1
|
Chen X, Gao C, Han LW, Heidelberger S, Liao MZ, Neradugomma NK, Ni Z, Shuster DL, Wang H, Zhang Y, Zhou L. Efflux transporters in drug disposition during pregnancy. Drug Metab Dispos 2025; 53:100022. [PMID: 39884822 DOI: 10.1124/dmd.123.001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Evidence-based dose selection of drugs in pregnant women has been lacking because of challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from nonpregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr Qingcheng Mao's former and current laboratory members, we summarize the collective contributions of Dr Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr Mao and his team initiated their research by characterizing the structure of breast cancer resistance protein (ATP-binding cassette G2). Subsequently, they have made significant contributions to the understanding of the role of breast cancer resistance protein and other transporters, particularly P-glycoprotein (ATP-binding cassette B1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. SIGNIFICANCE STATEMENT: Dr Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Chunying Gao
- Janssen Research & Development, Spring House, Pennsylvania
| | | | | | | | | | - Zhanglin Ni
- Office of Bioequivalence, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | | | - Honggang Wang
- Office of Cardiology, Hematology, Endocrinology, and Nephrology (OCHEN), Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Yi Zhang
- Schrödinger Inc, New York, New York.
| | - Lin Zhou
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
2
|
Ragab EA, Abd El-Wahab MF, Doghish AS, Salama RM, Eissa N, Darwish SF. The journey of boswellic acids from synthesis to pharmacological activities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1477-1504. [PMID: 37740772 PMCID: PMC10858840 DOI: 10.1007/s00210-023-02725-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
There has been a lot of interest in using naturally occurring substances to treat a wide variety of chronic disorders in recent years. From the gum resin of Boswellia serrata and Boswellia carteri, the pentacyclic triterpene molecules known as boswellic acid (BA) are extracted. We aimed to provide a detailed overview of the origins, chemistry, synthetic derivatives, pharmacokinetic, and biological activity of numerous Boswellia species and their derivatives. The literature searched for reports of B. serrata and isolated BAs having anti-cancer, anti-microbial, anti-inflammatory, anti-arthritic, hypolipidemic, immunomodulatory, anti-diabetic, hepatoprotective, anti-asthmatic, and clastogenic activities. Our results revealed that the cytotoxic and anticancer effects of B. serrata refer to its triterpenoid component, including BAs. Three-O-acetyl-11-keto-BA was the most promising cytotoxic molecule among tested substances. Activation of caspases, upregulation of Bax expression, downregulation of nuclear factor-kappa B (NF-kB), and stimulation of poly (ADP)-ribose polymerase (PARP) cleavage are the primary mechanisms responsible for cytotoxic and antitumor effects. Evidence suggests that BAs have shown promise in combating a wide range of debilitating disease conditions, including cancer, hepatic, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Ehab A Ragab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed F Abd El-Wahab
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
3
|
Tembhurne S, Palkar P, Kolhe S, Gandhi S. Impact of protein deficient diet on the pharmacokinetics of glibenclamide in a model of malnutrition in rats. J Diabetes Metab Disord 2023; 22:1531-1536. [PMID: 37975139 PMCID: PMC10638243 DOI: 10.1007/s40200-023-01282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/15/2023] [Indexed: 11/19/2023]
Abstract
Purpose The present investigation deals with the impact of protein energy malnourished condition on the pharmacokinetic profile of glibenclamide. Protein energy malnourished condition leads to malnutrition related diabetes mellitus (MRDM), Fibrocalculus pancreatic diabetes mellitus (FCPD) or Lean body mass diabetes mellitus (LBMDM). Method In the present study, malnutrition was developed in female wistar rats using a modified protein deficient diet (0.5%). The experiment was performed on 12 animals, each group containing 6 female wistar rats. The control group animals were fed with standard pellet diet (AIN 93 G diet) while group 2 received the low protein diet (0.5%) for 75 days. Glibenclamide (Gli) suspension (30 mg/kg) was