1
|
Keuls RA, Finnell RH, Parchem RJ. Maternal metabolism influences neural tube closure. Trends Endocrinol Metab 2023; 34:539-553. [PMID: 37468429 PMCID: PMC10529122 DOI: 10.1016/j.tem.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Changes in maternal nutrient availability due to diet or disease significantly increase the risk of neural tube defects (NTDs). Because the incidence of metabolic disease continues to rise, it is urgent that we better understand how altered maternal nutrient levels can influence embryonic neural tube development. Furthermore, primary neurulation occurs before placental function during a period of histiotrophic nutrient exchange. In this review we detail how maternal metabolites are transported by the yolk sac to the developing embryo. We discuss recent advances in understanding how altered maternal levels of essential nutrients disrupt development of the neuroepithelium, and identify points of intersection between metabolic pathways that are crucial for NTD prevention.
Collapse
Affiliation(s)
- Rachel A Keuls
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H Finnell
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Department of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronald J Parchem
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine. Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Curtis SW, Chang D, Lee MK, Shaffer JR, Indencleef K, Epstein MP, Cutler DJ, Murray JC, Feingold E, Beaty TH, Claes P, Weinberg SM, Marazita ML, Carlson JC, Leslie EJ. The PAX1 locus at 20p11 is a potential genetic modifier for bilateral cleft lip. HGG ADVANCES 2021; 2:100025. [PMID: 33817668 PMCID: PMC8018676 DOI: 10.1016/j.xhgg.2021.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonsyndromic orofacial clefts (OFCs) are a common birth defect and are phenotypically heterogenous in the structure affected by the cleft - cleft lip (CL) and cleft lip and palate (CLP) - as well as other features, such as the severity of the cleft. Here, we focus on bilateral and unilateral clefts as one dimension of OFC severity, because the genetic architecture of these subtypes is not well understood. We tested for subtype-specific genetic associations in 44 bilateral CL (BCL) cases, 434 unilateral CL (UCL) cases, 530 bilateral CLP cases (BCLP), 1123 unilateral CLP (UCLP) cases, and unrelated controls (N = 1626), using a mixed-model approach. While no novel loci were found, the genetic architecture of UCL was distinct compared to BCL, with 44.03% of suggestive loci having different effects between the two subtypes. To further understand the subtype-specific genetic risk factors, we performed a genome-wide scan for modifiers and found a significant modifier locus on 20p11 (p=7.53×10-9), 300kb downstream of PAX1, that associated with higher odds of BCL vs. UCL, and replicated in an independent cohort (p=0.0018) with no effect in BCLP (p>0.05). We further found that this locus was associated with normal human nasal shape. Taken together, these results suggest bilateral and unilateral clefts may have different genetic architectures. Moreover, our results suggest BCL, the rarest form of OFC, may be genetically distinct from the other OFC subtypes. This expands our understanding of modifiers for OFC subtypes and further elucidates the genetic mechanisms behind the phenotypic heterogeneity in OFCs.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Daniel Chang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | | | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Peter Claes
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Jenna C. Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
3
|
Trakanant S, Nihara J, Nagai T, Kawasaki M, Kawasaki K, Ishida Y, Meguro F, Kudo T, Yamada A, Maeda T, Saito I, Ohazama A. MicroRNAs regulate distal region of mandibular development through Hh signaling. J Anat 2021; 238:711-719. [PMID: 33011977 PMCID: PMC7855062 DOI: 10.1111/joa.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022] Open
Abstract
Mandibular anomalies are often seen in various congenital diseases, indicating that mandibular development is under strict molecular control. Therefore, it is crucial to understand the molecular mechanisms involved in mandibular development. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating the level of gene expression. We found that the mesenchymal conditional deletion of miRNAs arising from a lack of Dicer (an essential molecule for miRNA processing, Dicerfl/fl ;Wnt1Cre), led to an abnormal groove formation at the distal end of developing mandibles. At E10.5, when the region forms, inhibitors of Hh signaling, Ptch1 and Hhip1 showed increased expression at the region in Dicer mutant mandibles, while Gli1 (a major mediator of Hh signaling) was significantly downregulated in mutant mandibles. These suggest that Hh signaling was downregulated at the distal end of Dicer mutant mandibles by increased inhibitors. To understand whether the abnormal groove formation inDicer mutant mandibles was caused by the downregulation of Hh signaling, mice with a mesenchymal deletion of Hh signaling activity arising from a lack of Smo (an essential molecule for Hh signaling activation, Smofl/fl ;Wnt1Cre) were examined. Smofl/fl ;Wnt1Cre mice showed a similar phenotype in the distal region of their mandibles to those in Dicerfl/fl ;Wnt1Cre mice. We also found that approximately 400 miRNAs were expressed in wild-type mandibular mesenchymes at E10.5, and six microRNAs were identified as miRNAs with binding potential against both Ptch1 and Hhip1. Their expressions at the distal end of the mandible were confirmed by in situ hybridization. This indicates that microRNAs regulate the distal part of mandibular formation at an early stage of development by involving Hh signaling activity through controlling its inhibitor expression level.
Collapse
Affiliation(s)
- Supaluk Trakanant
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Jun Nihara
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takahiro Nagai
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Maiko Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Katsushige Kawasaki
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yoko Ishida
- Center for Advanced Oral ScienceFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Fumiya Meguro
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takehisa Kudo
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan,Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Akane Yamada
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takeyasu Maeda
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Isao Saito
- Division of OrthodonticsFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Atsushi Ohazama
- Division of Oral AnatomyFaculty of Dentistry and Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
4
|
Iwata J. Gene-Environment Interplay and MicroRNAs in Cleft Lip and Cleft Palate. ORAL SCIENCE INTERNATIONAL 2021; 18:3-13. [PMID: 36855534 PMCID: PMC9969970 DOI: 10.1002/osi2.1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cleft lip (CL) with/without cleft palate (CP) (hereafter CL/P) is the second most common congenital birth defect, affecting 7.94 to 9.92 children per 10,000 live births worldwide, followed by Down syndrome. An increasing number of genes have been identified as affecting susceptibility and/or as causative genes for CL/P in mouse genetic and chemically-induced CL and CP studies, as well as in human genome-wide association studies and linkage analysis. While marked progress has been made in the identification of genetic and environmental risk factors for CL/P, the interplays between these factors are not yet fully understood. This review aims to summarize our current knowledge of CL and CP from genetically engineered mouse models and environmental factors that have been studied in mice. Understanding the regulatory mechanism(s) of craniofacial development may not only advance our understanding of craniofacial developmental biology, but could also provide approaches for the prevention of birth defects and for tissue engineering in craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, 77054 USA.,Pediatric Research Center, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, 77030 USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, 77030 USA
| |
Collapse
|
5
|
Seelan RS, Mukhopadhyay P, Philipose J, Greene RM, Pisano MM. Gestational folate deficiency alters embryonic gene expression and cell function. Differentiation 2020; 117:1-15. [PMID: 33302058 DOI: 10.1016/j.diff.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Folic acid is a nutrient essential for embryonic development. Folate deficiency can cause embryonic lethality or neural tube defects and orofacial anomalies. Folate receptor 1 (Folr1) is a folate binding protein that facilitates the cellular uptake of dietary folate. To better understand the biological processes affected by folate deficiency, gene expression profiles of gestational day 9.5 (gd9.5) Folr1-/- embryos were compared to those of gd9.5 Folr1+/+ embryos. The expression of 837 genes/ESTs was found to be differentially altered in Folr1-/- embryos, relative to those observed in wild-type embryos. The 837 differentially expressed genes were subjected to Ingenuity Pathway Analysis. Among the major biological functions affected in Folr1-/- mice were those related to 'digestive system development/function', 'cardiovascular system development/function', 'tissue development', 'cellular development', and 'cell growth and differentiation', while the major canonical pathways affected were those associated with blood coagulation, embryonic stem cell transcription and cardiomyocyte differentiation (via BMP receptors). Cellular proliferation, apoptosis and migration were all significantly affected in the Folr1-/- embryos. Cranial neural crest cells (NCCs) and neural tube explants, grown under folate-deficient conditions, exhibited marked reduction in directed migration that can be attributed, in part, to an altered cytoskeleton caused by perturbations in F-actin formation and/or assembly. The present study revealed that several developmentally relevant biological processes were compromised in Folr1-/- embryos.
