1
|
Zhang J, Yang L, Sun Y, Zhang L, Wang Y, Liu M, Li X, Liang Y, Zhao H, Liu Z, Qiu Z, Zhang T, Xie J. Up-regulation of miR-10a-5p expression inhibits the proliferation and differentiation of neural stem cells by targeting Chl1. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1483-1497. [PMID: 38841745 PMCID: PMC11532229 DOI: 10.3724/abbs.2024078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024] Open
Abstract
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Lihong Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqing Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Li Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yufei Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ming Liu
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Xiujuan Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
2
|
Wang G, Song S, Shen WB, Reece EA, Yang P. MicroRNA-322 overexpression reduces neural tube defects in diabetic pregnancies. Am J Obstet Gynecol 2024; 230:254.e1-254.e13. [PMID: 37531989 PMCID: PMC10828117 DOI: 10.1016/j.ajog.2023.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Shicong Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
3
|
Lin S, Wang C, Li Z, Qiu X. Distinct H3K27me3 and H3K27ac Modifications in Neural Tube Defects Induced by Benzo[a]pyrene. Brain Sci 2023; 13:brainsci13020334. [PMID: 36831877 PMCID: PMC9954656 DOI: 10.3390/brainsci13020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The pathological mechanisms of neural tube defects (NTDs) are not yet fully understood. Although the dysregulation of histone modification in NTDs is recognized, it remains to be fully elucidated on a genome-wide level. We profiled genome-wide H3K27me3 and H3K27ac occupancy by CUT&Tag in neural tissues from ICR mouse embryos with benzo[a]pyrene (BaP)-induced NTDs (250 mg kg-1) at E9.5. Furthermore, we performed RNA sequencing (RNA-seq) to investigate the regulation of histone modifications on gene expressions. Gene ontology and KEGG analysis were conducted to predict pathways involved in the development of NTDs. Our analysis of histone 3 lysine 27 modification in BaP-NTD neural tissues compared to BaP-nonNTD revealed 6045 differentially trimethylated regions and 3104 acetylated regions throughout the genome, respectively. The functional analysis identified a number of pathways uniquely enriched for BaP-NTD embryos, including known neurodevelopment related pathways such as anterior/posterior pattern specification, ephrin receptor signaling pathway, neuron migration and neuron differentiation. RNA-seq identified 423 differentially expressed genes (DEGs) between BaP-NTD and BaP-nonNTD group. The combination analysis of CUT&Tag and RNA-seq found that 55 DEGs were modified by H3K27me3 and 25 by H3K27ac in BaP-NTD, respectively. In the transcriptional regulatory network, transcriptional factors including Srsf1, Ume6, Zbtb7b, and Cad were predicated to be involved in gene expression regulation. In conclusion, our results provide an overview of histone modifications during neural tube closure and demonstrate a key role of genome-wide alterations in H3K27me3 and H3K27ac in NTDs corresponding with changes in transcription profiles.
Collapse
Affiliation(s)
- Shanshan Lin
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chengrui Wang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiwen Li
- Key Laboratory of Reproductive Health, Institute of Reproductive and Child Health, National Health Commission of the China, Beijing 100191, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Department of Women’s Health, Guangdong Provincial Key Clinical Specialty of Woman and Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Disease and Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (Z.L.); or (X.Q.); Tel.: +86-010-82801760 (Z.L.); Tel./Fax: +86-020-38367160 (X.Q.)
| |
Collapse
|
4
|
Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis 2021; 59:e23455. [PMID: 34665506 PMCID: PMC8599664 DOI: 10.1002/dvg.23455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) are among the most common birth defects, with a prevalence of close to 19 per 10,000 births worldwide. The etiology of NTDs is complex involving the interplay of genetic and environmental factors. Since nutrient deficiency is a risk factor and dietary changes are the major preventative measure to reduce the risk of NTDs, a more detailed understanding of how common micronutrient imbalances contribute to NTDs is crucial. While folic acid has been the most discussed environmental factor due to the success that population-wide fortification has had on prevention of NTDs, folic acid supplementation does not prevent all NTDs. The imbalance of several other micronutrients has been implicated as risks for NTDs by epidemiological studies and in vivo studies in animal models. In this review, we highlight recent literature deciphering the multifactorial mechanisms underlying NTDs with an emphasis on mouse and human data. Specifically, we focus on advances in our understanding of how too much or too little retinoic acid, zinc, and iron alter gene expression and cellular processes contributing to the pathobiology of NTDs. Synthesis of the discussed literature reveals common cellular phenotypes found in embryos with NTDs resulting from several micronutrient imbalances. The goal is to combine knowledge of these common cellular phenotypes with mechanisms underlying micronutrient imbalances to provide insights into possible new targets for preventative measures against NTDs.
