhong J, Xie R, Pan Z, Lin J, Qi F. Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies. Front Microbiol 2024; 15:1457628. [PMID: 39247693 PMCID: PMC11377314 DOI: 10.3389/fmicb.2024.1457628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Phenyllactic acid (PhLA), an important natural organic acid, can be used as a biopreservative, monomer of the novel polymeric material poly (phenyllactic acid), and raw material for various medicines. Herein, we achieved a high-level production of PhLA in Escherichia coli through the application of metabolic engineering and fermentation optimization strategies. First, the PhLA biosynthetic pathway was established in E. coli CGSC4510, and the phenylalanine biosynthetic pathway was disrupted to improve the carbon flux toward PhLA biosynthesis. Then, we increased the copy number of the key genes involved in the synthesis of the PhLA precursor phenylpyruvic acid. Concurrently, we disrupted the tryptophan biosynthetic pathway and enhanced the availability of phosphoenolpyruvate and erythrose 4-phosphate, thereby constructing the genetically engineered strain MG-P10. This strain was capable of producing 1.42 ± 0.02 g/L PhLA through shake flask fermentation. Furthermore, after optimizing the dissolved oxygen feedback feeding process and other conditions, the PhLA yield reached 52.89 ± 0.25 g/L in a 6 L fermenter. This study successfully utilized metabolic engineering and fermentation optimization strategies to lay a foundation for efficient PhLA production in E. coli as an industrial application.
Collapse
Affiliation(s)
- Weibin Wu
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Maosen Chen
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chenxi Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jie Zhong
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Rusheng Xie
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Zhibin Pan
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Junhan Lin
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
2
|
Wu F, Wang S, Zhou D, Gao S, Song G, Liang Y, Wang Q. Metabolic engineering of Escherichia coli for high-level production of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid. Metab Eng 2024; 83:52-60. [PMID: 38521489 DOI: 10.1016/j.ymben.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudo-aromatic dicarboxylic acid, is a promising building block compound for manufacturing biodegradable polyesters. This study aimed to construct high-performance cell factories enabling the efficient production of PDC from glucose. Firstly, the effective enzymes of the PDC biosynthetic pathway were overexpressed on the chromosome of the 3-dehydroshikimate overproducing strain. Consequently, the one-step biosynthesis of PDC from glucose was achieved. Further, the PDC production was enhanced by multi-copy integration of the key gene PsligC encoding 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and co-expression of Vitreoscilla hemoglobin. Subsequently, the PDC production was substantially improved by redistributing the metabolic flux for cell growth and PDC biosynthesis based on dynamically downregulating the expression of pyruvate kinase. The resultant strain PDC50 produced 129.37 g/L PDC from glucose within 78 h under fed-batch fermentation conditions, with a yield of 0.528 mol/mol and an average productivity of 1.65 g/L/h. The findings of this study lay the foundation for the potential industrial production of PDC.
Collapse
Affiliation(s)
- Fengli Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Shucai Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Dan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China; College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shukai Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guotian Song
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yanxia Liang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
3
|
Satoh Y, Fukui K, Koma D, Shen N, Lee TS. Engineered Escherichia coli platforms for tyrosine-derivative production from phenylalanine using phenylalanine hydroxylase and tetrahydrobiopterin-regeneration system. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:115. [PMID: 37464414 DOI: 10.1186/s13068-023-02365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Aromatic compounds derived from tyrosine are important and diverse chemicals that have industrial and commercial applications. Although these aromatic compounds can be obtained by extraction from natural producers, their growth is slow, and their content is low. To overcome these problems, many of them have been chemically synthesized from petroleum-based feedstocks. However, because of the environmental burden and depleting availability of feedstock, microbial cell factories are attracting much attention as sustainable and environmentally friendly processes. RESULTS To facilitate development of microbial cell factories for producing tyrosine derivatives, we developed simple and convenient tyrosine-producing Escherichia coli platforms with a bacterial phenylalanine hydroxylase, which converted phenylalanine to tyrosine with tetrahydromonapterin as a cofactor, using a synthetic biology approach. By introducing a tetrahydrobiopterin-regeneration system, the tyrosine titer of the plasmid-based engineered strain was 4.63 g/L in a medium supplemented with 5.00 g/L phenylalanine with a test tube. The strains were successfully used to produce industrially attractive compounds, such as tyrosol with a yield of 1.58 g/L by installing a tyrosol-producing module consisting of genes encoding tyrosine decarboxylase and tyramine oxidase on a plasmid. Gene integration into E. coli chromosomes has an advantage over the use of plasmids because it increases genetic stability without antibiotic feeding to the culture media and enables more flexible pathway engineering by accepting more plasmids with artificial pathway genes. Therefore, we constructed a plasmid-free tyrosine-producing platform by integrating five modules, comprising genes encoding the phenylalanine hydroxylase and tetrahydrobiopterin-regeneration system, into the chromosome. The platform strain could produce 1.04 g/L of 3,4-dihydroxyphenylalanine, a drug medicine, by installing a gene encoding tyrosine hydroxylase and the tetrahydrobiopterin-regeneration system on a plasmid. Moreover, by installing the tyrosol-producing module, tyrosol was produced with a yield of 1.28 g/L. CONCLUSIONS We developed novel E. coli platforms for producing tyrosine from phenylalanine at multi-gram-per-liter levels in test-tube cultivation. The platforms allowed development and evaluation of microbial cell factories installing various designed tyrosine-derivative biosynthetic pathways at multi-grams-per-liter levels in test tubes.