Collapse
Affiliation(s)
- R S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - P Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - J Philipose
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| | - R M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA.
| | - M M Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development & Anomalies, University of Louisville Dental School, 501 S. Preston St., Louisville, KY, 40292, USA
| |
Collapse
|
6
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha. Proc Natl Acad Sci U S A 2019; 116:17531-17540. [PMID: 31405972 DOI: 10.1073/pnas.1907077116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Folates are critical for central nervous system function. Folate transport is mediated by 3 major pathways, reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptor alpha (FRα/Folr1), known to be regulated by ligand-activated nuclear receptors. Cerebral folate delivery primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems can result in very low folate levels in the cerebrospinal fluid causing childhood neurodegenerative disorders. These disorders have devastating effects in young children, and current therapeutic approaches are not sufficiently effective. Our group has previously reported in vitro that functional expression of RFC at the blood-brain barrier (BBB) and its upregulation by the vitamin D nuclear receptor (VDR) could provide an alternative route for brain folate uptake. In this study, we further demonstrated in vivo, using Folr1 knockout (KO) mice, that loss of FRα led to a substantial decrease of folate delivery to the brain and that pretreatment of Folr1 KO mice with the VDR activating ligand, calcitriol (1,25-dihydroxyvitamin D3), resulted in over a 6-fold increase in [13C5]-5-formyltetrahydrofolate ([13C5]-5-formylTHF) concentration in brain tissues, with levels comparable to wild-type animals. Brain-to-plasma concentration ratio of [13C5]-5-formylTHF was also significantly higher in calcitriol-treated Folr1 KO mice (15-fold), indicating a remarkable enhancement in brain folate delivery. These findings demonstrate that augmenting RFC functional expression at the BBB could effectively compensate for the loss of Folr1-mediated folate uptake at the choroid plexus, providing a therapeutic approach for neurometabolic disorders caused by defective brain folate transport.
Collapse
|
8
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
9
|
Choi EY, Choi W, Lee CS. A novel PAX3 mutation in a Korean patient with Waardenburg syndrome type 1 and unilateral branch retinal vein and artery occlusion: a case report. BMC Ophthalmol 2018; 18:266. [PMID: 30314436 PMCID: PMC6186106 DOI: 10.1186/s12886-018-0933-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Waardenburg syndrome (WS) is a very rare genetic disorder affecting the neural crest cells. Coexistence of branch retinal vein occlusion (BRVO) and branch retinal artery occlusion (BRAO) in the same eye is also a rare finding. Here we report a case of WS type 1 that was confirmed by a novel mutation with the finding of unilateral BRVO and BRAO. Case presentation A 36-year-old, white-haired Korean man presented with a complaint of loss of vision in the inferior visual field of his right eye and hearing loss. He had telecanthus with a medial eyebrow and a hypochromic left iris. Funduscopy showed an ischemic change at the posterior pole in the right eye with sparing of the foveal center as well as retinal hemorrhages and white patches along the superotemporal arcade. Fundus angiography revealed the presence of both BRVO and BRAO, and optical coherence tomography showed thickening and opacification of the retinal layers corresponding to the ischemic area. A blood workup revealed hyperhomocysteinemia and the presence of antiphospholipid antibodies; both are suggestive as the cause of the BRVO and BRAO. Single nucleotide polymorphism analysis confirmed a novel PAX3 mutation at 2q35 (c.91–95 ACTCC deletion causing a frameshift). These findings confirmed a diagnosis of WS type 1. Conclusions WS is a heterogeneous inherited disorder of the neural crest cells that causes pigment abnormalities and sensorineural hearing loss. This is the first report of unilateral BRVO and BRAO in a patient with WS. Furthermore, the PAX3 mutation identified in this patient has not been reported previously.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea
| | - Wungrak Choi
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea
| | - Christopher Seungkyu Lee
- Department of Ophthalmology, The Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonjuro, Gangnam-gu, Seoul, 06273, Korea. .,Department of Ophthalmology, The Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonseiro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
10
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
11
|
Maldonado E, López Y, Herrera M, Martínez-Sanz E, Martínez-Álvarez C, Pérez-Miguelsanz J. Craniofacial structure alterations of foetuses from folic acid deficient pregnant mice. Ann Anat 2018; 218:59-68. [DOI: 10.1016/j.aanat.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022]
|
12
|
Sijilmassi O, López Alonso JM, Barrio Asensio MC, Del Río Sevilla A. Collagen IV and laminin-1 expression in embryonic mouse lens using principal components analysis technique. J Microsc 2018; 271:207-221. [PMID: 29702728 DOI: 10.1111/jmi.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Immunohistochemistry section staining is not always easy to interpret. Manual quantification of immunohistochemical staining is limited by the observer visual ability to detect changes in level staining. Hence, the quantification of immunostaining by means of digital image analysis allows us to measure accurately protein expression percentages in immunobiological stained tissues and ensures to overcome the visual limitations. We perform an experimental study to analyse the impact of folic acid (FA) deficiency into collagen IV and laminin-1 expression in the embryonic mouse lens. The study starts with microscope images of embryos mouse lens whose mothers fed a diet deficient in FA during 2 and 8 weeks. A principal component analysis (PCA) image processing is used to analyse these images coming from control and FA deficit groups. The method permits to define an index of over- or infraexpression of collagen IV and laminin-1 associated to different spatial organisation structures (PC processes). Additionally, it permits to determine in precise percentage the exact quantity of the overexpression or infraexpression and finally to comprehend molecular regionalisation and expression in both control and deficient groups. The results suggest that even with 2 weeks of deficit of FA the expression and distribution of both molecules is affected.
