1
|
Rallis D, Baltogianni M, Kapetaniou K, Kosmeri C, Giapros V. Bioinformatics in Neonatal/Pediatric Medicine-A Literature Review. J Pers Med 2024; 14:767. [PMID: 39064021 PMCID: PMC11277633 DOI: 10.3390/jpm14070767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Bioinformatics is a scientific field that uses computer technology to gather, store, analyze, and share biological data and information. DNA sequences of genes or entire genomes, protein amino acid sequences, nucleic acid, and protein-nucleic acid complex structures are examples of traditional bioinformatics data. Moreover, proteomics, the distribution of proteins in cells, interactomics, the patterns of interactions between proteins and nucleic acids, and metabolomics, the types and patterns of small-molecule transformations by the biochemical pathways in cells, are further data streams. Currently, the objectives of bioinformatics are integrative, focusing on how various data combinations might be utilized to comprehend organisms and diseases. Bioinformatic techniques have become popular as novel instruments for examining the fundamental mechanisms behind neonatal diseases. In the first few weeks of newborn life, these methods can be utilized in conjunction with clinical data to identify the most vulnerable neonates and to gain a better understanding of certain mortalities, including respiratory distress, bronchopulmonary dysplasia, sepsis, or inborn errors of metabolism. In the current study, we performed a literature review to summarize the current application of bioinformatics in neonatal medicine. Our aim was to provide evidence that could supply novel insights into the underlying mechanism of neonatal pathophysiology and could be used as an early diagnostic tool in neonatal care.
Collapse
Affiliation(s)
- Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| | - Konstantina Kapetaniou
- Department of Pediatrics, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (K.K.); (C.K.)
| | - Chrysoula Kosmeri
- Department of Pediatrics, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (K.K.); (C.K.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45110 Ioannina, Greece; (D.R.); (M.B.)
| |
Collapse
|
2
|
Tamkeen N, Farooqui A, Alam A, Najma, Tazyeen S, Ahmad MM, Ahmad N, Ishrat R. Identification of common candidate genes and pathways for Spina Bifida and Wilm's Tumor using an integrative bioinformatics analysis. J Biomol Struct Dyn 2024; 42:977-992. [PMID: 37051780 DOI: 10.1080/07391102.2023.2199080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
Spina Bifida (SB) and Wilm's Tumor (WT) are conditions, both associated with children. Several studies have shown that WT later develops in SB patients, which led us to elucidate common key genes and linked pathways of both conditions, aimed at their concurrent therapeutic management. For this, integrated bioinformatics analysis was employed. A comprehensive manual curation of genes identified 133 and 139 genes associated with SB and WT, respectively, which were used to construct a single protein-protein interaction (PPI) network. Topological parameters analysis of the network showed its scale-free and hierarchical nature. Centrality-based analysis of the network identified 116 hubs, of which, 6 were called the key genes attributed to being common between SB and WT besides being the hubs. Gene enrichment analysis of the 5 most essential modules, identified important biological processes and pathways possibly linking SB to WT. Additionally, miRNA-key gene-transcription factor (TF) regulatory network elucidated a few important miRNAs and TFs that regulate our key genes. In closing, we put forward TP53, DICER1, NCAM1, PAX3, PTCH1, MTHFR; hsa-mir-107, hsa-mir-137, hsa-mir-122, hsa-let-7d; and YY1, SOX4, MYC, STAT3; key genes, miRNAs and TFs, respectively, as the key regulators. Further, MD simulation studies of wild and Glu429Ala forms of MTHFR proteins showed that there is a slight change in MTHFR protein structure due to Glu429Ala polymorphism. We anticipate that the interplay of these three entities will be an interesting area of research to explore the regulatory mechanism of SB and WT and may serve as candidate target molecules to diagnose, monitor, and treat SB and WT, parallelly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Naaila Tamkeen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Najma
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Mohd Murshad Ahmad