administered orally to these rats on 75 days and kinetic parameters were evaluated by HPLC analysis.The pharmacokinetic interpretation done by pksolver software version 2.0, statistical comparison done by applying student T test. Results The results of body weight and hematological parameters indicated a significant decreased in the body weight in protein deficit rats to 124.1 ± 6.2 g compared to 235.5 ± 8.4 g (p < 0.01) control rats; whereas a decrease in the hemoglobin to 5.8 ± 0.6 g/dL, total blood protein level to 6.9 ± 0.6 g/dL and blood albumin levels to 2.7 ± 0.4 g/dL in protein deficit rats compared to 15 ± 0.7 g/dL(p < 0.05), 8.1 ± 0.4 g/dL(p < 0.05), and 4.5 ± 0.2 g/dL(p < 0.05), respectively in control rats. All these findings reflect the malnourished condition and weight loss due to a protein deficit diet in experimental animals. There was an increase in the fasting blood glucose levels up to 150 ± 17.4 mg/dL in the protein deficit diet group as compared to 98.7 ± 14.1 mg/dL(p < 0.05) in control rats reflect the prediabetes state in malnourished animals. The results of the pharmacokinetic study reflect a significant lowering of half-life (T½) of glibenclamide to 96.8 ± 0.8 min. in malnourished rats compared to 166.7 ± 0.74 min. (p < 0.001) in control rats. The maximum concentration (Cmax) of glibenclamide in the malnourished rats was significantly higher 20.74 ± 0.65 μg/mL and also took double time i.e. about 180 min. to reach maximum concentration (Tmax) compared to the control rats values 7.9 ± 0.84 μg/mL (p < 0.001) and 90.0 ± 0.24 min. (p < 0.001) respectively. The area under the plasma concentration-time curve [AUC(0-∞)] in malnourished rats increased 4439.1 ± 40.6 μg/ml*min as compared to 1235.9 ± 55.8 μg/ml*min (p < 0.001) in control rats. There was a lowering in the total body clearance (CL) to 0.4 ± 0.02 L/hr and volume of distribution (Vd) to 1.75 ± 0.07 L of glibenclamide in the protein deficit group compared to 1.4 ± 0.3 L/hr (p < 0.001) and 3.14 ± 0.8 L (p < 0.01), respectively in the control rats. Conclusion From this study it concludes that there is an increase in the T½, Cmax, Tmax and AUC(0-∞) of glibenclamide in malnourished rats while the total body clearance and volume of distribution is lowered. Therefore this study proposes to conduct an adequate pharmacokinetic study in malnourished patients to decide whether the standard glibenclamide dose should be adapted according to the nutritional status of the individual.
Collapse
Affiliation(s)
- Sachin Tembhurne
- All India Shri Shivaji Memorial Society’s College of Pharmacy, Shivajinagar, Pune, Maharashtra 411001 India
| | - Preetam Palkar
- All India Shri Shivaji Memorial Society’s College of Pharmacy, Shivajinagar, Pune, Maharashtra 411001 India
| | - Swati Kolhe
- All India Shri Shivaji Memorial Society’s College of Pharmacy, Shivajinagar, Pune, Maharashtra 411001 India
| | - Santosh Gandhi
- All India Shri Shivaji Memorial Society’s College of Pharmacy, Shivajinagar, Pune, Maharashtra 411001 India
| |
Collapse
|
4
|
Stika CS, Hebert MF. Design Considerations for Pharmacokinetic Studies During Pregnancy. J Clin Pharmacol 2023; 63 Suppl 1:S126-S136. [PMID: 37317491 PMCID: PMC10350295 DOI: 10.1002/jcph.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 06/16/2023]
Abstract
Most of the interventions performed by obstetric providers involve the administration of drugs. Pregnant patients are pharmacologically and physiologically different from nonpregnant young adults. Therefore, dosages that are effective and safe for the general public may be inadequate or unsafe for the pregnant patient and her fetus. Establishing dosing regimens appropriate for pregnancy requires evidence generated from pharmacokinetic studies performed in pregnant people. However, performing these studies during pregnancy often requires special design considerations, evaluations of both maternal and fetal exposures, and recognition that pregnancy is a dynamic process that changes as gestational age advances. In this article, we address design challenges unique to pregnancy and discuss options for investigators, including timing of drug sampling during pregnancy, appropriate selection of control groups, pros and cons of dedicated and nested pharmacokinetic studies, single-dose and multiple-dose analyses, dose selection strategies, and the importance of integrating pharmacodynamic changes into these protocols. Examples of completed pharmacokinetic studies in pregnancy are provided for illustration.