Collapse
Affiliation(s)
- O Sijilmassi
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
- Faculty of Optics and Optometry, Optics Department, Universidad Complutense De Madrid, Madrid, Spain
| | - J M López Alonso
- Faculty of Optics and Optometry, Optics Department, Universidad Complutense De Madrid, Madrid, Spain
| | - M C Barrio Asensio
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
| | - A Del Río Sevilla
- Faculty of Optics and Optometry, Anatomy and Human Embryology Department, Universidad Complutense De Madrid, Madrid, Spain
| |
Collapse
|
13
|
Saitsu H. Folate receptors and neural tube closure. Congenit Anom (Kyoto) 2017; 57:130-133. [PMID: 28244241 DOI: 10.1111/cga.12218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/29/2022]
Abstract
Neural tube defects (NTD) are among the most common human congenital malformations, affecting 0.5-8.0/1000 of live births. Human clinical trials have shown that periconceptional folate supplementation significantly decreases the occurrence of NTD in offspring. However, the mechanism by which folate acts on NTD remains largely unknown. Folate receptor (Folr) is one of the three membrane proteins that mediate cellular uptake of folates. Recent studies suggest that mouse Folr1 (formerly referred to as Fbp1) is essential for neural tube closure. Therefore, we examined spatial and temporal expression patterns of Folr1 in developing mouse embryos, showing a close association between Folr1 and anterior neural tube closure. Transient transgenic analysis was performed using lacZ as a reporter; we identified a 1.1-kb enhancer that directs lacZ expression in the neural tube and optic vesicle in a manner that is similar to endogenous Folr1. The 1.1-kb enhancer sequences were highly conserved between humans and mice, suggesting that human FOLR1 is associated with anterior neural tube closure in humans. Several experimental studies in mice and human epidemiological and genetics studies have suggested that folate receptor abnormalities are involved in a portion of human NTDs, although the solo defect of FOLR1 did not cause NTD.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| |
Collapse
|
14
|
Peng L, Dreumont N, Coelho D, Guéant JL, Arnold C. Genetic animal models to decipher the pathogenic effects of vitamin B12 and folate deficiency. Biochimie 2016; 126:43-51. [DOI: 10.1016/j.biochi.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
|
15
|
Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, Mania-Farnell B, G McLone D, Tomita T, Mayanil CS. Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-let-7 in Cranial Neural Crest Cells. Stem Cells 2016; 34:2721-2732. [PMID: 27300003 DOI: 10.1002/stem.2421] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/09/2016] [Accepted: 05/28/2016] [Indexed: 12/20/2022]
Abstract
Prenatal folic acid (FA) supplementation prevents neural tube defects. Folate receptor alpha (FRα) is critical for embryonic development, including neural crest (NC) development. Previously we showed that FRα translocates to the nucleus in response to FA, where it acts as a transcription factor. In this study, we examined if FA through interaction with FRα regulates stem cell characteristics of cranial neural crest cells (CNCCs)-critical for normal development. We hypothesized that FRα upregulates coding genes and simultaneously downregulates non-coding miRNA which targets coding genes in CNCCs. Quantitative RT-PCR and chromatin immunoprecipitation showed that FRα upregulates Oct4, Sox2, and Klf4 by binding to their cis-regulator elements-5' enhancer/promoters defined by H3K27Ac and p300 occupancy. FA via FRα downregulates miRNAs, miR-138 and miR-let-7, which target Oct4 and Trim71 (an Oct4 downstream effector), respectively. Co-immunoprecipitation data suggests that FRα interacts with the Drosha-DGCR8 complex to affect pre-miRNA processing. Transfecting anti-miR-138 or anti-miR-let-7 into non-proliferating neural crest cells (NCCs) derived from Splotch (Sp-/- ), restored their proliferation potential. In summary, these results suggest a novel pleiotropic role of FRα: (a) direct activation of Oct4, Sox2, and Klf4 genes; and (b) repression of biogenesis of miRNAs that target these genes or their effector molecules. Stem Cells 2016;34:2721-2732.
Collapse
Affiliation(s)
- Vineet Mohanty
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amar Shah
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elise Allender
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - M Rizwan Siddiqui
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah Monick
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shunsuke Ichi
- Department of Neurosurgery, Japanese Red Cross Medical Center, Shibuya-Ku, Tokyo, Japan
| | | | - David G McLone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tadanori Tomita
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chandra Shekhar Mayanil
- Developmental Biology Program, Stanley Manne Children's Research Institute, Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Hansen MF, Greibe E, Skovbjerg S, Rohde S, Kristensen ACM, Jensen TR, Stentoft C, Kjær KH, Kronborg CS, Martensen PM. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha. Cell Signal 2015; 27:1356-68. [PMID: 25841994 DOI: 10.1016/j.cellsig.2015.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/14/2015] [Accepted: 03/29/2015] [Indexed: 01/01/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.
Collapse
Affiliation(s)
- Mariann F Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Eva Greibe
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Signe Skovbjerg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Sarah Rohde
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders C M Kristensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine R Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Charlotte Stentoft
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Karina H Kjær
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Camilla S Kronborg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pia M Martensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
17
|
Denny KJ, Jeanes A, Fathe K, Finnell RH, Taylor SM, Woodruff TM. Neural tube defects, folate, and immune modulation. ACTA ACUST UNITED AC 2014; 97:602-609. [PMID: 24078477 DOI: 10.1002/bdra.23177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
Periconceptional supplementation with folic acid has led to a significant worldwide reduction in the incidence of neural tube defects (NTDs). However, despite increasing awareness of the benefits of folic acid supplementation and the implementation of food fortification programs in many countries, NTDs continue to be a leading cause of perinatal morbidity and mortality worldwide. Furthermore, there exists a significant subgroup of women who appear to be resistant to the protective effects of folic acid supplementation. The following review addresses emerging clinical and experimental evidence for a role of the immune system in the etiopathogenesis of NTDs, with the aim of developing novel preventative strategies to further reduce the incidence of NTD-affected pregnancies. In particular, recent studies demonstrating novel roles and interactions between innate immune factors such as the complement cascade, neurulation, and folate metabolism are explored.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| | - Angela Jeanes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Kristin Fathe
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas, Austin, Texas
| | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas, Austin, Texas
| | - Stephen M Taylor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| |
Collapse
|
18
|
Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A. LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 2014; 127:2261-8. [PMID: 24639464 DOI: 10.1242/jcs.140145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.
Collapse
Affiliation(s)
- Esther Kur
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Nora Mecklenburg
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Robert M Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Annette Hammes
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
19
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
20
|
Farkas SA, Böttiger AK, Isaksson HS, Finnell RH, Ren A, Nilsson TK. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia. Epigenetics 2013; 8:303-16. [PMID: 23417011 PMCID: PMC3669122 DOI: 10.4161/epi.23988] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The objectives of this study were to identify tissue-specific differentially methylated regions (T-DMR’s) in the folate transport genes in placental tissue compared with leukocytes, and from placental tissues obtained from normal infants or with neural tube defects (NTDs). Using pyrosequencing, we developed methylation assays for the CpG islands (CGIs) and the CGI shore regions of the folate receptor α (FOLR1), proton-coupled folate transporter (PCFT) and reduced folate carrier 1 (RFC1) genes. The T-DMRs differed in location for each gene and the difference in methylation ranged between 2 and 54%. A higher T-DMR methylated fraction was associated with a lower mRNA level of the FOLR1 and RFC1 genes. Methylation fractions differed according to RFC1 80G > A genotype in the NTD cases and in leukocytes from subjects with high total plasma homocysteine (tHcy). There were no differences in methylated fraction of folate transporter genes between NTD cases and controls. We suggest that T-DMRs participate in the regulation of expression of the FOLR1 and RFC1 genes, that the RFC1 80G > A polymorphism exerts a gene-nutrition interaction on DNA methylation in the RFC1 gene, and that this interaction appears to be most prominent in NTD-affected births and in subjects with high tHcy concentrations.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Rosenquist TH. Folate, Homocysteine and the Cardiac Neural Crest. Dev Dyn 2013; 242:201-18. [DOI: 10.1002/dvdy.23922] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
- Thomas H. Rosenquist
- Department of Genetics; Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha; Nebraska
| |
Collapse
|
22
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
23
|
Abstract
The vitamin folate functions within the cell as a carrier of one-carbon units. The requirement for one-carbon transfers is ubiquitous and all mammalian cells carry out folate dependent reactions. In recent years, low folate status has been linked to risk of numerous adverse health conditions throughout life from birth defects and complications of pregnancy to cardiovascular disease, cancer and cognitive dysfunction in the elderly. In many instances inadequate intake of folate seems to be the primary contributor but there is also evidence that an underlying genetic susceptibility can play a modest role by causing subtle alterations in the availability, metabolism or distribution of intermediates in folate related pathways. Folate linked one-carbon units are essential for DNA synthesis and repair and as a source of methyl groups for biological methylation reactions. The notion of common genetic variants being linked to risk of disease was relatively novel in 1995 when the first functional folate-related polymorphism was discovered. Numerous polymorphisms have now been identified in folate related genes and have been tested for functionality either as a modifier of folate status or as being associated with risk of disease. Moreover, there is increasing research into the importance of folate-derived one-carbon units for DNA and histone methylation reactions, which exert crucial epigenetic control over cellular protein synthesis. It is thus becoming clear that genetic aspects of folate metabolism are wide-ranging and may touch on events as disparate as prenatal imprinting to cancer susceptibility. This chapter will review the current knowledge in this area.