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Deal KK, Chandrashekar AS, Beaman MM, Branch MC, Buehler DP, Conway SJ, Southard-Smith EM. Altered sacral neural crest development in Pax3 spina bifida mutants underlies deficits of bladder innervation and function. Dev Biol 2021; 476:173-188. [PMID: 33839113 DOI: 10.1016/j.ydbio.2021.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022]
Abstract
Mouse models of Spina bifida (SB) have been instrumental for identifying genes, developmental processes, and environmental factors that influence neurulation and neural tube closure. Beyond the prominent neural tube defects, other aspects of the nervous system can be affected in SB with significant changes in essential bodily functions such as urination. SB patients frequently experience bladder dysfunction and SB fetuses exhibit reduced density of bladder nerves and smooth muscle although the developmental origins of these deficits have not been determined. The Pax3 Splotch-delayed (Pax3Sp-d) mouse model of SB is one of a very few mouse SB models that survives to late stages of gestation. Through analysis of Pax3Sp-d mutants we sought to define how altered bladder innervation in SB might arise by tracing sacral neural crest (NC) development, pelvic ganglia neuronal differentiation, and assessing bladder nerve fiber density. In Pax3Sp-d/Sp-d fetal mice we observed delayed migration of Sox10+ NC-derived progenitors (NCPs), deficient pelvic ganglia neurogenesis, and reduced density of bladder wall innervation. We further combined NC-specific deletion of Pax3 with the constitutive Pax3Sp-d allele in an effort to generate viable Pax3 mutants to examine later stages of bladder innervation and postnatal bladder function. Neural crest specific deletion of a Pax3 flox allele, using a Sox10-cre driver, in combination with a constitutive Pax3Sp-d mutation produced postnatal viable offspring that exhibited altered bladder function as well as reduced bladder wall innervation and altered connectivity between accessory ganglia at the bladder neck. Combined, the results show that Pax3 plays critical roles within sacral NC that are essential for initiation of neurogenesis and differentiation of autonomic neurons within pelvic ganglia.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Meagan C Branch
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
4
|
Cai S, Quan S, Yang G, Ye Q, Chen M, Yu H, Wang G, Wang Y, Zeng X, Qiao S. One Carbon Metabolism and Mammalian Pregnancy Outcomes. Mol Nutr Food Res 2020; 65:e2000734. [PMID: 33226182 DOI: 10.1002/mnfr.202000734] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Indexed: 12/20/2022]
Abstract
One-carbon metabolism is involved in varieties of physiological processes in mammals, including nucleic acid synthesis, amino acid homeostasis, epigenetic regulation, redox balance and neurodevelopment. The current evidence linking levels of one-carbon nutrients during pregnancy to the development of oocytes, embryos, and placentas, as well as maternal and offspring health, is reviewed. The sources of mammalian one-carbon units, the pathways active in mammalian one-carbon metabolism, the maternal and fetal needs for one-carbon units and their functions during pregnancy are described. The demand for one-carbon metabolism is highest during pregnancy compared to the entire lifetime of a mammal. The primary types of one-carbon metabolism in mammals are the folate cycle, methionine cycle and transsulfuration pathway, which varies at different pregnancy stages (e.g., methylation programming of embryo, neural development of fetus, fetal growth and placenta development). Therefore, an overall consideration of one-carbon metabolism requirements for different pregnancy stages, is called for, specifically, the balance of all nutrients involved, not just one single nutrient in one-carbon metabolism. Moreover, the establishment of an ideal one-carbon metabolism requirement model is suggested according to the requirements for different pregnancy stages to support optimal pregnancy outcomes and maternal and offspring health.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Bio-feed additives, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
5
|