Collapse
Affiliation(s)
- Catherine S. Stika
- Northwestern University, Department of Obstetrics and Gynecology, Chicago IL
| | - Mary F. Hebert
- University of Washington, Departments of Pharmacy and Obstetrics and Gynecology, Seattle WA
| |
Collapse
|
5
|
Mechanisms Underlying the Differences in the Pharmacokinetics of Six Active Constituents of Huangqi Liuyi Decoction between Normal and Diabetic Nephropathy Mouse Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2481654. [PMID: 36285162 PMCID: PMC9588345 DOI: 10.1155/2022/2481654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The aim of this study was to explore the mechanisms underlying the differences in the pharmacokinetics of Huangqi Liuyi decoction extract (HQD) under physiological and pathological conditions. The roles of liver cytochrome P450 metabolic enzymes (Cyp450) and small intestinal transporters were also investigated. The cocktail probe drug method was used to investigate the effects of diabetic nephropathy (DN) and HQD on metabolic enzyme activity. The expression levels of liver Cyp450 metabolic enzymes (Cyp1A2, Cyp2C37, Cyp3A11, Cyp2E1, and Cyp2C11) and small intestinal transporters (breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), organic cation transporters (OCTs), and multidrug resistance-associated protein (MRPs) were determined using western blot. Compared to normal mice, the expression of OCT1, OCT2, MRP1, and MRP2 was increased in DN mice, while that of P-gp and BCRP (P < 0.05 and P < 0.001) was inhibited. HQD inhibited expression of Cyp1A2 and Cyp3A11 and increased the expression of P-gp and BCRP in normal mice. In DN mice, HQD induced expression of BCRP and inhibited expression of Cyp2C37, Cyp3A11, OCT2, MRP1, and MRP2. The activity of each Cyp450 enzyme was consistent with changes in expression. The changes in pharmacokinetic parameters of HQD in DN might, in part, be secondary to decreased expression of P-gp and BCRP. HQD varied in regulating transporter activities between health and disease. These findings support careful application of HQD-based treatment in DN, especially in combination with other drugs.
Collapse
|
6
|
Bin Jardan YA, Ahad A, Raish M, Ahmad A, Alam MA, Al-Mohizea AM, Al-Jenoobi FI. Assessment of glibenclamide pharmacokinetics in poloxamer 407-induced hyperlipidemic rats. Saudi Pharm J 2021; 29:719-723. [PMID: 34400867 PMCID: PMC8347666 DOI: 10.1016/j.jsps.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
The aim of the present research was to describe the consequences of hyperlipidemia (HL) on the pharmacokinetics of glibenclamide (Gb) in poloxamer 407-induced hyperlipidemic rats. Rats were given intraperitoneal dose of poloxamer 407 to cause hyperlipidemia. A single oral dose of Gb (10 mg/Kg) was given to normal and HL rats. The Cmax and tmax after oral dose of Gb in normal rats were 340.10 µg/ml and 3.67 h, respectively. Whereas, the Cmax and tmax after oral dose of Gb in HL rats were noted as 773.39 µg/ml and 2.50 h respectively. The AUC value of Gb was found considerably higher in the HL rats. While the plasma clearance (CL) after oral dose of Gb was 2.53 ml/h and 1.39 ml/h in normal and HL rats respectively. The improved plasma concentration of Gb following oral dosing in rats with HL seems to be due to a direct influence on hepatic clearance or metabolizing enzymes. In conclusion, the Gb pharmacokinetics was considerably affected by the HL in rats. Such findings play an important role for predicting the alterations in the pharmacokinetics of drugs including GB, in cases having hyperlipidemia.
Collapse
Affiliation(s)
- Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Corresponding author.
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Wang S, Li W, Yang J, Yang Z, Yang C, Jin H. Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration Based on Toxicology. Curr Drug Metab 2020; 21:913-927. [PMID: 32819254 DOI: 10.2174/1389200221999200819144204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
The clinical application of herbal medicines is increasing, but there is still a lack of comprehensive safety data and in-depth research into mechanisms of action. The composition of herbal medicines is complex, with each herb containing a variety of chemical components. Each of these components may affect the activity of metabolizing enzymes, which may lead to herb-drug interactions. It has been reported that the combined use of herbs and drugs can produce some unexpected interactions. Therefore, this study reviews the progress of research on safety issues caused by the effects of herbs on metabolizing enzymes with reference to six categories of drugs, including antithrombotic drugs, non-steroidal anti-inflammatory drugs, anti-diabetic drugs, statins lipid-lowering drugs, immunosuppressants, and antineoplastic drugs. Understanding the effects of herbs on the activity of metabolizing enzymes could help avoid the toxicity and adverse drug reactions resulting from the co-administration of herbs and drugs, and help doctors to reduce the risk of prescription incompatibility.