Collapse
Affiliation(s)
- Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland,
| |
Collapse
|
24
|
Murdoch JN, Copp AJ. The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:633-52. [PMID: 20544799 PMCID: PMC3635124 DOI: 10.1002/bdra.20686] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog signaling pathway is essential for many aspects of normal embryonic development, including formation and patterning of the neural tube. Absence of the sonic hedgehog (shh) ligand is associated with the midline defect holoprosencephaly, whereas increased Shh signaling is associated with exencephaly and spina bifida. To complicate this apparently simple relationship, mutation of proteins required for function of cilia often leads to impaired Shh signaling and to disruption of neural tube closure. In this article, we review the literature on Shh pathway mutants and discuss the relationship between Shh signaling, cilia, and neural tube defects.
Collapse
Affiliation(s)
- Jennifer N Murdoch
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | |
Collapse
|
25
|
Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH. Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 2009; 149A:155-60. [PMID: 19165900 DOI: 10.1002/ajmg.a.32589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
TXN2 encodes human thioredoxin 2, a small redox protein important in cellular antioxidant defenses, as well as in the regulation of apoptosis. Txn2 knockout mice fail to complete neural tube closure by E10.5 and die in utero. We hypothesized that genetic variation in human TXN2 gene may alter the function of the encoded protein in a manner associated with an increased risk for neural tube defects (NTDs). A DNA re-sequencing effort of the human TXN2 gene was taken. After a variation in the promoter was identified, the transcriptional activity of different alleles was investigated. The possible association between these variations and the risk of spina bifida was further evaluated in a subset of samples obtained from a large population-based case-control study in California in two different ethnicity groups, non-Hispanic white and Hispanic white. We identified a novel promoter insertion polymorphism located 9 base pairs upstream of the transcription start site of exon 1(-9 insertion). The GA, G and GGGA insertions were associated with a marked decrease of transcriptional activity when overexpressed in both U2-OS (an osteosarcoma cell line) and 293 cells (derived from human embryonic kidney). Further analysis revealed that the GA insertion was associated with increased spina bifida risk for Hispanic whites. Our study revealed a novel Ins/Del polymorphism in the human TXN2 gene proximal promoter region that altered the transcriptional activity and is associated with spina bifida risk. This polymorphism may be a genetic modifier of spina bifida risk in this California population.
Collapse
Affiliation(s)
- Shu Wen
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Meng L, Bian Z, Torensma R, Von den Hoff JW. Biological mechanisms in palatogenesis and cleft palate. J Dent Res 2009; 88:22-33. [PMID: 19131313 DOI: 10.1177/0022034508327868] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clefts of the palate are common birth defects requiring extensive treatment. They appear to be caused by multiple genetic and environmental factors during palatogenesis. This may result in local changes in growth factors, extracellular matrix (ECM), and cell adhesion molecules. Several clefting factors have been implicated by studies in mouse models, while some of these have also been confirmed by genetic screening in humans. Here, we discuss several knockout mouse models to examine the role of specific genes in cleft formation. The cleft is ultimately caused by interference with shelf elevation, attachment, or fusion. Shelf elevation is brought about by mesenchymal proliferation and changes in the ECM induced by growth factors such as TGF-betas. Crucial ECM molecules are collagens, proteoglycans, and glycosaminoglycans. Shelf attachment depends on specific differentiation of the epithelium involving TGF-beta3, sonic hedgehog, and WNT signaling, and correct expression of epithelial adhesion molecules such as E-cadherin. The final fusion requires epithelial apoptosis and epithelium-to-mesenchyme transformation regulated by TGF-beta and WNT proteins. Other factors may interact with these signaling pathways and contribute to clefting. Normalization of the biological mechanisms regulating palatogenesis in susceptible fetuses is expected to contribute to cleft prevention.
Collapse
Affiliation(s)
- L Meng
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
27
|
van den Boogaard MJH, de Costa D, Krapels IPC, Liu F, van Duijn C, Sinke RJ, Lindhout D, Steegers-Theunissen RPM. The MSX1 allele 4 homozygous child exposed to smoking at periconception is most sensitive in developing nonsyndromic orofacial clefts. Hum Genet 2008; 124:525-34. [PMID: 18932005 DOI: 10.1007/s00439-008-0569-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/04/2008] [Indexed: 01/06/2023]
Abstract
Nonsyndromic orofacial clefts (OFC) are common birth defects caused by certain genes interacting with environmental factors. Mutations and association studies indicate that the homeobox gene MSX1 plays a role in human clefting. In a Dutch case-control triad study (mother, father, and child), we investigated interactions between MSX1 and the parents' periconceptional lifestyle in relation to the risk of OFC in their offspring. We studied 181 case- and 132 control mothers, 155 case- and 121 control fathers, and 176 case- and 146 control children, in which there were 107 case triads and 66 control triads. Univariable and multivariable logistic regression analyses were applied, and odds ratios (OR), 95% confidence intervals (CI) were calculated. Allele 4 of the CA marker in the MSX1 gene, consisting of nine CA repeats, was the most common allele found in both the case and control triads. Significant interactions were observed between allele 4 homozygosity of the child with maternal smoking (OR 2.7, 95% CI 1.1-6.6) and with smoking by both parents (OR 4.9, 95% CI 1.4-18.0). Allele 4 homozygosity in the mother and smoking showed a risk estimate of OR 3.2 (95% CI 1.1-9.0). If allele 4 homozygous mothers did not take daily folic acid supplements in the recommended periconceptional period, this also increased the risk of OFC for their offspring (OR 2.8, 95% CI 1.1-6.7). Our findings show that, in the Dutch population, periconceptional smoking by both parents interacts with a specific allelic variant of MSX1 to significantly increase OFC risk for their offspring. Possible underlying mechanisms are discussed.
Collapse
|
28
|
Cabrera RM, Shaw GM, Ballard JL, Carmichael SL, Yang W, Lammer EJ, Finnell RH. Autoantibodies to folate receptor during pregnancy and neural tube defect risk. J Reprod Immunol 2008; 79:85-92. [PMID: 18804286 DOI: 10.1016/j.jri.2008.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/28/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
Abstract
Periconceptional folic acid can reduce the occurrence of neural tube defects (NTDs) by up to 70%, and autoantibodies for folate receptors (FRs) have been observed in serum from women with a pregnancy complicated by an NTD. This population-based cohort study has examined serum from pregnant mothers for autoantibodies to FRs, antibodies to bovine folate binding protein (FBP), and inhibition of folic acid binding to FR and FBP in association with NTD risk. The mid-gestational maternal serum specimens used for this study were collected during the 15-18th week of pregnancy. Samples were obtained from the California Birth Defects Monitoring Program; 29 mothers had a pregnancy complicated by spina bifida and 76 mothers had unaffected children. The presence of IgG and IgM antibodies to human FR, bovine FBP, and inhibition of folic acid binding to FR and FBP was determined. Higher activity of IgM to FBP in cases verses controls was observed (P=0.04). Higher activity of IgM and IgG autoantibodies to FR was observed (P<0.001 and P=0.04, respectively). Risk estimates at two standard deviations above average control antibody concentrations were OR=2.07 (CI=1.02, 4.06) for anti-FBP IgM, OR=2.15 (CI=1.02, 4.69) for anti-FR IgG and OR=3.19 (CI=1.47, 6.92) for anti-FR IgM. These data support the hypothesis that high titers of antibodies and blocking of folic acid binding to FRs by maternal serum should be regarded as risk factors for NTDs.