Collapse
Affiliation(s)
- Anneke Dixie Kakebeen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Lee Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Xu C, Shen WB, Reece EA, Hasuwa H, Harman C, Kaushal S, Yang P. Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. SCIENCE ADVANCES 2021; 7:7/27/eabf5089. [PMID: 34193422 PMCID: PMC8245044 DOI: 10.1126/sciadv.abf5089] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Neural tube defects (NTDs) are the second most common structural birth defect. Senescence, a state of permanent cell cycle arrest, occurs only after neural tube closure. Maternal diabetes-induced NTDs are severe diabetic complications that lead to infant mortality or lifelong morbidity and may be linked to premature senescence. Here, we report that premature senescence occurs in the mouse neuroepithelium and disrupts neurulation, leading to NTDs in diabetic pregnancy. Premature senescence and NTDs were abolished by knockout of the transcription factor Foxo3a, the miR-200c gene, and the cell cycle inhibitors p21 and p27; transgenic expression of the dominant-negative FoxO3a mutant; or the senomorphic rapamycin. Double transgenic expression of p21 and p27 mimicked maternal diabetes in inducing premature neuroepithelium senescence and NTDs. These findings integrate transcription- and epigenome-regulated miRNAs and cell cycle regulators in premature neuroepithelium senescence and provide a mechanistic basis for targeting premature senescence and NTDs using senomorphics.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hidetoshi Hasuwa
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Christopher Harman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sunjay Kaushal
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Nishimura N, Kumaki T, Murakami H, Enomoto Y, Tsurusaki Y, Tsuji M, Tsuyusaki Y, Goto T, Aida N, Kurosawa K. Expanding the phenotype of COL4A1-related disorders-Four novel variants. Brain Dev 2020; 42:639-645. [PMID: 32565002 DOI: 10.1016/j.braindev.2020.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE COL4A1 variant causes severe central nervous system (CNS) anomalies, including hydranencephaly. However, the pathogenic mechanism underlying the COL4A1 phenotype remains unclear. Here, we report de novo COL4A1 variants in four Japanese patients with typical or rare CNS involvement and exhibiting diverse phenotypes. METHODS We identified and enrolled four patients with white matter abnormalities and cerebral structural defects suggestive of cerebrovascular disease. Genetic analysis was performed using panel sequencing. RESULTS All the patients were perinatally asymptomatic during the infantile period but exhibited developmental delay and growth retardation later. All the patients exhibited CNS symptoms, including psychomotor disability, spastic paralysis, and epilepsy. Brain magnetic resonance imaging revealed hydranencephaly (n = 1), ventriculomegaly (n = 4) associated with cerebral hemorrhage, and atretic encephalocele (n = 1). Three patients had developed congenital cataract, while two had hematuria. We identified two COL4A1 missense variants [exon32:c.2555G > A p.(Gly852Asp), exon40:c.3407G > A p.(Gly1136Asp)] and two in frame variants [exon32:c.2603_2609delinsATCCTGA p.(Ala868_Gly870delinsAspProGlu), exon36:c.3054delinsTGTAGAT p.(Leu1018delinsPheValAsp)]. The in frame variants were associated with severe CNS anomalies, hydranencephaly, and severe ventriculomegaly. Atretic encephalocele has never been reported in individuals with COL4A1 variants. CONCLUSIONS Our findings suggest that COL4A1 variants cause variable CNS symptoms. Association between clinical phenotypes and each COL4A1 variant would clarify their underlying etiologies.
Collapse
Affiliation(s)
- Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Megumi Tsuji
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan.