Collapse
Affiliation(s)
- Yasuharu Satoh
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Keita Fukui
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kanagawa, 210-8681, Japan
| | - Daisuke Koma
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan
| | - Ning Shen
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Taek Soon Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Tang Z, Zhao Z, Chen S, Lin W, Wang Q, Shen N, Qin Y, Xiao Y, Chen H, Chen H, Bu T, Li Q, Yao H, Yuan M. Dragon fruit-kiwi fermented beverage: In vitro digestion, untargeted metabolome analysis and anti-aging activity in Caenorhabditis elegans. Front Nutr 2023; 9:1052818. [PMID: 36704792 PMCID: PMC9872153 DOI: 10.3389/fnut.2022.1052818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The research on the development of dragon fruit and kiwi fruit through LAB-yeast compound fermentation is very limited, and there are few related fermentation products on the market. The purpose of this study was to evaluate the stability of the antioxidant capacity of fermented beverages (FB) through in vitro simulated digestion, to evaluate the changes in metabolites of juice after fermentation through untargeted metabolomics, and used Caenorhabditis elegans as a model to evaluate its anti-aging activity. The results showed that FB not only has good in vitro antioxidant activity, but also the total phenol content (TPC), total flavonoid content (TFC), ABTS scavenging ability, and hydroxyl radical scavenging ability of FB were significantly increased during gastric digestion and intestinal digestion. Metabolomics showed that the contents of phenols and flavonoids related to antioxidant increased after fermentation, and fermentation had a significant effect on organic acids and amino acids in FB. Finally, compared with the control group, although the original concentration of FB has a side-toxic effect on nematodes, the mean lifespan of C. elegans fed with 1.56% FB increased by 18.01%, SOD activity significantly increased by 96.16% and MDA content significantly decreased by 40.62%. FB has good antioxidant activity in vitro and in vivo, and the antioxidant activity is stable during the simulated digestion process.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,*Correspondence: Zizhong Tang,
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Siyi Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nayu Shen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,Hui Chen,
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
5
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Gluconobacter oxydans. Synth Syst Biotechnol 2022; 7:730-737. [PMID: 35356389 PMCID: PMC8927921 DOI: 10.1016/j.synbio.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
l-Sorbose is an essential intermediate for the industrial production of vitamin C (l-ascorbic acid). However, the formation of fructose and some unknown by-products significantly reduces the conversion ratio of D-sorbitol to l-sorbose. This study aimed to identify the key D-sorbitol dehydrogenases in Gluconobacter oxydans WSH-003 by gene knockout. Then, a total of 38 dehydrogenases were knocked out in G. oxydans WSH-003, and 23 dehydrogenase-deficient strains could increase l-sorbose production. G. oxydans-30, wherein a pyrroloquinoline quinone-dependent glucose dehydrogenase was deleted, showed a significant reduction of a by-product with the extension of fermentation time. In addition, the highest conversion ratio of 99.60% was achieved in G. oxydans MD-16, in which 16 different types of dehydrogenases were inactivated consecutively. Finally, the gene vhb encoding hemoglobin was introduced into the strain. The titer of l-sorbose was 298.61 g/L in a 5-L bioreactor. The results showed that the systematic engineering of dehydrogenase could significantly enhance the production of l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Biotechnological production of specialty aromatic and aromatic-derivative compounds. World J Microbiol Biotechnol 2022; 38:80. [PMID: 35338395 DOI: 10.1007/s11274-022-03263-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
Abstract
Aromatic compounds are an important class of chemicals with different industrial applications. They are usually produced by chemical synthesis from petroleum-derived feedstocks, such as toluene, xylene and benzene. However, we are now facing threats from the excessive use of fossil fuels causing environmental problems such as global warming. Furthermore, fossil resources are not infinite, and will ultimately be depleted. To cope with these problems, the sustainable production of aromatic chemicals from renewable non-food biomass is urgent. With this in mind, the search for alternative methodologies to produce aromatic compounds using low-cost and environmentally friendly processes is becoming more and more important. Microorganisms are able to produce aromatic and aromatic-derivative compounds from sugar-based carbon sources. Metabolic engineering strategies as well as bioprocess optimization enable the development of microbial cell factories capable of efficiently producing aromatic compounds. This review presents current breakthroughs in microbial production of specialty aromatic and aromatic-derivative products, providing an overview on the general strategies and methodologies applied to build microbial cell factories for the production of these compounds. We present and describe some of the current challenges and gaps that must be overcome in order to render the biotechnological production of specialty aromatic and aromatic-derivative attractive and economically feasible at industrial scale.