Collapse
Affiliation(s)
- Robert M Cabrera
- Center for Environmental and Genetic Medicine, Institute for Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr 2008; 12:680-6. [PMID: 18547453 DOI: 10.1017/s1368980008002735] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the association between the risk of neural tube defects (NTD) and maternal serum vitamin B12, folate and homocysteine in a high-risk area of China. DESIGN A case-control study was carried out in Luliang mountain area of Shanxi Province. SUBJECTS/SETTING A total of eighty-four NTD pregnancies and 110 matched controls were included in the study; their serum vitamin B12 and folate concentrations were measured by chemiluminescent immunoenzyme assay and total homocysteine concentrations by fluorescent polarisation immunoassay. RESULTS Serum vitamin B12 and folate concentrations were lower in NTD-affected pregnant women than in controls (P < 0.01). Serum total homocysteine was higher in the NTD group than in controls at less than 21 weeks of gestation (P < 0.01). Adjusted odds ratios revealed that women with lower vitamin B12 (adjusted OR=4.96; 95 % CI 1.94, 12.67) and folate (adjusted OR=3.23; 95 % CI 1.33, 7.85) concentrations had a higher risk of NTD compared to controls. Based on dietary analysis, less consumption of meat, egg or milk, fresh vegetables and fruit intake would increase the risk of NTD. CONCLUSIONS Lower serum concentrations of folate and vitamin B12 are related to the increased risk of NTD in high-risk populations. Both folate and vitamin B12 intake insufficiency could contribute to the increased risk of NTD. A dietary supplement, combining folate and vitamin B12, might be an effective measure to decrease the NTD incidence in these areas.
Collapse
|
30
|
Gelineau-van Waes J, Maddox JR, Smith LM, van Waes M, Wilberding J, Eudy JD, Bauer LK, Finnell RH. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex. BMC Genomics 2008; 9:156. [PMID: 18400109 PMCID: PMC2383917 DOI: 10.1186/1471-2164-9-156] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryolethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. The identification of alterations in gene expression and signaling pathways involved in the observed dysmorphology following inactivation of RFC1-mediated folate transport are the focus of this investigation. RESULTS Affymetrix microarray analysis of the relative gene expression profiles in whole E9.5 RFC1-/- vs. RFC1+/+ embryos identified 200 known genes that were differentially expressed. Major ontology groups included transcription factors (13.04%), and genes involved in transport functions (ion, lipid, carbohydrate) (11.37%). Genes that code for receptors, ligands and interacting proteins in the cubilin-megalin multiligand endocytic receptor complex accounted for 9.36% of the total, followed closely by several genes involved in hematopoiesis (8.03%). The most highly significant gene network identified by Ingenuitytrade mark Pathway analysis included 12 genes in the cubilin-megalin multiligand endocytic receptor complex. Altered expression of these genes was validated by quantitative RT-PCR, and immunohistochemical analysis demonstrated that megalin protein expression disappeared from the visceral yolk sac of RFC1-/- embryos, while cubilin protein was widely misexpressed. CONCLUSION Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate and other nutrients, lipids and morphogens such as sonic hedgehog (Shh) and retinoids that play critical roles in normal embryogenesis.
Collapse
Affiliation(s)
- Janee Gelineau-van Waes
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Taparia S, Gelineau-van Waes J, Rosenquist TH, Finnell RH. Importance of folate-homocysteine homeostasis during early embryonic development. Clin Chem Lab Med 2008; 45:1717-27. [PMID: 18067451 DOI: 10.1515/cclm.2007.345] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although the beneficial effects of maternal folate supplementation in the periconceptional period have been shown to prevent neural tube defects, congenital heart defects and orofacial clefts, the exact protective mechanism of folates remains unknown. Folates affect DNA synthesis, amino acid metabolism and methylation of genes, proteins and lipids via S-adenosylmethionine-mediated one-carbon transfer reactions. Our laboratory has created several mouse knock out models of folate transport using gene targeting to inactivate folate receptor 1 (Folr1), folate receptor 2 (Folr2) and reduced folate carrier 1 (Slc19a1) genes. Gene ablation of both Folr1 and Slc19a1 leads to lethality, but with maternal folate supplementation, nullizygous embryos for both genes present with neural tube defects (NTDs) and congenital heart defects (CHDs). Folr1 nullizygous mice also exhibit orofacial clefts when the dams are provided with low folate supplementation during pregnancy. Finally, women with NTD-affected pregnancies have been reported to have high autoantibody titers against the folate receptor, potentially inhibiting the transport of folate to the developing embryo. This may be an explanation for some of the folate-responsive NTDs and perhaps other congenital malformations. Herein, we propose how homocysteinylation of the folate receptor may contribute to generation of these autoantibodies against the folate receptor.
Collapse
Affiliation(s)
- Shveta Taparia
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
32
|
Boyles AL, Wilcox AJ, Taylor JA, Meyer K, Fredriksen A, Ueland PM, Drevon CA, Vollset SE, Lie RT. Folate and one-carbon metabolism gene polymorphisms and their associations with oral facial clefts. Am J Med Genet A 2008; 146A:440-9. [PMID: 18203168 DOI: 10.1002/ajmg.a.32162] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Folate metabolism plays a critical role in embryonic development. Prenatal folate supplementation reduces the risk of neural tube defects and probably oral facial clefts. Previous studies of related metabolic genes have associated polymorphisms in cystathionine-beta-synthase (CBS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) with cleft risk. We explored associations between genes related to one-carbon metabolism and clefts in a Norwegian population-based study that included 362 families with cleft lip with or without cleft palate (CL/P) and 191 families with cleft palate only (CPO). We previously showed a 39% reduction in risk of CL/P with folic acid supplementation in this population. In the present study we genotyped 12 polymorphisms in nine genes related to one-carbon metabolism and looked for associations of clefting risk with fetal polymorphisms, maternal polymorphisms, as well as parent-of-origin effects, using combined likelihood-ratio tests (LRT). We also stratified by maternal periconceptional intake of folic acid (>400 microg) to explore gene-exposure interactions. We found a reduced risk of CL/P with mothers who carried the CBS C699T variant (rs234706); relative risk was 0.94 with one copy of the T allele (95% CI 0.63-1.4) and 0.50 (95% CI 0.26-0.96) with two copies (P = 0.008). We found no evidence of interaction of this variant with folate status. We saw no evidence of risk from the MTHFR C677T variant (rs1801133) either overall or after stratifying by maternal folate intake. No associations were found between any of the polymorphisms and CPO. Genetic variations in the nine metabolic genes examined here do not confer a substantial degree of risk for clefts.