| |
Collapse
|
7
|
Mukhopadhyay P, Greene RM, Pisano MM. MicroRNA targeting of the non-canonical planar cell polarity pathway in the developing neural tube. Cell Biochem Funct 2020; 38:905-920. [PMID: 32129905 DOI: 10.1002/cbf.3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 11/05/2022]
Abstract
MicroRNAs (miRNAs) provide context-dependent transcriptional regulation of genes comprising signalling networks throughout the developing organism including morphogenesis of the embryonic neural tube (NT). Using a high-sensitivity, high-coverage microarray analysis platform, miRNA expression in the murine embryonic NT during the critical stages of its formation was examined. Analysis of a number of differentially expressed (DE) miRNAs enabled identification of several gene targets associated with cellular processes essential for normal NT development. Using computational pathway analysis, interactive biologic networks and functional relationships connecting DE miRNAs with their targeted messenger RNAs (mRNAs) were identified. Potential mRNA targets and a key signal transduction pathway governing critical cellular processes indispensable for normal mammalian neurulation were also identified. RNA preparations were also used to hybridize both miRNA arrays and mRNA arrays allowing miRNA-mRNA target analysis using data of DE miRNAs and DE mRNAs - co-expressed in the same developing NT tissue samples. Identification of these miRNA targets provides key insight into the epigenetic regulation of NT development as well as into potential mechanistic underpinning of NT defects. SIGNIFICANCE OF THE STUDY: This study underscores the premise that microRNAs are potential coordinators of normal neural tube (NT) formation, via regulation of the crucial, planar cell polarity pathway. Any alteration in their expression during neurulation would result in abnormal NT development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - M Michele Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Yu J, Wang L, Pei P, Li X, Wu J, Qiu Z, Zhang J, Ao R, Wang S, Zhang T, Xie J. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin 2019; 12:76. [PMID: 31856916 PMCID: PMC6921514 DOI: 10.1186/s13072-019-0318-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contribute to NTDs etiology, among them, HOX genes play a key role in neural tube closure. Although abnormal HOX gene expression can lead to NTDs, the underlying pathological mechanisms have not fully been understood. Method We detected that H3K27me3 and expression of the Hox genes in a retinoic acid (RA) induced mouse NTDs model on E8.5, E9.5 and E10.5 using RNA-sequencing and chromatin immunoprecipitation sequencing assays. Furthermore, we quantified 10 Hox genes using NanoString nCounter in brain tissue of fetuses with 39 NTDs patients including anencephaly, spina bifida, hydrocephaly and encephalocele. Results Here, our results showed differential expression in 26 genes with a > 20-fold change in the level of expression, including 10 upregulated Hox genes. RT-qPCR revealed that these 10 Hox genes were all upregulated in RA-induced mouse NTDs as well as RA-treated embryonic stem cells (ESCs). Using ChIP-seq assays, we demonstrate that a decrease in H3K27me3 level upregulates the expression of Hox cluster A–D in RA-induced mouse NTDs model on E10.5. Interestingly, RA treatment led to attenuation of H3K27me3 due to cooperate between UTX and Suz12, affecting Hox gene regulation. Further analysis, in human anencephaly cases, upregulation of 10 HOX genes was observed, along with aberrant levels of H3K27me3. Notably, HOXB4, HOXC4 and HOXD1 expression was negatively correlated with H3K27me3 levels. Conclusion Our results indicate that abnormal HOX gene expression induced by aberrant H3K27me3 levels may be a risk factor for NTDs and highlight the need for further analysis of genome-wide epigenetic modification in NTDs.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xue Li
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
9
|
Zhang J, Yang L, Yu J, Yang Q, Mu J, Xie J. Alteration of the microRNA expression profile and identification of miRNA/mRNA negative regulation pairs in neural tube defects. Acta Biochim Biophys Sin (Shanghai) 2019; 51:761-765. [PMID: 31169880 DOI: 10.1093/abbs/gmz050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Qiaoyan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Mukhopadhyay P, Seelan RS, Greene RM, Pisano MM. Impact of prenatal arsenate exposure on gene expression in a pure population of migratory cranial neural crest cells. Reprod Toxicol 2019; 86:76-85. [PMID: 30953684 DOI: 10.1016/j.reprotox.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States.
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, ULSD, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
11
|
Ramya S, Shyamasundar S, Bay BH, Dheen ST. Maternal Diabetes Alters Expression of MicroRNAs that Regulate Genes Critical for Neural Tube Development. Front Mol Neurosci 2017; 10:237. [PMID: 28798665 PMCID: PMC5531003 DOI: 10.3389/fnmol.2017.00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Maternal diabetes is known to cause neural tube defects (NTDs) in embryos and neuropsychological deficits in infants. Several metabolic pathways and a plethora of genes have been identified to be deregulated in developing brain of embryos by maternal diabetes, although the exact mechanism remains unknown. Recently, miRNAs have been shown to regulate genes involved in brain development and maturation. Therefore, we hypothesized that maternal diabetes alters the expression of miRNAs that regulate genes involved in biological pathways critical for neural tube development and closure during embryogenesis. To address this, high throughput miRNA expression profiling in neural stem cells (NSCs) isolated from the forebrain of embryos from normal or streptozotocin-induced diabetic pregnancy was carried out. It is known that maternal diabetes results in fetal hypoglycemia/hyperglycemia or hypoxia. Hence, NSCs from embryos of control pregnant mice were exposed to low or high glucose or hypoxia in vitro. miRNA pathway analysis revealed distinct deregulation of several biological pathways, including axon guidance pathway, which are critical for brain development in NSCs exposed to different treatments. Among the differentially expressed miRNAs, the miRNA-30 family members which are predicted to target genes involved in brain development was upregulated in NSCs from embryos of diabetic pregnancy when compared to control. miRNA-30b was found to be upregulated while its target gene Sirtuin 1 (Sirt1), as revealed by luciferase assay, was down regulated in NSCs from embryos of diabetic pregnancy. Further, overexpression of miRNA-30b in NSCs, resulted in decreased expression of Sirt1 protein, and altered the neuron/glia ratio. On the other hand, siRNA mediated knockdown of Sirt1 in NSCs promoted astrogenesis, indicating that miRNA-30b alters lineage specification via Sirt1. Overall, these results suggest that maternal diabetes alters the genes involved in neural tube formation via regulating miRNAs.