Lin S, Ren A, Wang L, Santos C, Huang Y, Jin L, Li Z, Greene NDE. Aberrant methylation of Pax3 gene and neural tube defects in association with exposure to polycyclic aromatic hydrocarbons. Clin Epigenetics 2019; 11:13. [PMID: 30665459 PMCID: PMC6341549 DOI: 10.1186/s13148-019-0611-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are common and severe congenital malformations. Pax3 is an essential gene for neural tube closure in mice but it is unknown whether altered expression or methylation of PAX3 contributes to human NTDs. We examined the potential role of hypermethylation of Pax3 in the development of NTDs by analyzing human NTD cases and a mouse model in which NTDs were induced by benzo[a]pyrene (BaP), a widely studied polycyclic aromatic hydrocarbon (PAH). METHODS We extracted methylation information of PAX3 in neural tissues from array data of ten NTD cases and eight non-malformed controls. A validation study was then performed in a larger independent population comprising 73 NTD cases and 29 controls. Finally, we examined methylation patterns and expression of Pax3 in neural tissues from mouse embryos of dams exposed to BaP or BaP and vitamin E. RESULTS Seven CpG sites in PAX3 were hypermethylated in NTD fetuses as compared to controls in the array data. In the validation phase, significantly higher methylation levels in the body region of PAX3 were observed in NTD cases than in controls (P = 0.003). And mean methylation intensity in the body region of PAX3 in fetal neural tissues was positively correlated with median concentrations of PAH in maternal serum. In the mouse model, BaP-induced NTDs were associated with hypermethylation of specific CpG sites within both the promoter and body region of Pax3. Supplementation with vitamin E via chow decreased the rate of NTDs, partly recovered the repressed total antioxidant capacity in mouse embryos exposed to BaP, and this was accompanied by the normalization of Pax3 methylation level and gene expression. CONCLUSION Hypermethylation of Pax3 may play a role in the development of NTDs; DNA methylation aberration may be caused by exposure to BaP, with possible involvement of oxidative stress.
Collapse
Affiliation(s)
- Shanshan Lin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.,Division of Birth Cohort Study, and Department of Neonatal Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Linlin Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China.
| | - Chloe Santos
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Yun Huang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Centre, Peking University, Beijing, 100191, China
| | - Nicholas D E Greene
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
6
|
Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans. SCIENTIFICA 2017; 2017:5364827. [PMID: 28286691 PMCID: PMC5327787 DOI: 10.1155/2017/5364827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 05/26/2023]
Abstract
Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.
Collapse
Affiliation(s)
- Siti W. Mohd-Zin
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ahmed I. Marwan
- Laboratory for Fetal and Regenerative Biology, Colorado Fetal Care Center, Division of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, 12700 E 17th Ave, Aurora, CO 80045, USA
| | | | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noraishah M. Abdul-Aziz
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Rashmi, Singh R, Gangopadhyay A, Rani A, Shah M. Identification of functional SNPs in PAX3 gene and in silico analysis of damaging SNPs in relation to neural tube defect. J ANAT SOC INDIA 2015. [DOI: 10.1016/j.jasi.2015.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Goumy C, Gay-Bellile M, Eymard-Pierre E, Kemeny S, Gouas L, Déchelotte P, Gallot D, Véronèse L, Tchirkov A, Pebrel-Richard C, Vago P. De novo 2q36.1q36.3 interstitial deletion involving the PAX3 and EPHA4 genes in a fetus with spina bifida and cleft palate. ACTA ACUST UNITED AC 2014; 100:507-11. [PMID: 24753315 DOI: 10.1002/bdra.23246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND Interstitial 2q36 deletion is a rare event. Only two previously published cases of 2q36 deletions were characterized using array-CGH. This is the first case diagnosed prenatally. METHODS We report on the prenatal diagnosis of a 2q36.1q36.3 interstitial deletion in a fetus with facial dysmorphism, spina bifida, and cleft palate. RESULTS Array-CGH analysis revealed a 5.6 Mb interstitial deletion of the long arm of chromosome 2q36.1q36.3, including the PAX3 and EPHA4 genes. CONCLUSION The present study reinforces the hypothesis that PAX3 haploinsufficiency may be associated with neural tube defects in humans and suggests that the EPHA4 gene might be implicated during palate development. This report also illustrates the added value of array-CGH to detect cryptic chromosomal imbalances in malformed fetuses and to improve genetic counseling prenatally.