Collapse
Affiliation(s)
- Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning, 530001, China
| | - Cuiping Yang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Lai JH, Wang MT, Wu CC, Huang YL, Lu CH, Liou JT. Risk of severe hypoglycemic events from amiodarone-sulfonylureas interactions: A population-based nested case-control study. Pharmacoepidemiol Drug Saf 2020; 29:842-853. [PMID: 32483856 DOI: 10.1002/pds.5034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE To evaluate whether concomitant use of amiodarone and sulfonylureas is associated with an increased risk of serious hypoglycemia. METHODS We conducted two nested case-control studies by analyzing the Taiwan National Health Insurance Research Database from 2008 to 2013 among diabetic patients continuously receiving sulfonylureas. Cases were defined as patients with severe hypoglycemia and those with a composite outcome of severe hypoglycemia, altered consciousness, and fall-related fracture in the first and second study, respectively. In both studies, each case was individually matched up to 10 randomly-selected controls. Conditional logistic regressions were employed to estimate odds ratios (ORs). RESULTS We identified 1343 cases and 11 597 controls as well as 2848 cases of composite events and 24 808 controls among 46 317 sulfonylurea users. Concurrent use of amiodarone with sulfonylureas was associated with a 1.56-fold (95% CI: 0.98-2.46) increased risk of severe hypoglycemia, despite not statistically significant. Notably, an approximately 2-fold increased risk of severe hypoglycemia was observed with amiodarone therapy lasting for >180 days (adjusted OR: 2.08; 95% CI: 1.01-4.30) or at a daily dose greater than 1 defined daily dose (adjusted OR: 2.21; 95% CI: 1.25-3.91) when concurrently administrating sulfonylureas. A significantly increased risk of hypoglycemia-related composite events was also found with amiodarone concurrently used with sulfonylureas (adjusted OR: 1.59; 95% CI: 1.13-2.24). CONCLUSIONS Concurrent use of amiodarone and sulfonylureas is associated with an increased risk of serious hypoglycemia among diabetic patients, with an elevated risk for amiodarone used in a long-term or at a high daily dose.
Collapse
Affiliation(s)
- Jyun-Heng Lai
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Ting Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ling Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Hua Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jun-Ting Liou
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Park JW, Kim KA, Choi YJ, Yoon SH, Park JY. Effect of glimepiride on the pharmacokinetics of teneligliptin in healthy Korean subjects. J Clin Pharm Ther 2019; 44:720-725. [PMID: 31094010 DOI: 10.1111/jcpt.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Teneligliptin is a DPP-4 inhibitor used for the treatment of type 2 diabetes mellitus, commonly prescribed in combination with glimepiride. Teneligliptin is metabolized by CYP3A4, and glimepiride might be partly metabolized by CYP3A4. The aim of the study was to investigate the possible effect of glimepiride on the pharmacokinetics of teneligliptin in healthy subjects. METHODS A repeated dose, open-label, fixed-sequence study was conducted in 26 healthy subjects. All participants were administered 20 mg teneligliptin daily for 6 days. On day 7, 4 mg glimepiride was administered together with 20 mg teneligliptin. Plasma teneligliptin concentrations were measured at a steady state, and its pharmacokinetic characteristics were compared without and with glimepiride. RESULTS AND DISCUSSION No statistically significant difference was found in the effect of glimepiride on teneligliptin pharmacokinetics. The steady-state Cmax,ss values of teneligliptin without and with glimepiride were 207.01 ng/mL and 202.15 ng/mL, respectively. Its AUCτ values at steady-state without and with glimepiride were 1527.8 ng · h/mL and 1578.6 ng · h/mL, respectively. The point estimation of geometric mean ratios (GMR) and the 90% confidence interval for both Cmax,ss and AUCτ were within the equivalence range of 0.8-1.25. The results of the present study revealed that glimepiride did not cause pharmacokinetic interaction with teneligliptin in humans. WHAT IS NEW AND CONCLUSION Glimepiride did not affect the pharmacokinetic characteristics of teneligliptin in healthy subjects.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| | | | | | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
10
|
Storelli F, Samer C, Reny JL, Desmeules J, Daali Y. Complex Drug-Drug-Gene-Disease Interactions Involving Cytochromes P450: Systematic Review of Published Case Reports and Clinical Perspectives. Clin Pharmacokinet 2018; 57:1267-1293. [PMID: 29667038 DOI: 10.1007/s40262-018-0650-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug pharmacokinetics (PK) is influenced by multiple intrinsic and extrinsic factors, among which concomitant medications are responsible for drug-drug interactions (DDIs) that may have a clinical relevance, resulting in adverse drug reactions or reduced efficacy. The addition of intrinsic factors affecting cytochromes P450 (CYPs) activity and/or expression, such as genetic polymorphisms and diseases, may potentiate the impact and clinical relevance of DDIs. In addition, greater variability in drug levels and exposures has been observed when such intrinsic factors are present in addition to concomitant medications perpetrating DDIs. This variability results in poor predictability of DDIs and potentially dramatic clinical consequences. The present review illustrates the issue of complex DDIs using systematically searched published case reports of DDIs involving genetic polymorphisms, renal impairment, cirrhosis, and/or inflammation. Current knowledge on the impact of each of these factors on drug exposure and DDIs is summarized and future perspectives for the management of such complex DDIs in clinical practice are discussed, including the use of advanced Computerized Physician Order Entry (CPOE) systems, the development of model-based dose optimization strategies, and the education of healthcare professionals with respect to personalized medicine.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
| | - Caroline Samer
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Jean-Luc Reny
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.
- Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Swiss Center for Applied Human Toxicology, Geneva, Switzerland.
| |
Collapse
|
11
|
Nam YH, Brensinger CM, Bilker WB, Leonard CE, Han X, Hennessy S. Serious Hypoglycemia and Use of Warfarin in Combination With Sulfonylureas or Metformin. Clin Pharmacol Ther 2018; 105:210-218. [PMID: 29885251 DOI: 10.1002/cpt.1146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 01/11/2023]
Abstract
Prior research suggests that warfarin, when given concomitantly with some sulfonylureas, may increase the risk of serious hypoglycemia. However, the clinical significance remains unclear. We examined rate ratios (RRs) for the association between serious hypoglycemia and concomitant use of warfarin with either sulfonylureas or metformin using a self-controlled case series design and US Medicaid claims (supplemented with Medicare claims) from 1999 to 2011. Across all risk windows combined, warfarin was associated with an elevated rate of serious hypoglycemia when given concomitantly with glimepiride (RR, 1.47; 95% confidence interval (CI), 1.07-2.02) and metformin (RR, 1.73; 95% CI, 1.38-2.16). Particularly in the late risk window (>120 days since beginning concomitancy), most of the RRs for warfarin were elevated: glipizide (RR, 1.72; 95% CI, 1.29-2.29), glyburide (RR, 1.57; 95% CI, 1.15-2.15), metformin (RR, 2.26; 95% CI, 1.67-3.05), and glimepiride (RR, 1.56; 95% CI, 0.97-2.50). These results are consistent with a previously hypothesized hypoglycemic effect of warfarin in patients with type 2 diabetes through inhibition of the carboxylation of osteocalcin.
Collapse
Affiliation(s)
- Young Hee Nam
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colleen M Brensinger
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Warren B Bilker
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles E Leonard
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xu Han
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sean Hennessy
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Asaumi R, Toshimoto K, Tobe Y, Hashizume K, Nunoya K, Imawaka H, Lee W, Sugiyama Y. Comprehensive PBPK Model of Rifampicin for Quantitative Prediction of Complex Drug-Drug Interactions: CYP3A/2C9 Induction and OATP Inhibition Effects. CPT Pharmacometrics Syst Pharmacol 2018; 7:186-196. [PMID: 29368402 PMCID: PMC5869557 DOI: 10.1002/psp4.12275] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.
Collapse
Affiliation(s)
- Ryuta Asaumi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Kota Toshimoto
- Sugiyama LaboratoryRIKEN Innovation Center, RIKENYokohamaKanagawaJapan
| | - Yoshifusa Tobe
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Kenta Hashizume
- Drug Development Solutions Division, Sekisui Medical Co., Ltd.IbarakiJapan
| | - Ken‐ichi Nunoya
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulKorea
| | - Yuichi Sugiyama
- Sugiyama LaboratoryRIKEN Innovation Center, RIKENYokohamaKanagawaJapan
| |
Collapse
|
13
|
Schelleman H, Han X, Brensinger CM, Quinney SK, Bilker WB, Flockhart DA, Li L, Hennessy S. Pharmacoepidemiologic and in vitro evaluation of potential drug-drug interactions of sulfonylureas with fibrates and statins. Br J Clin Pharmacol 2015; 78:639-48. [PMID: 24548191 DOI: 10.1111/bcp.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
AIMS To examine whether initiation of fibrates or statins in sulfonylurea users is associated with hypoglycaemia, and examine in vitro inhibition of cytochrome P450 (CYP) enzymes by statins, fenofibrate and glipizide. METHODS We used healthcare data to conduct nested case-control studies of serious hypoglycaemia (i.e. resulting in hospital admission or emergency department treatment) in persons taking glipizide or glyburide, and calculated adjusted overall and time-stratified odds ratios (ORs) and 95% confidence intervals (CIs). We also characterized the in vitro inhibition of CYP enzymes by statins, fenofibrate and glipizide using fluorometric CYP450 inhibition assays, and estimated area under the concentration-time curve ratios (AUCRs) for the drug pairs. RESULTS We found elevated adjusted overall ORs for glyburide-fenofibrate (OR 1.84, 95% CI 1.37, 2.47) and glyburide-gemfibrozil (OR 1.57, 95% CI 1.25, 1.96). The apparent risk did decline over time as might be expected from a pharmacokinetic mechanism. Fenofibrate was a potent in vitro inhibitor of CYP2C19 (IC50 = 0.2 μm) and CYP2B6 (IC50 = 0.7 μm) and a moderate inhibitor of CYP2C9 (IC50 = 9.7 μm). The predicted CYP-based AUCRs for fenofibrate-glyburide and gemfibrozil-glyburide interactions were only 1.09 and 1.04, suggesting that CYP inhibition is unlikely to explain such an interaction. CONCLUSIONS Use of fenofibrate or gemfibrozil together with glyburide was associated with elevated overall risks of serious hypoglycaemia. CYP inhibition seems unlikely to explain this observation. We speculate that a pharmacodynamic effect of fibrates (e.g. activate peroxisome proliferator-activator receptor alpha) may contribute to these apparent interactions.