Collapse
Affiliation(s)
| | | | | | - S. Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University Health System, National University of SingaporeSingapore, Singapore
| |
Collapse
|
12
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, Zhong J, Yang P. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 2017; 8:15182. [PMID: 28474670 PMCID: PMC5424165 DOI: 10.1038/ncomms15182] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Christopher Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Wang
- Department of Obstetrics, Gynecology, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
14
|
Seelan RS, Mukhopadhyay P, Warner DR, Smolenkova IA, Pisano MM, Greene RM. Determinants of orofacial clefting II: Effects of 5-Aza-2'-deoxycytidine on gene methylation during development of the first branchial arch. Reprod Toxicol 2016; 67:100-110. [PMID: 27923600 DOI: 10.1016/j.reprotox.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Defects in development of the secondary palate, which arise from the embryonic first branchial arch (1-BA), can cause cleft palate (CP). Administration of 5-Aza-2'-deoxycytidine (AzaD), a demethylating agent, to pregnant mice on gestational day 9.5 resulted in complete penetrance of CP in fetuses. Several genes critical for normal palatogenesis were found to be upregulated in 1-BA, 12h after AzaD exposure. MethylCap-Seq (MCS) analysis identified several differentially methylated regions (DMRs) in DNA extracted from AzaD-exposed 1-BAs. Hypomethylated DMRs did not correlate with the upregulation of genes in AzaD-exposed 1-BAs. However, most DMRs were associated with endogenous retroviral elements. Expression analyses suggested that interferon signaling was activated in AzaD-exposed 1-BAs. Our data, thus, suggest that a 12-h in utero AzaD exposure demethylates and activates endogenous retroviral elements in the 1-BA, thereby triggering an interferon-mediated response. This may result in the dysregulation of key signaling pathways during palatogenesis, causing CP.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Partha Mukhopadhyay
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Smolenkova
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - M Michele Pisano
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| | - Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Determinants of orofacial clefting I: Effects of 5-Aza-2'-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol 2016; 67:85-99. [PMID: 27915011 DOI: 10.1016/j.reprotox.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
Abstract
In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.
Collapse
|
16
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Ying J, Liu Y, Yang R, Zhang Y, Xu J. miR-100 Inhibits the Growth and Migration of Burn-Denatured Fibroblasts. Med Sci Monit 2016; 22:697-701. [PMID: 26928010 PMCID: PMC4777239 DOI: 10.12659/msm.897443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Burn-denatured dermis is able to regain the function and shape of normal dermis; however, the potential mechanisms are still vague. The aim of this study was to investigate roles of miR-100 involved in the growth and migration of burn-denatured fibroblasts. Material/Methods Quantitative real-time polymerase chain reaction(qRT-PCR) was used to assess the expression of miR-100. Transient transfection of miR-100 mimics and inhibitor was used to up-regulate or down-regulate the expression of miR-100. Cell proliferation and colony formation assay were used to test the cell growth, and wound healing assay and transwell migration assay were used to evaluate the cell migration. Results miR-100 expression was notably downregulated in the burn-denatured fibroblasts compared to normal controls. Functionally, transfection of miR-100 inhibitors improved the growth and migration abilities of burn-denatured fibroblasts. In contrast, upregulation of miR-100 inhibits the growth and migration of burn-denatured fibroblasts. Conclusions Based on these observations, we concluded that miR-100 can inhibit the growth and migration of burn-denatured fibroblasts.