Collapse
Affiliation(s)
- Carole Goumy
- Cytogénétique Médicale, Université Clermont1, UFR Médecine, CHU Clermont-Ferrand, CHU Estaing, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao T, Gan Q, Stokes A, Lassiter RNT, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 2013; 141:148-57. [PMID: 24284205 DOI: 10.1242/dev.101550] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-canonical Wnt/planar cell polarity (PCP) signaling plays a primary role in the convergent extension that drives neural tube closure and body axis elongation. PCP signaling gene mutations cause severe neural tube defects (NTDs). However, the role of canonical Wnt/β-catenin signaling in neural tube closure and NTDs remains poorly understood. This study shows that conditional gene targeting of β-catenin in the dorsal neural folds of mouse embryos represses the expression of the homeobox-containing genes Pax3 and Cdx2 at the dorsal posterior neuropore (PNP), and subsequently diminishes the expression of the Wnt/β-catenin signaling target genes T, Tbx6 and Fgf8 at the tail bud, leading to spina bifida aperta, caudal axis bending and tail truncation. We demonstrate that Pax3 and Cdx2 are novel downstream targets of Wnt/β-catenin signaling. Transgenic activation of Pax3 cDNA can rescue the closure defect in the β-catenin mutants, suggesting that Pax3 is a key downstream effector of β-catenin signaling in the PNP closure process. Cdx2 is known to be crucial in posterior axis elongation and in neural tube closure. We found that Cdx2 expression is also repressed in the dorsal PNPs of Pax3-null embryos. However, the ectopically activated Pax3 in the β-catenin mutants cannot restore Cdx2 mRNA in the dorsal PNP, suggesting that the presence of both β-catenin and Pax3 is required for regional Cdx2 expression. Thus, β-catenin signaling is required for caudal neural tube closure and elongation, acting through the transcriptional regulation of key target genes in the PNP.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Agopian AJ, Bhalla AD, Boerwinkle E, Finnell RH, Grove ML, Hixson JE, Shimmin LC, Sewda A, Stuart C, Zhong Y, Zhu H, Mitchell LE. Exon sequencing of PAX3 and T (brachyury) in cases with spina bifida. ACTA ACUST UNITED AC 2013; 97:597-601. [PMID: 23913553 DOI: 10.1002/bdra.23163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Based on studies in animals and humans, PAX3 and T (brachyury) are candidate genes for spina bifida. However, neither gene has been definitively identified as a risk factor for this condition. METHODS Sanger sequencing was used to identify variants in all PAX3 and T exons and promoter regions in 114 spina bifida cases. For known variants, allele frequencies in cases were compared with those from public databases using unadjusted odds ratios. Novel variants were genotyped in parents and assessed for predicted functional impact. RESULTS We identified common variants in PAX3 (n = 2) and T (n = 3) for which the allele frequencies in cases were significantly different from those reported in at least one public database. We also identified novel variants in both PAX3 (n = 11) and T (n = 1) in spina bifida cases. Several of the novel PAX3 variants are predicted to be highly conserved and/or impact gene function or expression. CONCLUSION These studies provide some evidence that common variants of PAX3 and T are associated with spina bifida. Rare and novel variants in these genes were also identified in affected individuals. However, additional studies will be required to determine whether these variants influence the risk of spina bifida.