Collapse
Affiliation(s)
- H Schelleman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Devi PRS, Reddy AG, Rao GS, Kumar CSVS, Boobalan G. Pharmacokinetic interaction of curcumin and glibenclamide in diabetic rats. Vet World 2015; 8:508-11. [PMID: 27047124 PMCID: PMC4774801 DOI: 10.14202/vetworld.2015.508-511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 12/02/2022] Open
Abstract
AIM The aim was to assess the pharmacokinetic (PK) interaction of curcumin and glibenclamide (GL) in diabetic rats. MATERIALS AND METHODS Sprague-Dawley rats induced with diabetes were divided into 2 groups of six rats in each. Group I: GL (6 mg/kg po once daily) treatment in diabetic rats and group 2: Curcumin (50 mg/Kg po once daily) + GL (dose as above) in diabetic rats. Blood samples were collected at pre-determined time intervals for kinetic analysis after the first and last oral dosing of GL for single and multiple dose studies, respectively. Plasma samples were assayed for GL concentration by high-performance liquid chromatography and PK parameters were analyzed. RESULTS The half-life (t1/2) and mean residence time (MRT) of GL were significantly increased in curcumin pre-treated rats as compared to GL alone in single and multiple dose studies. Similarly, the Vdss was significantly increased in curcumin pre-treated rats in single dose study as compared to GL alone treated group, but no significant difference was observed in multiple dose kinetics. CONCLUSION The study revealed higher values (t1/2, MRT and Vdss) of GL in curcumin pre-treated group due to the inhibitory effect of curcumin on intestinal CYP3A4.
Collapse
Affiliation(s)
- P. R. Sakunthala Devi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati - 517 502, Andhra Pradesh, India
| | - A. Gopala Reddy
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati - 517 502, Andhra Pradesh, India
| | - G. S. Rao
- Department of Veterinary Pharmacology & Toxicology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati - 517 502, Andhra Pradesh, India
| | - C. S. V. Satish Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati - 517 502, Andhra Pradesh, India
| | - G. Boobalan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati - 517 502, Andhra Pradesh, India
| |
Collapse
|
15
|
Abstract
Pregnancy is associated with a variety of physiological changes that can alter the pharmacokinetics and pharmacodynamics of several drugs. However, limited data exists on the pharmacokinetics and pharmacodynamics of the majority of the medications used in pregnancy. In this article, we first describe basic concepts (drug absorption, bioavailability, distribution, metabolism, elimination, and transport) in pharmacokinetics. Then, we discuss several physiological changes that occur during pregnancy that theoretically affect absorption, distribution, metabolism, and elimination. Further, we provide a brief review of the literature on the clinical pharmacokinetic studies performed in pregnant women in recent years. In general, pregnancy increases the clearance of several drugs and correspondingly decreases drug exposure during pregnancy. Based on current drug exposure measurements during pregnancy, alterations in the dose or dosing regimen of certain drugs are essential during pregnancy. More pharmacological studies in pregnant women are needed to optimize drug therapy in pregnancy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 718 Salk Hall, 3501 Terrace St, Pittsburgh, PA 15261
| | - Mary F. Hebert
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA,Department of Obstetrics and Gynecology, School of Medicine University of Washington, Seattle, WA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 718 Salk Hall, 3501 Terrace St, Pittsburgh, PA 15261; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Thomas Starzl Transplantation Institute, Pittsburgh, PA; McGovern Institute for Regenerative Medicine, Pittsburgh, PA; Magee Womens Research Institute, Pittsburgh, PA.
| |
Collapse
|
16
|
Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19. Br J Clin Pharmacol 2014; 77:554-70. [PMID: 23834474 DOI: 10.1111/bcp.12207] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 06/20/2013] [Indexed: 12/28/2022] Open
Abstract
AIM Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. METHODS We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. RESULTS Predicted mean post-partum to second trimester (PP : T2 ) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3 ) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. CONCLUSIONS Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes.
Collapse
Affiliation(s)
- Alice Ban Ke
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | | |
Collapse
|
17
|
Shuster DL, Risler LJ, Prasad B, Calamia JC, Voellinger JL, Kelly EJ, Unadkat JD, Hebert MF, Shen DD, Thummel KE, Mao Q. Identification of CYP3A7 for glyburide metabolism in human fetal livers. Biochem Pharmacol 2014; 92:690-700. [PMID: 25450675 DOI: 10.1016/j.bcp.2014.09.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/02/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers.