Collapse
Affiliation(s)
- Jianghui Ying
- Burn and Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yunfeng Liu
- Burn and Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Ruijin Yang
- Burn and Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yong Zhang
- Burn and Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jianjun Xu
- Burn and Wound Healing Centre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
18
|
Gu H, Yu J, Dong D, Zhou Q, Wang JY, Fang S, Yang P. High Glucose-Repressed CITED2 Expression Through miR-200b Triggers the Unfolded Protein Response and Endoplasmic Reticulum Stress. Diabetes 2016; 65:149-63. [PMID: 26450995 PMCID: PMC4686950 DOI: 10.2337/db15-0108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
High glucose in vivo and in vitro induces neural tube defects (NTDs). CITED2 (CBP/p300-interacting transactivator with ED-rich tail 2) is essential for neural tube closure. We explored the regulatory mechanism underlying CITED2 expression and its relationship with miRNA and endoplasmic reticulum (ER) stress. miR-200b levels were increased by maternal diabetes or high glucose in vitro, and this increase was abrogated by transgenic overexpression of superoxide dismutase 1 (SOD1) or an SOD1 mimetic. CITED2 was the target of miR-200b and was downregulated by high glucose. Two miR-200b binding sites in the 3'-untranslated region of the CITED2 mRNA were required for inhibiting CITED2 expression. The miR-200b mimic and a CITED2 knockdown mimicked the stimulative effect of high glucose on unfolded protein response (UPR) and ER stress, whereas the miR-200b inhibitor and CITED2 overexpression abolished high glucose-induced UPR signaling, ER stress, and apoptosis. The ER stress inhibitor, 4-phenylbutyrate, blocked CITED2 knockdown-induced apoptosis. Furthermore, the miR-200b inhibitor reversed high glucose-induced CITED2 downregulation, ER stress, and NTDs in cultured embryos. Thus, we showed a novel function of miR-200b and CITED2 in high glucose-induced UPR and ER stress, suggesting that miR-200b and CITED2 are critical for ER homeostasis and NTD formation in the developing embryo.
Collapse
Affiliation(s)
- Hui Gu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Jingwen Yu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Daoyin Dong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
20
|
Zhang Q, Zeng S, Quan C, Lin X. Induction Function of miR-126 in Survival and Proliferation in Neural Stem Cells. Med Sci Monit 2015; 21:3023-7. [PMID: 26445299 PMCID: PMC4601356 DOI: 10.12659/msm.894672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background The aim of this study was to investigate the potential function of miR-126 in neural stem cells (NSCs). Material/Methods Expression level of miR-126 was detected by quantitative real-time PCR (qRT-PCR). MiR-126 overexpression was established by transfecting miR-126 mimics into human NSC lines (HB1.F3 and HB1.A4 cells). Its effects on cell proliferation were studied using cell-counting kit-8 (CCK8) assay, colony formation assays. Flow cytometry was performed to evaluate the effect of miR-126 on cell survival. Results CCK8 assay and colony formation assay showed that overexpression of miR-126 promoted cell proliferation and increased colony numbers in HB1.F3 and HB1.A4 cells. The flow cytometry confirmed the results that miR-126 inhibited cell apoptosis. Conclusions MiR-126 promoted the proliferation and survival of NSCs.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Sheng Zeng
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Chengyuan Quan
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| | - Xiaopo Lin
- Department of Emergency, Pingyang People's Hospital, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
21
|
Li X, Zhao Z. MicroRNA biomarkers for early detection of embryonic malformations in pregnancy. JOURNAL OF BIOMOLECULAR RESEARCH & THERAPEUTICS 2015; 3. [PMID: 25859419 DOI: 10.4172/2167-7956.1000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital birth defects, manifested in newborn infants, are formed during early embryogenesis. Targeted and individualized interventions to prevent birth defects require early detection of risk and signs of developmental abnormalities. Current diagnosis of structural anomalies largely relies on ultrasonography, which can only detect abnormities after their formation in fetuses. Biomolecules, mainly proteins, in maternal blood have been used as indicators of fetal anomalies; however, they lack adequate sensitivity for detecting embryonic malformations. Recently, cell-free microRNAs (miRNAs) have been found in blood and evaluated as biomarkers for diseases. Expression of certain miRNAs in maternal plasma has been shown to be correlated with birth defects in infants. Although their reliability and sensitivity remain to be validated, miRNAs, which can be amplified and sequenced, are potentially sensitive and specific biomarkers for early embryonic dysmorphogenesis.