Collapse
Affiliation(s)
- A J Agopian
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wlodarczyk BJ, Palacios AM, Chapa CJ, Zhu H, George TM, Finnell RH. Genetic basis of susceptibility to teratogen induced birth defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:215-26. [PMID: 21766441 DOI: 10.1002/ajmg.c.30314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Birth defects remain the leading cause of infant death in US. The field of teratology has been focused on the causes and underlying mechanisms of birth defects for decades, yet our understanding of these critical issues remain unacceptably vague. Conclusions from years of animal and human studies made it clear that the vast majority of birth defects have multifactorial origins, with contributions from environmental and genetic factors. The environment comprises not only of the physical, biological, and chemical external environment surrounding the pregnant woman, but it also includes the internal environment of the woman's body that interact with the developing embryo in a complex fashion. The importance of maternal and embryonic genetic factors consisting of countless genetic variants/mutations that exist within every individual contribute to birth defect susceptibility is only now being more fully appreciated. This great complexity of the genome and its diversity within individuals and populations seems to be the principal reason why the same teratogenic exposure can induce severe malformation in one embryo, while fail to do so to other exposed embryos. As the interaction between genetic and environmental factors has long been recognized as the first "Principle of Teratology" by Wilson and Warkany [1965. Teratology: Principles and techniques. Chicago: University of Chicago Press], it is only recently that the appropriate investigative tools have been developed with which to fully investigate this fundamental principle. The introduction of high throughput technologies like whole genome sequencing or genome-wide association studies are promising to deliver an enormous amount of new data that will shed light on the genomic factors that contribute susceptibility to environmental teratogens. In this review, we attempt to summarize the epidemiological and experimental literature concerning birth defects whose phenotypic expression can be clearly related to the interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S, Stabler SP, Allen RH, Stover PJ. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am J Clin Nutr 2011; 93:789-98. [PMID: 21346092 PMCID: PMC3057548 DOI: 10.3945/ajcn.110.002766] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Folic acid supplementation prevents the occurrence and recurrence of neural tube defects (NTDs), but the causal metabolic pathways underlying folic acid-responsive NTDs have not been established. Serine hydroxymethyltransferase (SHMT1) partitions folate-derived one-carbon units to thymidylate biosynthesis at the expense of cellular methylation, and therefore SHMT1-deficient mice are a model to investigate the metabolic origin of folate-associated pathologies. OBJECTIVES We examined whether genetic disruption of the Shmt1 gene in mice induces NTDs in response to maternal folate and choline deficiency and whether a corresponding disruption in de novo thymidylate biosynthesis underlies NTD pathogenesis. DESIGN Shmt1 wild-type, Shmt1(+/-), and Shmt1(-/-) mice fed either folate- and choline-sufficient or folate- and choline-deficient diets were bred, and litters were examined for the presence of NTDs. Biomarkers of impaired folate metabolism were measured in the dams. In addition, the effect of Shmt1 disruption on NTD incidence was investigated in Pax3(Sp) mice, an established folate-responsive NTD mouse model. RESULTS Shmt1(+/-) and Shmt1(-/-) embryos exhibited exencephaly in response to maternal folate and choline deficiency. Shmt1 disruption on the Pax3(Sp) background exacerbated NTD frequency and severity. Pax3 disruption impaired de novo thymidylate and purine biosynthesis and altered amounts of SHMT1 and thymidylate synthase protein. CONCLUSIONS SHMT1 is the only folate-metabolizing enzyme that has been shown to affect neural tube closure in mice by directly inhibiting folate metabolism. These results provide evidence that disruption of Shmt1 expression causes NTDs by impairing thymidylate biosynthesis and shows that changes in the expression of genes that encode folate-dependent enzymes may be key determinates of NTD risk.
Collapse
Affiliation(s)
- Anna E Beaudin
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Au KS, Ashley-Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and other neural tube defects. DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2010; 16:6-15. [PMID: 20419766 PMCID: PMC3053142 DOI: 10.1002/ddrr.93] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public health officials to design and implement policies to prevent NTD pregnancies, and (c) individuals to take precautions to reduce the chance of having an NTD-affected pregnancy. Despite extensive research, our knowledge of the genetic etiology of human NTDs is limited. Although more than 200 small animal models with NTDs exist, most of these models do not replicate the human disease phenotype. Over a hundred candidate genes have been examined for risk association to human SB. The candidate genes studied include those important in folic acid metabolism, glucose metabolism, retinoid metabolism, and apoptosis. Many genes that regulate transcription in early embryogenesis and maintain planar cell polarity have also been tested as candidates. Additionally, genes identified through mouse models of NTDs have been explored as candidates. We do not know how many genes in the human genome may confer risk for NTDs in human. Less than 20% of the studied candidate genes have been determined to confer even a minor effect on risk association. Many studies have provided conflicting conclusions due to limitations in study design that potentially affect the power of statistical analysis. Future directions such as genomewide association studies (GWAS) and whole exome or even whole genome sequencing are discussed as possible avenues to identify genes that affect risk for human NTDs.