Collapse
Affiliation(s)
- Diana L Shuster
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Linda J Risler
- Department of Pharmacy, University of Washington, Box 357630, Seattle, Washington 98195, USA.
| | - Bhagwat Prasad
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Justina C Calamia
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Jenna L Voellinger
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Mary F Hebert
- Department of Pharmacy, University of Washington, Box 357630, Seattle, Washington 98195, USA; Department of Obstetrics and Gynecology, University of Washington, Box 356460, Seattle, Washington 98195, USA.
| | - Danny D Shen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA; Department of Pharmacy, University of Washington, Box 357630, Seattle, Washington 98195, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Shuster DL, Risler LJ, Liang CKJ, Rice KM, Shen DD, Hebert MF, Thummel KE, Mao Q. Maternal-fetal disposition of glyburide in pregnant mice is dependent on gestational age. J Pharmacol Exp Ther 2014; 350:425-34. [PMID: 24898265 PMCID: PMC4109496 DOI: 10.1124/jpet.114.213470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
Gestational diabetes mellitus is a major complication of human pregnancy. The oral clearance (CL) of glyburide, an oral antidiabetic drug, increases 2-fold in pregnant women during late gestation versus nonpregnant controls. In this study, we examined gestational age-dependent changes in maternal-fetal pharmacokinetics (PK) of glyburide and metabolites in a pregnant mouse model. Nonpregnant and pregnant FVB mice were given glyburide by retro-orbital injection. Maternal plasma was collected over 240 minutes on gestation days (gd) 0, 7.5, 10, 15, and 19; fetuses were collected on gd 15 and 19. Glyburide and metabolites were quantified using high-performance liquid chromatography-mass spectrometry, and PK analyses were performed using a pooled data bootstrap approach. Maternal CL of glyburide increased approximately 2-fold on gd 10, 15, and 19 compared with nonpregnant controls. Intrinsic CL of glyburide in maternal liver microsomes also increased as gestation progressed. Maternal metabolite/glyburide area under the curve ratios were generally unchanged or slightly decreased throughout gestation. Total fetal exposure to glyburide was <5% of maternal plasma exposure, and was doubled on gd 19 versus gd 15. Fetal metabolite concentrations were below the limit of assay detection. This is the first evidence of gestational age-dependent changes in glyburide PK. Increased maternal glyburide clearance during gestation is attributable to increased hepatic metabolism. Metabolite elimination may also increase during pregnancy. In the mouse model, fetal exposure to glyburide is gestational age-dependent and low compared with maternal plasma exposure. These results indicate that maternal glyburide therapeutic strategies may require adjustments in a gestational age-dependent manner if these same changes occur in humans.
Collapse
Affiliation(s)
- Diana L Shuster
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Linda J Risler
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Chao-Kang J Liang
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Kenneth M Rice
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Danny D Shen
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Mary F Hebert
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Departments of Pharmaceutics (D.L.S., L.J.R., D.D.S., K.E.T., Q.M.) and Pharmacy (D.D.S., M.F.H.), School of Pharmacy, University of Washington, Seattle, Washington; Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington (C.-K.J.L., K.M.R.); and Department of Obstetrics and Gynecology, School of Medicine (M.F.H.), University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Varma MVS, Scialis RJ, Lin J, Bi YA, Rotter CJ, Goosen TC, Yang X. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide. AAPS JOURNAL 2014; 16:736-48. [PMID: 24839071 DOI: 10.1208/s12248-014-9614-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/26/2014] [Indexed: 11/30/2022]
Abstract
The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc, Groton, Connecticut, USA,
| | | | | | | | | | | | | |
Collapse
|
20
|
Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, Dubois A, Dollé F, Scherrmann JM, Valette H, Kuhnast B, Bottlaender M. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS JOURNAL 2013; 15:1082-90. [PMID: 23907487 DOI: 10.1208/s12248-013-9514-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022]
Abstract
Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.