Collapse
Affiliation(s)
- Abee L Boyles
- Epidemiology Branch, National Institute of Environmental Health Sciences/NIH, Durham, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Juriloff DM, Harris MJ. Mouse genetic models of cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2008; 82:63-77. [DOI: 10.1002/bdra.20430] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models. Curr Top Dev Biol 2008; 84:37-138. [PMID: 19186243 DOI: 10.1016/s0070-2153(08)00602-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cleft lip and cleft palate are frequent human congenital malformations with a complex multifactorial etiology. These orofacial clefts can occur as part of a syndrome involving multiple organs or as isolated clefts without other detectable defects. Both forms of clefting constitute a heavy burden to the affected individuals and their next of kin. Human and mouse facial traits are utterly dissimilar. However, embryonic development of the lip and palate are strikingly similar in both species, making the mouse a model of choice to study their normal and abnormal development. Human epidemiological and genetic studies are clearly important for understanding the etiology of lip and palate clefting. However, our current knowledge about the etiopathogenesis of these malformations has mainly been gathered throughout the years from mouse models, including those with mutagen-, teratogen- and targeted mutation-induced clefts as well as from mice with spontaneous clefts. This review provides a comprehensive description of the numerous mouse models for cleft lip and/or cleft palate. Despite a few weak points, these models have revealed a high order of molecular complexity as well as the stringent spatiotemporal regulations and interactions between key factors which govern the development of these orofacial structures.
Collapse
|
35
|
Elmore CL, Matthews RG. The many flavors of hyperhomocyst(e)inemia: insights from transgenic and inhibitor-based mouse models of disrupted one-carbon metabolism. Antioxid Redox Signal 2007; 9:1911-21. [PMID: 17696766 PMCID: PMC3112351 DOI: 10.1089/ars.2007.1795] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mouse models that perturb homocysteine metabolism, including genetic mouse models that result in deficiencies of methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and cystathionine beta-synthase, and a pharmaceutically induced mouse model with a transient deficiency in betainehomocysteine methyl transferase, have now been characterized and can be compared. Although each of these enzyme deficiencies is associated with moderate to severe hyperhomocyst(e)inemia, the broader metabolic profiles are profoundly different. In particular, the various models differ in the degree to which tissue ratios of S-adenosylmethionine to S-adenosylhomocysteine are reduced in the face of elevated plasma homocyst(e)ine, and in the distribution of the tissue folate pools. These different metabolic profiles illustrate the potential complexities of hyperhomocyst(e)inemia in humans and suggest that comparison of the disease phenotypes of the various mouse models may be extremely useful in dissecting the underlying risk factors associated with human hyperhomocyst(e)inemia.
Collapse
Affiliation(s)
- C Lee Elmore
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
36
|
Chiquet BT, Lidral AC, Stal S, Mulliken JB, Moreno LM, Arco-Burgos M, Valencia-Ramirez C, Blanton SH, Hecht JT. CRISPLD2: a novel NSCLP candidate gene. Hum Mol Genet 2007; 16:2241-8. [PMID: 17616516 PMCID: PMC3755375 DOI: 10.1093/hmg/ddm176] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P=0.01, P=0.002 and P=0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P=0.02) and rs2326398 (P=0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5-E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP.
Collapse
Affiliation(s)
- Brett T. Chiquet
- Department of Pediatrics, University of Texas Medical School at Houston
- University of Texas Dental Branch at Houston, Houston, TX 77030, USA
| | - Andrew C. Lidral
- Dows Institute for Dental Research, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Samuel Stal
- Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Lina M. Moreno
- Dows Institute for Dental Research, University of Iowa, Iowa City, IA, USA
| | - Mauricio Arco-Burgos
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Consuelo Valencia-Ramirez
- College of Dentistry, University of Antioquia, Medellín, Colombia, South America, Miami, FL 33101, USA
| | - Susan H. Blanton
- University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | |
Collapse
|
37
|
Katula KS, Heinloth AN, Paules RS. Folate deficiency in normal human fibroblasts leads to altered expression of genes primarily linked to cell signaling, the cytoskeleton and extracellular matrix. J Nutr Biochem 2007; 18:541-52. [PMID: 17320366 DOI: 10.1016/j.jnutbio.2006.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 11/06/2006] [Accepted: 11/22/2006] [Indexed: 11/22/2022]
Abstract
The molecular basis linking folate deficiency to certain health conditions and developmental defects is not fully understood. We examined the consequences of folate deficiency on global gene expression by microarray and compared transcript levels in normal human fibroblast cells (GM03349) grown in folate-deficient and -sufficient medium. The largest represented groups from the selected genes functioned in cell signaling, the cytoskeleton and the extracellular matrix and included the Wnt pathway genes DKK1, WISP1 and WNT5A. Twelve selected genes were further validated by qRT-PCR. Analysis of six genes at 4, 7, 10 and 14 days indicated that the relative differences in transcript levels between folate-sufficient and -deficient cells increases with time. Transcripts for 7 of the 12 selected genes were detected in the human lymphoblast cell line GM02257, and of these, changes in 4 genes corresponded to the results with fibroblast cells. Fibroblast cells were treated with the compounds homocysteine, methotrexate and the MEK1/2 inhibitor U0126, and relative transcript levels of six genes were determined. U0126 caused changes that more closely mimicked those detected in folate-deficient cells. The response of the DKK1 and TAGLN gene promoters to folate deficiency and compounds was examined in NIH3T3 cells using luciferase reporter plasmids. Promoter activity for both genes was decreased by folate deficiency and methotrexate and unaffected by homocysteine. U0126 caused a decrease in DKK1 promoter activity at 50 microM and had no effect on TAGLN promoter activity. These findings suggest an alternative mechanism for how folate deficiency leads to changes in gene expression and altered cell function.
Collapse
Affiliation(s)
- Karen S Katula
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | | | | |
Collapse
|
38
|
Hrubec TC, Yan M, Ye K, Salafia CM, Holladay SD. Valproic acid-induced fetal malformations are reduced by maternal immune stimulation with granulocyte-macrophage colony-stimulating factor or interferon-gamma. ACTA ACUST UNITED AC 2007; 288:1303-9. [PMID: 17075842 PMCID: PMC2567843 DOI: 10.1002/ar.a.20397] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Valproic acid, a drug commonly used to treat seizures and other psychiatric disorders, causes neural tube defects (NTDs) in exposed fetuses at a rate 20 times higher than in the general population. Failure of the neural tube to close during development results in exencephaly or anencephaly, as well as spina bifida. In mice, nonspecific activation of the maternal immune system can reduce fetal abnormalities caused by diverse etiologies, including diabetes-induced NTDs. We hypothesized that nonspecific activation of the maternal immune system with interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could reduce valproic acid (VA)-induced defects as well. Female CD-1 mice were given immune stimulant prebreeding: either IFN-gamma or GM-CSF. Approximately half of the control and immune-stimulated pregnant females were then exposed to 500 mg/kg VA on the morning of gestational day 8. The incidence of developmental defects was determined on gestational day 17 from at least eight litters in each of the following treatment groups: control, VA only, IFN-gamma only, IFN-gamma+VA, GM-CSF only, and GM-CSF+VA. The incidence of NTDs was 18% in fetuses exposed to VA alone, compared to 3.7% and 2.9% in fetuses exposed to IFN-gamma+VA, or GM-CSF+VA respectively. Ocular defects were also significantly reduced from 28.0% in VA exposed groups to 9.8% in IFN-gamma+VA and 12.5% in GM-CSF+VA groups. The mechanisms by which maternal immune stimulation prevents birth defects remain unclear, but may involve maternal or fetal production of cytokines or growth factors which protect the fetus from the dysregulatory effects of teratogens.