Collapse
Affiliation(s)
- Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, The University of Texas, Medical School at Houston, Houston, Texas
| | - Allison Ashley-Koch
- Department of Medicine, Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, The University of Texas, Medical School at Houston, Houston, Texas
| |
Collapse
|
14
|
Abstract
Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene-gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect 'private' and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis.
Collapse
|
15
|
Abstract
Neural tube defects (NTDs) represent a common group of severe congenital malformations of the central nervous system. They result from failure of neural tube closure during early embryonic life. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. Despite a long history of etiologic studies, the molecular and cellular pathogenic mechanisms underlining NTDs remain poorly understood. The major epidemiologic finding in NTDs is the protective effect of perinatal folic acid supplementation that reduces their risk by 60%-70%. Genetic studies in NTDs have focused mainly on folate-related genes and identified a few significant associations between variants in these genes and an increased risk for NTDs. The candidate gene approach investigating genes involved in neurulation and inferred from animal models has faced limited success in identifying major causative genes predisposing to NTDs. However, we are witnessing a rapid and impressive progress in understanding the genetic basis of NTDs, based mainly on the development of whole genome innovative technologies and the powerful tool of animal models.
Collapse
|
16
|
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 2009; 75:409-23. [PMID: 19459879 DOI: 10.1111/j.1399-0004.2009.01174.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is generally understood that both genetic and environmental factors contribute to the highly complex etiology of structural birth defects, including neural tube defects, oral clefts and congenital heart defects, by disrupting highly regulated embryonic developmental processes. The intrauterine environment of the developing embryo/fetus is determined by maternal factors such as health/disease status, lifestyle, medication, exposure to environmental teratogens, as well as the maternal genotype. Certain genetic characteristics of the embryo/fetus also predispose it to developmental abnormalities. Epidemiologic and animal studies conducted over the last few decades have suggested that the interplay between genes and environmental factors underlies the etiological heterogeneity of these defects. It is now widely believed that the study of gene-environment interactions will lead to better understanding of the biological mechanisms and pathological processes that contribute to the development of complex birth defects. It is only through such an understanding that more efficient measures will be developed to prevent these severe, costly and often deadly defects. In this review, we attempt to summarize the complex clinical and experimental literature on current hypotheses of interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. These include maternal folate nutritional status, maternal diabetes/obesity-related conditions, and maternal exposure to selected medications and environmental contaminants. Our goal is to highlight the potential gene-environment interactions affecting early embryogenesis that deserve comprehensive study.
Collapse
Affiliation(s)
- H Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
17
|
Greene NDE, Massa V, Copp AJ. Understanding the causes and prevention of neural tube defects: Insights from the splotch mouse model. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2009; 85:322-30. [PMID: 19180568 DOI: 10.1002/bdra.20539] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Splotch mutant mice develop neural tube defects (NTDs), comprising exencephaly and/or spina bifida, as well as neural crest-related defects and abnormalities of limb musculature. Defects in splotch mice result from mutations in Pax3, and some human NTDs may also result from mutations in the human PAX3 gene. Pax3 encodes a transcription factor whose function may influence expression of multiple downstream genes associated with a variety of cellular properties (including apoptosis, adhesion, proliferation, and differentiation), that could be important for neural tube closure. The frequency of NTDs varies between mutant alleles and is also influenced by genetic background and environmental factors. Notably, splotch provides a model for folic acid-preventable NTDs, and conversely, dietary folate deficiency exacerbates NTDs. Understanding the molecular and cellular basis of splotch NTDs, as well as the mechanisms by which the frequency of defects is influenced by genetic and environmental factors (such as sub-optimal folate status), may provide insight into the causation of these severe congenital malformations in humans.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Neural Development Unit, Institute of Child Health, University College London, London, United Kingdom.