Collapse
|
7
|
G6P-capturing molecules in the periplasm of Escherichia coli accelerate the shikimate pathway. Metab Eng 2022; 72:68-81. [DOI: 10.1016/j.ymben.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022]
|
8
|
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism. Microorganisms 2021; 10:microorganisms10010043. [PMID: 35056491 PMCID: PMC8779101 DOI: 10.3390/microorganisms10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, İstanbul 34060, Turkey;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
- Correspondence:
| |
Collapse
|
9
|
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J, Li J, Chen J, Du G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms 2021; 9:microorganisms9071455. [PMID: 34361891 PMCID: PMC8306070 DOI: 10.3390/microorganisms9071455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent years, with the development of bioinformatics and synthetic biology, several novel physicochemical properties and metabolic regulatory effects of VHb have been discovered and numerous strategies have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes its applications in biotechnology. Thus, in this review, the new information regarding structure, function and expressional tactics for VHb is summarized to understand its latest applications and pave a new way for the future improvement of biosynthesis for other products.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| | - Ziwei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Luyao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Lingfeng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| |
Collapse
|
10
|
Zhao X, Zhou J, Du G, Chen J. Recent Advances in the Microbial Synthesis of Hemoglobin. Trends Biotechnol 2020; 39:286-297. [PMID: 32912649 DOI: 10.1016/j.tibtech.2020.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023]
Abstract
Hemoglobin is a cofactor-containing protein with heme that plays important roles in transporting and storing oxygen. Hemoglobins have been widely applied as acellular oxygen carriers, bioavailable iron-supplying agents, and food-grade coloring and flavoring agents. To meet increasing demands and overcome the drawbacks of chemical extraction, the biosynthesis of hemoglobin has become an attractive alternative. Several hemoglobins have recently been synthesized by various microorganisms through metabolic engineering and synthetic biology. In this review, we summarize the novel strategies that have been used to biosynthesize hemoglobin. These strategies can also serve as references for producing other heme-binding proteins.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Zhang C, Xu Q, Hou H, Wu J, Zheng Z, Ouyang J. Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system. Microb Cell Fact 2020; 19:163. [PMID: 32787860 PMCID: PMC7424670 DOI: 10.1186/s12934-020-01419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background Cinnamyl alcohol is not only a kind of flavoring agent and fragrance, but also a versatile chemical applied in the production of various compounds. At present, the preparation of cinnamyl alcohol depends on plant extraction and chemical synthesis, which have several drawbacks, including limited scalability, productivity and environmental impact. It is therefore necessary to develop an efficient, green and sustainable biosynthesis method. Results Herein, we constructed a recombinant Escherichia coli BLCS coexpressing carboxylic acid reductase from Nocardia iowensis and phosphopantetheine transferase from Bacillus subtilis. The strain could convert cinnamic acid into cinnamyl alcohol without overexpressing alcohol dehydrogenase or aldo–keto reductase. Severe product inhibition was found to be the key limiting factor for cinnamyl alcohol biosynthesis. Thus, a biphasic system was proposed to overcome the inhibition of cinnamyl alcohol via in situ product removal. With the use of a dibutyl phthalate/water biphasic system, not only was product inhibition removed, but also the simultaneous separation and concentration of cinnamyl alcohol was achieved. Up to 17.4 mM cinnamic acid in the aqueous phase was totally reduced to cinnamyl alcohol with a yield of 88.2%, and the synthesized cinnamyl alcohol was concentrated to 37.4 mM in the organic phase. This process also demonstrated robust performance when it was integrated with the production of cinnamic acid from l-phenylalanine. Conclusion We developed an efficient one-pot two-step biosynthesis system for cinnamyl alcohol production, which opens up possibilities for the practical biosynthesis of natural cinnamyl alcohol at an industrial scale.![]()
Collapse
Affiliation(s)
- Chen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China
| | - Qian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hongliang Hou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jiawei Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China. .,Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
12
|
Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing Escherichia coli Strains That Can Be Applied in the Generation of Aromatic-Compound-Producing Bacteria. Appl Environ Microbiol 2020; 86:AEM.00525-20. [PMID: 32414798 DOI: 10.1128/aem.00525-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Many phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk. Therefore, we engineered here the Escherichia coli chromosome to create superior phenylalanine- and tyrosine-overproducing strains that did not depend on plasmid-based expression. Integration into the E. coli chromosome of two central metabolic pathway genes (ppsA and tktA) and eight shikimate pathway genes (aroA, aroB, aroC, aroD, aroE, aroGfbr , aroL, and pheAfbr ), controlled by the T7lac promoter, resulted in excellent titers and yields of phenylalanine; the superscript "fbr" indicates that the enzyme encoded by the gene was feedback resistant. The generated strain could be changed to be a superior tyrosine-producing strain by replacing pheAfbr with tyrAfbr A rational approach revealed that integration of seven genes (ppsA, tktA, aroA, aroB, aroC, aroGfbr , and pheAfbr ) was necessary as the minimum gene set for high-yield phenylalanine production in E. coli MG1655 (tyrR, adhE, ldhA, pykF, pflDC, and ascF deletant). The phenylalanine- and tyrosine-producing strains were further applied to generate phenyllactic acid-, 4-hydroxyphenyllactic acid-, tyramine-, and tyrosol-producing strains; yield of these aromatic compounds increased proportionally to the increase in phenylalanine and tyrosine yields.IMPORTANCE Plasmid-free strains for aromatic compound production are desired in the aspect of industrial application. However, the yields of phenylalanine and tyrosine have been considerably lower in plasmid-free strains than in plasmid-based strains. The significance of this research is that we succeeded in generating superior plasmid-free phenylalanine- and tyrosine-producing strains by engineering the E. coli chromosome, which was comparable to that in plasmid-based strains. The generated strains have a potential to generate superior strains for the production of aromatic compounds. Actually, we demonstrated that four kinds of aromatic compounds could be produced from glucose with high yields (e.g., 0.28 g tyrosol/g glucose).
Collapse
|
13
|
Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnol Adv 2020; 41:107548. [DOI: 10.1016/j.biotechadv.2020.107548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
|
14
|
Srivastava RK, Akhtar N, Verma M, Imandi SB. Primary metabolites from overproducing microbial system using sustainable substrates. Biotechnol Appl Biochem 2020; 67:852-874. [PMID: 32294277 DOI: 10.1002/bab.1927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023]
Abstract
Primary (or secondary) metabolites are produced by animals, plants, or microbial cell systems either intracellularly or extracellularly. Production capabilities of microbial cell systems for many types of primary metabolites have been exploited at a commercial scale. But the high production cost of metabolites is a big challenge for most of the bioprocess industries and commercial production needs to be achieved. This issue can be solved to some extent by screening and developing the engineered microbial systems via reconstruction of the genome-scale metabolic model. The predicted genetic modification is applied for an increased flux in biosynthesis pathways toward the desired product. Wherein the resulting microbial strain is capable of converting a large amount of carbon substrate to the expected product with minimum by-product formation in the optimal operating conditions. Metabolic engineering efforts have also resulted in significant improvement of metabolite yields, depending on the nature of the products, microbial cell factory modification, and the types of substrate used. The objective of this review is to comprehend the state of art for the production of various primary metabolites by microbial strains system, focusing on the selection of efficient strain and genetic or pathway modifications, applied during strain engineering.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Nasim Akhtar
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| | - Malkhey Verma
- Departments of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, India
| | - Sarat Babu Imandi
- Department of Biotechnology, GIT, GITAM (Deemed to be University), Gandhi Nagar Campus, Rushikonda, Visakhapatnam, India
| |
Collapse
|
15
|