Collapse
Affiliation(s)
- Xuezheng Li
- Department of Pharmacy, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Pai VP, Lemire JM, Paré JF, Lin G, Chen Y, Levin M. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation. J Neurosci 2015; 35:4366-85. [PMID: 25762681 PMCID: PMC4355204 DOI: 10.1523/jneurosci.1877-14.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/21/2014] [Accepted: 01/14/2015] [Indexed: 12/26/2022] Open
Abstract
Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca(2+) signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Joan M Lemire
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Jean-François Paré
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| | - Gufa Lin
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ying Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts 02155-4243 and
| |
Collapse
|
23
|
Gu H, Yu J, Dong D, Zhou Q, Wang JY, Yang P. The miR-322-TRAF3 circuit mediates the pro-apoptotic effect of high glucose on neural stem cells. Toxicol Sci 2015; 144:186-96. [PMID: 25516495 PMCID: PMC4349142 DOI: 10.1093/toxsci/kfu271] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maternal diabetes increases the risk of neural tube defects (NTDs), and caspase-dependent apoptosis and gene dysregulation are implicated in this disease process. This study investigates the role of miR-322 and its putative target gene, TNF receptor-associated factor 3 (TRAF3), in high glucose-induced apoptosis. miR-322 and TRAF3 expression were assessed in embryos of nondiabetic and diabetic dams, and in neural stem cells under high glucose conditions. Maternal diabetes in vivo and high glucose in vitro significantly down-regulated miR-322 and up-regulated TRAF3 protein expression. Overexpression of the antioxidant enzyme, superoxide dismutase 1 (SOD1), or treatment with the SOD1 mimetic Tempol, abolished the effect of maternal diabetes or high glucose on miR-322 and TRAF3 expression, respectively. A miRNA target prediction algorithm reveals 2 miR-322 binding sites the 3'-untranslated region (UTR) of TRAF3 mRNA. A RNA pull-down assay using biotin-labeled miR-322 revealed that miR-322 interacted with the 3'-UTR of TRAF3 mRNA at one specific binding site. The miR-322 mimic or TRAF3 knockdown blocked high glucose-increased TRAF3 protein expression and apoptosis, whereas the miR-322 inhibitor mimicked the effect of high glucose leading to TRAF3 up-regulation and apoptosis. This study demonstrates that both maternal diabetes and high glucose negatively regulate miR-322 through oxidative stress. miR-322 interacts with the 3'-UTR of TRAF3 and represses its translation. The miR-322-TRAF3 pathway is implicated in high glucose-induced caspase activation and apoptosis.
Collapse
Affiliation(s)
- Hui Gu
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201 *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jingwen Yu
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Daoying Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Qun Zhou
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jian-Ying Wang
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201 *Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China, Department of Biochemistry and Molecular Biology and Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
24
|
Hollins SL, Goldie BJ, Carroll AP, Mason EA, Walker FR, Eyles DW, Cairns MJ. Ontogeny of small RNA in the regulation of mammalian brain development. BMC Genomics 2014; 15:777. [PMID: 25204312 PMCID: PMC4171549 DOI: 10.1186/1471-2164-15-777] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/04/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a pivotal role in coordinating messenger RNA (mRNA) transcription and stability in almost all known biological processes, including the development of the central nervous system. Despite our broad understanding of their involvement, we still have a very sparse understanding of specifically how miRNA contribute to the strict regional and temporal regulation of brain development. Accordingly, in the current study we have examined the contribution of miRNA in the developing rat telencephalon and mesencephalon from just after neural tube closure till birth using a genome-wide microarray strategy. RESULTS We identified temporally distinct expression patterns in both the telencephalon and mesencephalon for both miRNAs and their target genes. We demonstrate direct miRNA targeting of several genes involved with the migration, differentiation and maturation of neurons. CONCLUSIONS Our findings suggest that miRNA have significant implications for the development of neural structure and support important mechanisms that if disrupted, may contribute to or drive neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sharon L Hollins
- />School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- />Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305 Australia
| | - Belinda J Goldie
- />School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- />Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305 Australia
- />Schizophrenia Research Institute, Sydney, NSW Australia
| | - Adam P Carroll
- />School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- />Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305 Australia
| | - Elizabeth A Mason
- />Queensland Brain Institute, University of Queensland, Brisbane, Qld 4072 Australia
| | - Frederick R Walker
- />School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- />Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305 Australia
| | - Darryl W Eyles
- />Queensland Brain Institute, University of Queensland, Brisbane, Qld 4072 Australia
- />Queensland Centre for Mental Health Research, Wacol, Qld, 4076 Australia
| | - Murray J Cairns
- />School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, the University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
- />Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305 Australia