| | | | | |
Collapse
|
18
|
Jalali A, Aldinger KA, Chary A, Mclone DG, Bowman RM, Le LC, Jardine P, Newbury-Ecob R, Mallick A, Jafari N, Russell EJ, Curran J, Nguyen P, Ouahchi K, Lee C, Dobyns WB, Millen KJ, Pina-Neto JM, Kessler JA, Bassuk AG. Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Hum Genet 2008; 123:237-45. [PMID: 18204864 PMCID: PMC2822644 DOI: 10.1007/s00439-008-0467-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/10/2008] [Indexed: 11/29/2022]
Abstract
We previously reported a Vietnamese-American family with isolated autosomal dominant occipital cephalocele. Upon further neuroimaging studies, we have recharacterized this condition as autosomal dominant Dandy-Walker with occipital cephalocele (ADDWOC). A similar ADDWOC family from Brazil was also recently described. To determine the genetic etiology of ADDWOC, we performed genome-wide linkage analysis on members of the Vietnamese-American and Brazilian pedigrees. Linkage analysis of the Vietnamese-American family identified the ADDWOC causative locus on chromosome 2q36.1 with a multipoint parametric LOD score of 3.3, while haplotype analysis refined the locus to 1.1 Mb. Sequencing of the five known genes in this locus did not identify any protein-altering mutations. However, a terminal deletion of chromosome 2 in a patient with an isolated case of Dandy-Walker malformation also encompassed the 2q36.1 chromosomal region. The Brazilian pedigree did not show linkage to this 2q36.1 region. Taken together, these results demonstrate a locus for ADDWOC on 2q36.1 and also suggest locus heterogeneity for ADDWOC.
Collapse
Affiliation(s)
- Ali Jalali
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ajit Chary
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David G. Mclone
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robin M. Bowman
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luan Cong Le
- HoChiMinh City Hospital, HoChiMinh City, Vietnam
| | - Phillip Jardine
- Department of Paediatrics, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Andrew Mallick
- Department of Paediatrics, Yeovil Hospital, Somerset, UK
| | - Nadereh Jafari
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric J. Russell
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Curran
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pam Nguyen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karim Ouahchi
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, UK
| | - Charles Lee
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, UK
| | - William B. Dobyns
- Departments of Human Genetics and Neurology, The University of Chicago, Chicago, IL, USA
| | - Kathleen J. Millen
- Departments of Human Genetics and Neurology, The University of Chicago, Chicago, IL, USA
| | - Joao M. Pina-Neto
- Department of Genetics, School of Medicine, Universidade de São Paolo, Ribeirão Preto, Brazil
| | - John A. Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander G. Bassuk
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Abstract
Neural tube defects (NTDs) represent a common group of severe congenital malformations that result from failure of neural tube closure during early development. Their etiology is quite complex involving environmental and genetic factors and their underlying molecular and cellular pathogenic mechanisms remain poorly understood. Animal studies have recently demonstrated an essential role for the planar cell polarity pathway (PCP) in mediating a morphogenetic process called convergent extension during neural tube formation. Alterations in members of this pathway lead to NTDs in vertebrate models, representing novel and exciting candidates for human NTDs. Genetic studies in NTDs have focused mainly on folate-related genes based on the finding that perinatal folic acid supplementation reduces the risk of NTDs by 60-70%. A few variants in these genes have been found to be significantly associated with an increased risk for NTDs. The candidate gene approach investigating genes involved in neurulation has failed to identify major causative genes in the etiology of NTDs. Despite this history of generally negative findings, we are achieving a rapid and impressive progress in understanding the genetic basis of NTDs, based mainly on the powerful tool of animal models.
Collapse
Affiliation(s)
- Z Kibar
- CHU Sainte-Justine Research Center and Department of Obstetrics and Gynecology, University of Montreal, Montreal, QC, Canada.
| | | | | |
Collapse
|