Collapse
Affiliation(s)
- Nicolas Tournier
- CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, Orsay, 91401, France,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nicolas JM, Chanteux H, Rosa M, Watanabe S, Stockis A. Effect of gemfibrozil on the metabolism of brivaracetam in vitro and in human subjects. Drug Metab Dispos 2012; 40:1466-72. [PMID: 22538270 DOI: 10.1124/dmd.112.045328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Brivaracetam (BRV) is a new high-affinity synaptic vesicle protein 2A ligand in phase III for epilepsy. Initial studies suggested that the hydroxylation of BRV into BRV-OH is supported by CYP2C8. Other metabolic routes include hydrolysis into a carboxylic acid derivative (BRV-AC), which could be further oxidized into a hydroxy acid derivative (BRV-OHAC). The aim of the present study was to investigate the effect of gemfibrozil (CYP2C9 inhibitor) and its 1-O-β-glucuronide (CYP2C8 inhibitor) on BRV disposition both in vivo (healthy participants) and in vitro (human liver microsomes and hepatocytes). In a two-period randomized crossover study, 26 healthy male participants received a single oral dose of 150 mg of BRV alone or at steady state of gemfibrozil (600 mg b.i.d). Gemfibrozil did not modify plasma and urinary excreted BRV, BRV-OH, or BRV-AC. The only observed change was a modest decrease (approximately -40%) in plasma and urinary BRV-OHAC. In human hepatocytes and/or liver microsomes, gemfibrozil potently inhibited the hydroxylation of BRV-AC into BRV-OHAC (K(I) 12 μM) while having a marginal effect on BRV-OH formation (K(I) ≥153 μM). Gemfibrozil-1-O-β-glucuronide had no relevant effect on either reaction (K(I) >200 μM). In conclusion, gemfibrozil did not influence the pharmacokinetics of BRV and its hydroxylation into BRV-OH. Overall, in vitro and in vivo data suggest that CYP2C8 and CYP2C9 are not involved in BRV hydroxylation, whereas hydroxylation of BRV-AC to BRV-OHAC is likely to be mediated by CYP2C9.
Collapse
Affiliation(s)
- J-M Nicolas
- UCB Pharma, Chemin du Foriest, Braine-l'Alleud B-1420, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Transporter-mediated drug-drug interactions with oral antidiabetic drugs. Pharmaceutics 2011; 3:680-705. [PMID: 24309303 PMCID: PMC3857053 DOI: 10.3390/pharmaceutics3040680] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/29/2011] [Accepted: 10/08/2011] [Indexed: 01/11/2023] Open
Abstract
Uptake transporters (e.g., members of the SLC superfamily of solute carriers) and export proteins (e.g., members of the ABC transporter superfamily) are important determinants for the pharmacokinetics of drugs. Alterations of drug transport due to concomitantly administered drugs that interfere with drug transport may alter the kinetics of drug substrates. In vitro and in vivo studies indicate that many drugs used for the treatment of metabolic disorders and cardiovascular diseases (e.g., oral antidiabetic drugs, statins) are substrates for uptake transporters and export proteins expressed in the intestine, the liver and the kidney. Since most patients with type 2 diabetes receive more than one drug, transporter-mediated drug-drug interactions are important molecular mechanisms leading to alterations in oral antidiabetic drug pharmacokinetics with the risk of adverse drug reactions. This review focuses on uptake transporters of the SLCO/SLC21 (OATP) and SLC22 (OCT/OAT) family of solute carriers and export pumps of the ABC (ATP-binding cassette) transporter superfamily (especially P-glycoprotein) as well as the export proteins of the SLC47 (MATE) family and their role for transporter-mediated drug-drug interactions with oral antidiabetic drugs.
Collapse
|
23
|
Zhou L, Zhang Y, Hebert MF, Unadkat JD, Mao Q. Increased glyburide clearance in the pregnant mouse model. Drug Metab Dispos 2010; 38:1403-6. [PMID: 20558597 PMCID: PMC2939472 DOI: 10.1124/dmd.110.033837] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023] Open
Abstract
Glyburide (GLB) is an oral sulfonylurea, commonly used for the treatment of gestational diabetes mellitus. It has been reported that the clearance of GLB in pregnant women is significantly higher than that in nonpregnant women. The molecular mechanism by which pregnancy increases the clearance of GLB is not known, but it may be caused by increased CYP3A activity. Because liver tissue from pregnant women is not readily available, in the present study, we investigated the mechanism of such pregnancy-related changes in GLB disposition in a mouse model. We demonstrated that the systemic clearance of GLB in pregnant mice was increased approximately 2-fold (p < 0.01) compared with nonpregnant mice, a magnitude of change similar to that observed in the clinical study. Plasma protein binding of GLB in mice was not altered by pregnancy. The half-life of GLB depletion in hepatic S-9 fractions of pregnant mice was significantly shorter than that of nonpregnant mice. Moreover, GLB depletion was markedly inhibited by ketoconazole, a potent inhibitor of mouse Cyp3a, suggesting that GLB metabolism in mice is primarily mediated by hepatic Cyp3a. These data suggest that the increased systemic clearance of GLB in pregnant mice is likely caused by an increase in hepatic Cyp3a activity during pregnancy, and they provide a basis for further mechanistic understanding and analysis of pregnancy-induced alterations in the disposition of GLB and drugs that are predominantly and extensively metabolized by CYP3A/Cyp3a.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|