- />Schizophrenia Research Institute, Sydney, NSW Australia
| |
Collapse
|
25
|
Zhu X, Wang H, Liu F, Chen L, Luo W, Su P, Li W, Yu L, Yang X, Cai J. Identification of micro-RNA networks in end-stage heart failure because of dilated cardiomyopathy. J Cell Mol Med 2013; 17:1173-87. [PMID: 23998897 PMCID: PMC4118176 DOI: 10.1111/jcmm.12096] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023] Open
Abstract
Micro-RNAs regulate gene expression by directly binding to the target mRNAs. The goal of the study was to examine the expression profiling of miRNAs in human failing hearts and identify the key miRNAs that regulate molecular signalling networks and thus contribute to this pathological process. The levels of miRNAs and expressed genes were analysed in myocardial biopsy samples from patients with end-stage heart failure (n = 14) and those from normal heart samples (n = 8). Four networks were built including the Gene regulatory network, Signal-Network, miRNA-GO-Network and miRNA-Gene-Network. According to the fold change in the network and probability values in the microarray cohort, RT-PCR was performed to measure the expression of five of the 72 differentially regulated miRNAs. miR-340 achieved statistically significant. miR-340 was identified for the first time in cardiac pathophysiological condition. We overexpressed miR-340 in cultured neonatal rat cardiomyocytes to identify whether miR-340 plays a determining role in the progression of heart failure. ANP, BNP and caspase-3 were significantly elevated in the miR-340 transfected cells compared with controls (P < 0.05). The cross-sectional area of overexpressing miR-340 cardiomyocytes (1952.22 ± 106.59) was greater (P < 0.0001) than controls (1059.99 ± 45.59) documented by Laser Confocal Microscopy. The changes of cellular structure and the volume were statistical significance. Our study provided a comprehensive miRNA expression profiling in the end-stage heart failure and identified miR-340 as a key miRNA contributing to the occurrence and progression of heart failure. Our discoveries provide novel therapeutic targets for patients with heart failure.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pham JT, Gallicano GI. Specification of neural cell fate and regulation of neural stem cell proliferation by microRNAs. AMERICAN JOURNAL OF STEM CELLS 2012; 1:182-195. [PMID: 23671807 PMCID: PMC3636732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 06/02/2023]
Abstract
In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous system, particularly the brain, and its progenitor cells offer opportunities to examine miRNA function due to the myriad different cell types, numerous functionally distinct regions, and fluidly dynamic connections between them. This review aims to summarize current understanding of miRNA regulation in neurodevelopment, beginning with miRNAs that establish a general neural fate in cells. Particular attention is given to miR-124, the most abundant brain-specific miRNA, along with its key regulators and targets as an example of the potentially far-reaching effects of miRNAs. These modulators and mediators enable miRNAs to subtly calibrate cellular proliferation and differentiation. To better understand their mechanisms of action, miRNA profiles in distinct populations and regions of cells have been examined as well as miRNAs that regulate proliferation of stem cells, a process marked by dramatic morphological shifts in response to temporally subtle and refined shifts in gene expression. To tease out the complex interactions of miRNAs and stem cells more accurately, future studies will require more sensitive methods of assessing miRNA expression and more rigorous models of miRNA pathways. Thorough characterization of similarities and differences in specific miRNAs' effects in different species is vital to developing better disease models and therapeutics using miRNAs.
Collapse
Affiliation(s)
| | - G Ian Gallicano
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown UniversityWashington DC, USA
| |
Collapse
|
27
|
Abstract
Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, many researchers have primarily focused on identifying cellular or chemical sources of neuropathic pain or have approached neuropathic pain via the basis of biological study. We investigated whether both mmu-mir-23b (miR23b) and NADPH oxidase 4 (NOX4) antibody infusion can alleviate neuropathic pain by compensating for abnormally downregulated miR23b via reducing the expression of its target gene, NOX4, a reactive oxygen species (ROS) family member overexpressed in neuropathic pain. Ectopic miR23b expression effectively downregulated NOX4 and finally normalized glutamic acid decarboxylase 65/67 expression. Moreover, animals with neuropathic pain showed significantly improved paw withdrawal thresholds (PWTs) following miR23b infusion. Normalizing miR23b expression in tissue lesions, caused by neuropathic pain induction, reduced inflammatory mediators and increased several ROS scavengers. Moreover, γ-aminobutyric acid (GABA)ergic neurons coexpressed suboptimal levels of miR23b and elevated NOX4/ROS after pain induction at the cellular level. MiR23b finally protects GABAergic neurons against ROS/p38/c-Jun N-terminal kinase (JNK)-mediated apoptotic death. By evaluating the functional behavior of mice receiving pain/miR23b, normal/anti-miR23b, anti-miR23b/si-NOX4, pain/NOX4 antibody, pain/ascorbic acid, and pain/ascorbic acid/NOX4 antibody, the positive role of miR23b and the negative role of NOX4 in neuropathic pain were confirmed. Based on this study, we conclude that miR23b has a crucial role in the amelioration of neuropathic pain in injured spinal cord by inactivating its target gene, NOX4, and protection of GABAergic neurons from cell death. We finally suggest that infusion of miR23b and NOX4 antibody may provide attractive diagnostic and therapeutic resources for effective pain modulation in neuropathic pain.