Chen X, Yi J, Song W, Liu J, Luo Q, Liu L. Chassis engineering of Escherichia coli for trans-4-hydroxy-l-proline production. Microb Biotechnol 2020; 14:392-402. [PMID: 32396278 PMCID: PMC7936311 DOI: 10.1111/1751-7915.13573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Microbial production of trans-4-hydroxy-l-proline (Hyp) offers significant advantages over conventional chemical extraction. However, it is still challenging for industrial production of Hyp due to its low production efficiency. Here, chassis engineering was used for tailoring Escherichia coli cellular metabolism to enhance enzymatic production of Hyp. Specifically, four proline 4-hydroxylases (P4H) were selected to convert l-proline to Hyp, and the recombinant strain overexpressing DsP4H produced 32.5 g l-1 Hyp with α-ketoglutarate addition. To produce Hyp without α-ketoglutarate addition, α-ketoglutarate supply was enhanced by rewiring the TCA cycle and l-proline degradation pathway, and oxygen transfer was improved by fine-tuning heterologous haemoglobin expression. In a 5-l fermenter, the engineered strain E. coliΔsucCDΔputA-VHb(L) -DsP4H showed a significant increase in Hyp titre, conversion rate and productivity up to 49.8 g l-1 , 87.4% and 1.38 g l-1 h-1 respectively. This strategy described here provides an efficient method for production of Hyp, and it has a great potential in industrial application.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Juyang Yi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Shaoxing Baiyin Biotechnology Co. Ltd, Shaoxing, 312000, China
| | - Wei Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Chen M, Chen L, Zeng AP. CRISPR/Cas9-facilitated engineering with growth-coupled and sensor-guided in vivo screening of enzyme variants for a more efficient chorismate pathway in E. coli. Metab Eng Commun 2019; 9:e00094. [PMID: 31193188 PMCID: PMC6520568 DOI: 10.1016/j.mec.2019.e00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
Protein engineering plays an increasingly important role in developing new and optimizing existing metabolic pathways for biosynthesis. Conventional screening approach of libraries of gene and enzyme variants is often done using a host strain under conditions not relevant to the cultivation or intracellular conditions of the later production strain. This does not necessarily result in the identification of the best enzyme variant for in vivo use in the production strain. In this work, we propose a method which integrates CRISPR/Cas9-facilitated engineering of the target gene(s) with growth-coupled and sensor-guided in vivo screening (CGSS) for protein engineering and pathway optimization. The efficiency of the method is demonstrated for engineering 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase AroG, a key enzyme in the chorismate pathway for the synthesis of aromatic amino acids (AAAs), to obtain variants of AroG (AroGfbr) with increased resistance to feedback inhibition of Phe. Starting from a tryptophan (Trp)-producing E. coli strain (harboring a reported Phe-resistant AroG variant AroGS180F), the removal of all the endogenous DAHP synthases makes the growth of this strain dependent on the activity of an introduced AroG variant. The different catalytic efficiencies of AroG variants lead to different intracellular concentration of Trp which is sensed by a Trp biosensor (TnaC-eGFP). Using the growth rate and the signal strength of the biosensor as criteria, we successfully identified several novel Phe-resistant AroG variants (including the best one AroGD6G−D7A) which exhibited higher specific enzyme activity than that of the reference variant AroGS180F at the presence of 40 mM Phe. The replacement of AroGS180F with the newly identified AroGD6G−D7A in the Trp-producing strain significantly improved the Trp production by 38.5% (24.03 ± 1.02 g/L at 36 h) in a simple fed-batch fermentation. A novel approach for phenotype-focused and product-targeted in vivo screening of enzyme variants. AroG variant with high resistance to feedback inhibition of phenylalanine. Tryptophan production in E. coli improved by 38.5% with the new variant AroGD6G−D7A.
Collapse
Affiliation(s)
- Minliang Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Lin Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| |
Collapse
|
17
|
Liu X, Niu H, Li Q, Gu P. Metabolic engineering for the production of l-phenylalanine in Escherichia coli. 3 Biotech 2019; 9:85. [PMID: 30800596 DOI: 10.1007/s13205-019-1619-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/08/2019] [Indexed: 10/27/2022] Open
Abstract
As one of the three proteinogenic aromatic amino acids, l-phenylalanine is widely applied in the food, chemical and pharmaceutical industries, especially in production of the low-calorie sweetener aspartame. Microbial production of l-phenylalanine has become attractive as it possesses the advantages of environmental friendliness, low cost, and feedstock renewability. With the progress of metabolic engineering, systems biology and synthetic biology, production of l-phenylalanine from glucose in Escherichia coli with relatively high titer has been achieved by improving the intracellular levels of precursors, alleviating transcriptional repression and feedback inhibition of key enzymes, increasing the export of l-phenylalanine, engineering of global regulators, and overexpression of rate-limiting enzymes. In this review, successful metabolic engineering strategies for increasing l-phenylalanine accumulation from glucose in E. coli are described. In addition, perspectives for further improvement of production of l-phenylalanine are discussed.
Collapse
|