Collapse
Affiliation(s)
- Terry C Hrubec
- Department of Biomedical Science, E. Via Virginia College of Osteopathic Medicine, Blacksburg, Virginia 24060, USA.
| | | | | | | | | |
Collapse
|
39
|
Zhu H, Wlodarczyk BJ, Scott M, Yu W, Merriweather M, Gelineau-van Waes J, Schwartz RJ, Finnell RH. Cardiovascular abnormalities inFolr1 knockout mice and folate rescue. ACTA ACUST UNITED AC 2007; 79:257-68. [PMID: 17286298 DOI: 10.1002/bdra.20347] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Periconceptional folic acid supplementation is widely believed to aid in the prevention of neural tube defects (NTDs), orofacial clefts, and congenital heart defects. Folate-binding proteins or receptors serve to bind folic acid and 5-methyltetrahydrofolate, representing one of the two major mechanisms of cellular folate uptake. METHODS We herein describe abnormal cardiovascular development in mouse fetuses lacking a functional folate-binding protein gene (Folr1). We also performed a dose-response study with folinic acid and determined the impact of maternal folate supplementation on Folr1 nullizygous cardiac development. RESULTS Partially rescued preterm Folr1(-/-) (formerly referred to as Folbp1) fetuses were found to have outflow tract defects, aortic arch artery abnormalities, and isolated dextracardia. Maternal supplementation with folinic acid rescued the embryonic lethality and the observed cardiovascular phenotypes in a dose-dependant manner. Maternal genotype exhibited significant impact on the rescue efficiency, suggesting an important role of in utero folate status in embryonic development. Abnormal heart looping was observed during early development of Folr1(-/-) embryos partially rescued by maternal folinic acid supplementation. Migration pattern of cardiac neural crest cells, genetic signals in pharyngeal arches, and the secondary heart field were also found to be affected in the mutant embryos. CONCLUSIONS Our observations suggest that the beneficial effect of folic acid for congenital heart defects might be mediated via its impact on neural crest cells and by gene regulation of signaling pathways involved in the development of the pharyngeal arches and the secondary heart field.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate: case far from closed. Nat Rev Neurosci 2006; 7:724-31. [PMID: 16924261 PMCID: PMC2970514 DOI: 10.1038/nrn1986] [Citation(s) in RCA: 334] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tube closure takes place during early embryogenesis and requires interactions between genetic and environmental factors. Failure of neural tube closure is a common congenital malformation that results in morbidity and mortality. A major clinical achievement has been the use of periconceptional folic acid supplements, which prevents approximately 50-75% of cases of neural tube defects. However, the mechanism underlying the beneficial effects of folic acid is far from clear. Biochemical, genetic and epidemiological observations have led to the development of the methylation hypothesis, which suggests that folic acid prevents neural tube defects by stimulating cellular methylation reactions. Exploring the methylation hypothesis could direct us towards additional strategies to prevent neural tube defects.
Collapse
Affiliation(s)
- Henk J Blom
- Laboratory of Pediatrics and Neurology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Post Office Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Krapels IP, Vermeij-Keers C, Müller M, de Klein A, Steegers-Theunissen RP. Nutrition and Genes in the Development of Orofacial Clefting. Nutr Rev 2006; 64:280-8. [PMID: 16808114 DOI: 10.1111/j.1753-4887.2006.tb00211.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Clefts of the lip, alveolus, and/or palate, which are called orofacial clefts (OFC), occur in 0.5 to 3 per 1000 live and stillbirths. The pathogenesis of these congenital malformations remains largely unknown, but evidence is increasing that both nutritional and genetic factors are involved. Unlike genetic factors, nutritional causes can be corrected and may therefore contribute to the prevention of OFC. The goal of this review is to summarize the embryogenesis and genes involved in OFC, and to give an overview of the nutrients and related genes in humans. Improving our knowledge of the role of nutrition, genes, and their interactions in the pathogenesis of OFC may stimulate the development of nutritional interventions for OFC prevention in the future.
Collapse
Affiliation(s)
- Ingrid P Krapels
- Department of Epidemiology, Radboud University Nijmegen Medical Center, the Netherlands
| | | | | | | | | |
Collapse
|
42
|
Zhu H, Lu W, Laurent C, Shaw GM, Lammer EJ, Finnell RH. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida. ACTA ACUST UNITED AC 2006; 73:591-6. [PMID: 16080189 PMCID: PMC2970525 DOI: 10.1002/bdra.20175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND PRKACA and PRKACB are genes encoding the cAMP-dependent protein kinase A (PKA) catalytic subunits alpha and beta, respectively. PKA is known to be involved in embryonic development, as it down-regulates the Hedgehog (Hh) signaling pathway, which is critical to normal pattern formation and morphogenesis. The PKA-deficient mouse model, which has only a single catalytic subunit, provided intriguing evidence demonstrating a relationship between decreased PKA activity and risk for posterior neural tube defects (NTDs) in the thoracic to sacral regions of gene-knockout mice. Unlike most other mutant mouse models of NTDs, the PKA-deficient mice develop spina bifida with 100% penetrance. We hypothesized that sequence variations in human genes encoding the catalytic subunits may alter the PKA activity and similarly increase the risk of spina bifida. METHODS We sequenced the coding regions and the exon/intron boundaries of PRKACA and PRKACB. We also examined 3 common single-nucleotide polymorphisms (SNPs) of these 2 genes by allele discrimination. RESULTS Five sequence variants in coding region and 2 intronic sequence variants proximal to exons were detected. None of the 3 SNPs examined in the association study appeared to be associated with substantially increased risk for spina bifida. CONCLUSIONS Our results did not reveal a strong association between these PKA SNPs and spina bifida risk. Nonetheless, it is important to examine the possible gene-gene interactions between PRKACA and PRKACB when evaluating the risk for NTDs, as well as genes encoding regulatory subunits of PKA. In addition, interactions with other genes such as Sonic Hedgehog (SHH) should also be considered for future investigations.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas
| | - Wei Lu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas
| | - Cecile Laurent
- California Birth Defects Monitoring Program, Berkeley, California
| | - Gary M. Shaw
- California Birth Defects Monitoring Program, Berkeley, California
| | - Edward J. Lammer
- Children’s Hospital Oakland Research Institute, Oakland, California
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas
- Center for Environmental and Rural Health, Texas A&M University, College Station, Texas
- Correspondence to: Dr. Richard H. Finnell, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas 77030.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Orofacial clefts are common birth defects with a known genetic component to their etiology. Most orofacial clefts are nonsyndromic, isolated defects, which can be separated into two different phenotypes: (1) cleft lip with or without cleft palate and (2) cleft palate only. Both are genetically complex traits, which has limited the ability to identify disease loci or genes. The purpose of this review is to summarize recent progress of human genetic studies in identifying causal genes for isolated or nonsyndromic cleft lip with or without cleft palate. RECENT FINDINGS The results of multiple genome scans and a subsequent meta-analysis have significantly advanced our knowledge by revealing novel loci. Furthermore, candidate gene approaches have identified important roles for IRF6 and MSX1. To date, causal mutations with a known functional effect have not yet been described. SUMMARY With the implementation of genome-wide association studies and inexpensive sequencing, future studies will identify disease genes and characterize both gene-environment and gene-gene interactions to provide knowledge for risk counseling and the development of preventive therapies.