Collapse
|
28
|
Im YB, Jee MK, Jung JS, Choi JI, Jang JH, Kang SK. miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Antioxid Redox Signal 2012; 16:1046-60. [PMID: 22149086 DOI: 10.1089/ars.2011.4224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, researchers have been primarily focused on identifying the cellular or chemical sources of neuropathic pain or have approached neuropathic pain via the basis of biological study. We investigated whether mmu-mir-23b (miR23b) infusion can alleviate pain by compensating for the abnormally downregulated miR23b by reducing the expression of its target gene, NADPH oxidase 4 (NOX4), a reactive oxygen species (ROS) family member overexpressed in neuropathic pain. RESULTS Ectopic miR23b expression effectively downregulated NOX4 and was normalized to GAD65/67 expression. Moreover, the animals with neuropathic pain showed significant improvements in the paw withdrawal thresholds following miR23b infusion. Normalizing miR23b expression in tissue lesions caused by neuropathic pain induction reduced inflammatory mediator expression and increased the level of several ROS scavengers. Moreover, GABAergic neurons coexpressed suboptimal levels of miR23b and elevated NOX4/ROS after pain induction at the cellular level. MiR23b protects GABAergic neurons against ROS/p38/JNK-mediated apoptotic death. By evaluating the functional behavior of the mice receiving pain/miR23b, normal/anti-miR23b, or anti-miR23b/si-NOX4, the positive role of miR23b and the negative role of NOX4 in neuropathic pain were confirmed. INNOVATION AND CONCLUSION Based on this study, we conclude that miR23b plays a crucial role in the amelioration of neuropathic pain in the injured spinal cord by inactivating its target gene, NOX4, and protecting GABAergic neurons from cell death. We finally suggest that miR23b may provide attractive diagnostic and therapeutic resources for effective pain modulation in neuropathic pain.
Collapse
Affiliation(s)
- Young Bin Im
- Laboratory of Stem Cell Biology, Department of Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol 2012; 366:10-21. [PMID: 22583479 DOI: 10.1016/j.ydbio.2012.03.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Neural crest cells are a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates, migrate extensively, and give rise to diverse derivatives such as melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia. The neural crest gene regulatory network (NC-GRN) includes a number of key factors that are used reiteratively to control multiple steps in the development of neural crest cells, including the acquisition of stem cell attributes. It is therefore essential to understand the mechanisms that control the distinct functions of such reiteratively used factors in different cellular contexts. The context-dependent control of neural crest specification is achieved through combinatorial interaction with other factors, post-transcriptional and post-translational modifications, and the epigenetic status and chromatin state of target genes. Here we review the current understanding of the NC-GRN, including the role of the neural crest specifiers, their links to the control of "stemness," and their dynamic context-dependent regulation during the formation of neural crest progenitors.
Collapse
|
30
|
Wu X, Zhao B, Li W, Chen Y, Liang R, Li L, Jin Y, Ruan K. MiR-200a is involved in rat epididymal development by targeting β-catenin mRNA. Acta Biochim Biophys Sin (Shanghai) 2012; 44:233-40. [PMID: 22240259 DOI: 10.1093/abbs/gmr122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expression of 350 microRNAs (miRNAs) in epididymis of rat from postnatal development to adult (from postnatal days 7-70) was profiled with home-made miRNA microarray. Among them, 48 miRNAs changed significantly, in which the expression of miR-200a increased obviously with time, in a good agreement with that obtained from northern blot analysis. The real-time quantitative-polymerase chain reaction result indicated that temporal expression of rat β-catenin was exactly inversed to that of miR-200a during rat epididymal development, implying that miR-200a might also target β-catenin mRNA in rat epididymis as reported by Saydam et al. in humans. The bioinformatic analysis indicated that 3' untranslated region of rat β-catenin mRNA did contain a putative binding site for miR-200a. Meanwhile, it was found that the sequence of this binding site was different from that of human β-catenin mRNA with a deletion of two adjacent nucleotides (U and C). But the results of luciferase targeting assay in HEK 293T cells and the overexpression of miR-200a in rat NRK cells demonstrated that miR-200a did target rat β-catenin mRNA and cause the suppression of its expression. All these results show that miR-200a should be involved in rat epididymal development by targeting β-catenin mRNA of rat and suppressing its expression.
Collapse
Affiliation(s)
- Xiaojiang Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | |
Collapse
|