Collapse
Affiliation(s)
- Andrew C Lidral
- Department of Orthodontics, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
44
|
Tang LS, Santillano DR, Wlodarczyk BJ, Miranda RC, Finnell RH. Role of Folbp1 in the regional regulation of apoptosis and cell proliferation in the developing neural tube and craniofacies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2005; 135C:48-58. [PMID: 15800851 DOI: 10.1002/ajmg.c.30053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Folic acid is essential for many cellular reactions, including synthesis of nucleotides and regulation of cell cycle. Folic acid-binding protein one (Folbp1), a membrane-bounded protein, is the primary mediator of folic acid transport. Mice deficient in Folbp1 gene die in utero with multiple malformations, including severe exencephaly and craniofacial defects. Fusion of the neural tube and craniofacies require precisely regulated interactions of apoptosis, cell proliferation, and differentiation. To understand the role of Folbp1 in regulating the fusions of these primordia, levels of dead and proliferating precursor cells from Folbp1 embryos were quantified before the fusion processes. Massive apoptosis was detected in the Folbp1-/- defective tissues, with Bax and activated caspase-3 distributed evenly across the apico-basal axis of the lateral neural plate. 5-Bromodeoxyuridine (BrdU) and PCNA labeling assays revealed a reduced cell proliferation as well. However, telomerase activity was unaltered, arguing against telomere shortening and consequently, chromosomal instability, as the cause of the apoptosis. Notably, Islet-1 and 2H3 immunohistochemistry demonstrated the presence of differentiating neuronal cells, albeit in decreased numbers. Interestingly, Folbp1-/- embryos also elaborated novel neural structures that sprouted orthogonally from the embryonic neuraxis. Assays on the defective craniofacies exhibited similar phenomena, suggesting the neural crest precursor population that gives rise to both these structures is selectively vulnerable to Folbp1 inactivation. The results demonstrate a prominent role of Folbp1 in the regional regulation of apoptosis and cell proliferation that underlies the aberrant neural tube and craniofacial defects.
Collapse
Affiliation(s)
- Louisa S Tang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030-3303, USA
| | | | | | | | | |
Collapse
|
45
|
Spiegelstein O, Gould A, Wlodarczyk B, Tsie M, Lu X, Le C, Troen A, Selhub J, Piedrahita JA, Salbaum JM, Kappen C, Melnyk S, James J, Finnell RH. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies. Toxicol Appl Pharmacol 2005; 203:18-26. [PMID: 15694460 PMCID: PMC3938173 DOI: 10.1016/j.taap.2004.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Accepted: 07/21/2004] [Indexed: 01/13/2023]
Abstract
Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2-/-) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2-/- and Folbp2+/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ofer Spiegelstein
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Amy Gould
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- NIDCR T32 Fellow, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Bogdan Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Marlene Tsie
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Xiufen Lu
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chris Le
- Department of Public Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Aron Troen
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jacob Selhub
- Vitamin Metabolism and Neurocognitive Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - J. Michael Salbaum
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Claudia Kappen
- S.C. Johnson Medical Research Center, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
- Corresponding author: Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030. Fax: +1 713 677 7790. (R.H. Finnell)
| |
Collapse
|
46
|
Abstract
Congenital heart disease will be the next frontier for prevention by periconceptional management of homocysteine and its metabolites by folate supplementation. Evidence for the connection between maternal and fetal folate metabolism and congenital malformations of the cardiovascular system is reviewed including possible applications to the large population of patients at risk for a child with congenital heart disease.
Collapse
Affiliation(s)
- James C Huhta
- University of South Florida College of Medicine, St. Petersburg, Florida 33701, USA.
| | | |
Collapse
|
47
|
Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol 2005; 16:608-15. [PMID: 15703271 DOI: 10.1681/asn.2004080711] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal tubular reabsorption of filtered folate is essential for the conservation and normal homeostasis of this important vitamin. Different molecular mechanisms have been implicated in epithelial folate transport, including folate receptors. Defective expression or antibody inactivation of these is associated with embryonic defects also correlated with low folate intake; however, their contribution to renal tubular folate reabsorption has not been established. With the use of targeted inactivation of the folate binding protein 1 (folbp1) and folate binding protein 2 (folbp2) genes in mice, the role of folate receptors in renal epithelial folate reabsorption was evaluated during low and normal folate intake. Inactivation of folbp1 was associated with (1) loss of (3)H-folic acid binding to crude kidney membranes, (2) increase in renal folate clearance, and (3) increase in urinary excretion and decrease in renal uptake of injected (3)H-methyltetrahydrofolate. No changes in renal folate handling were observed as a result of folbp2 inactivation. Thus, folbp1 is essential for normal renal tubular folate reabsorption, preventing excessive urinary folate loss. Folbp1 is heavily expressed in choroid plexus, yolk sac, and placenta, supporting a role of folbp1 in folate transport in other tissues. The greatest significance of folbp1 for renal folate uptake was observed at conditions of low folate intake, providing a possible explanation for the ability of folate supplementation to prevent developmental defects associated with folbp1 inactivation.
Collapse
Affiliation(s)
- Henrik Birn
- Department of Cell Biology, Institute of Anatomy, University of Aarhus, University Park, Building 234, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
48
|
Tang LS, Wlodarczyk BJ, Santillano DR, Miranda RC, Finnell RH. Developmental consequences of abnormal folate transport during murine heart morphogenesis. ACTA ACUST UNITED AC 2005; 70:449-58. [PMID: 15259034 DOI: 10.1002/bdra.20043] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Folic acid is essential for the synthesis of nucleotides and methyl transfer reactions. Folic acid-binding protein one (Folbp1) is the primary mediator of folic acid transport into murine cells. Folbp1 knockout mouse embryos die in utero with multiple malformations, including severe congenital heart defects (CHDs). Although maternal folate supplementation is believed to prevent human conotruncal heart defects, its precise role during cardiac morphogenesis remains unclear. In this study, we examined the role of folic acid on the phenotypic expression of heart defects in Folbp1 mice, mindful of the importance of neural crest cells to the formation of the conotruncus. METHODS To determine if the Folbp1 gene participates in the commitment and differentiation of the cardiomyocytes, relative levels of dead and proliferating precursor cells in the heart were examined by flow cytometry, Western blot, and immunohistostaining. RESULTS Our studies revealed that impaired folic acid transport results in extensive apoptosis-mediated cell death, which concentrated in the interventricular septum and truncus arteriosus, thus being anatomically restricted to the two regions of congenital heart defects. Together with a reduced proliferative capacity of the cardiomyocytes, the limited size of the available precursor cell pool may contribute to the observed cardiac defects. Notably, there is a substantial reduction in Pax-3 expression in the region of the presumptive migrating cardiac neural crest, suggesting that this cell population may be the most severely affected by the massive cell death. CONCLUSIONS Our findings demonstrate for the first time a prominent role of the Folbp1 gene in mediating susceptibility to heart defects.
Collapse
Affiliation(s)
- Louisa S Tang
- Center for Environmental and Genetic Medicine, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
49
|
Spiegelstein O, Mitchell LE, Merriweather MY, Wicker NJ, Zhang Q, Lammer EJ, Finnell RH. Embryonic development of folate binding protein-1 (Folbp1) knockout mice: Effects of the chemical form, dose, and timing of maternal folate supplementation. Dev Dyn 2005; 231:221-31. [PMID: 15305303 DOI: 10.1002/dvdy.20107] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inactivation of folate binding protein-1 (Folbp1) adversely impacts murine embryonic development, as nullizygous embryos (Folbp1(-/-)) die in utero. Administration of folinic acid (N5-formyl-tetrahydrofolate) to Folbp1-deficient dams before and throughout gestation rescues the majority of embryos from premature death; however, a portion of surviving embryos develop structural malformations, including neural tube defects. We examined whether maternal supplementation with L-N5-methyl-tetrahydrofolate (L-5M-THF) has superior protective effects on embryonic development of Folbp1(-/-) fetuses compared with L-N5-formyl-tetrahydrofolate (L-5F-THF). We also examined the critical period during gestation when folate supplementation is most beneficial to the developing Folbp1(-/-) embryos. Folbp1(-/-) pups presented with a range of malformations involving the neural tube, craniofacies, eyes, and abdominal wall. The frequencies of these malformations decreased with increasing folate dose, regardless of the form used. There was no additional benefit provided by L-5M-THF compared with L-5F-THF. Despite rescuing the phenotype in Folbp1(-/-) embryos, no significant elevation of Folbp1(-/-) maternal folate levels was observed with supplementation.
Collapse
Affiliation(s)
- Ofer Spiegelstein
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|