1
|
Gloor P, Haeberling I, Spanaus K, Kullak-Ublick GA, Berger G, Visentin M. The Role of Folate Receptor α Autoantibodies in Folate Deficiency, Disease Severity, and Treatment Response in Adolescents with Major Depressive Disorder. J Nutr 2025:S0022-3166(25)00294-9. [PMID: 40379028 DOI: 10.1016/j.tjnut.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Low levels of systemic folates have been associated with a higher risk of major depressive disorder (MDD) and more severe symptoms. Moreover, folate supplementation has been shown to increase the response to selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs). Folates reach the brain through the choroid plexus via transcytosis mediated by the folate receptor alpha (FRα). FRα also represents the main mechanism of folate retrieval from the nascent urine. Autoantibodies against the FRα (FRAA) have been found in the serum of individuals with cerebral folate deficiency. OBJECTIVE To assess the role of serum FRAA titer on serum folate level, disease severity and response to the SSRI/SNRI treatment in adolescents with MDD. METHODS Serum samples at baseline obtained from the participants of a large multi-center intervention trial in moderately to severely depressed youth were analyzed. Quantification of FRAA was performed by enzyme-linked immunosorbent assay (ELISA). Serum folate concentration was determined by radioligand binding assay. RESULTS FRAA titer in the patients with folate deficiency (≤ 3.0 ng/mL) was significantly higher than that in the patients with a normal folate level, and a low FRAA titer was associated with a reduced risk of folate deficiency. No correlation was found between the Children's Depression Rating Scale - Revised (CDRS-R) score and the serum folate level or the FRAA titer. In regression analysis, the effect size of the serum folate concentration on the response to SSRI/SNRI was larger than that of the FRAA titer. The response rate to the treatment in the high folate group was approximately 4 times that in the low folate group (28.5% vs. 6.7%). CONCLUSIONS In conclusion, patients with high FRAA titers carry a higher risk of folate deficiency. Moreover, the response to SSRI/SNRI treatment is less likely in patients with folate deficiency.
Collapse
Affiliation(s)
- Pascal Gloor
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Isabelle Haeberling
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8006 Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, 8006 Zurich, Switzerland.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
2
|
Mashayekhi F, Hadipour E, Shabani S, Salehi Z. Folate receptor alpha autoantibodies in the serum of patients with relapsing-remitting multiple sclerosis (RRMS). Clin Neurol Neurosurg 2024; 237:108161. [PMID: 38325038 DOI: 10.1016/j.clineuro.2024.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a potentially progressive, autoimmune neurologic disorder of the central nervous system (CNS), resulting from an autoimmune attack on central nervous system white matter. Folate deficiencies are linked to DNA instability and breakdown of phospholipid membranes and thus might affect myelin integrity. Folic acid exerts its effects through its receptors (FRs). Folate receptor alpha autoantibodies (FRAA) can block folate transport to the brain. Due to important role of folate in the pathogenesis of MS, in this project we aimed to study FRAA serum levels in patients with relapsing remitting multiple sclerosis (RRMS). METHODS Fifty-four patients with RRMS and 58 healthy individuals were enrolled in this study. Serum samples were collected from all participants and folate receptor alpha autoantibody (FRAA) serum concentration was measured by Enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that FRAA serum levels in patients with RRMS is 67.20 ± 19.79 ng/ml as compared to controls which was 37.32 ± 13.26 ng/ml. Significant increase in folate receptor autoantibody serum concentration was seen in patients with RRMS when compared to control group (P = 0.007). The results showed that a high concentration of folate receptor autoantibody is associated with RRMS. We have also found that 85.18% (46/54) of patients with RRMS were positive for serum FRAA, whereas the prevalence in controls was only 46.55% (27/58). CONCLUSIONS It is concluded that serum FRAA are more prevalent in RRMS patients than controls. The findings also suggest that FRAA might be involved in the pathophysiology of RRMS.
Collapse
Affiliation(s)
- Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Elham Hadipour
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Somayeh Shabani
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Wilson RD, O'Connor DL. Guideline No. 427: Folic Acid and Multivitamin Supplementation for Prevention of Folic Acid-Sensitive Congenital Anomalies. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:707-719.e1. [PMID: 35691683 DOI: 10.1016/j.jogc.2022.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To provide updated guidance on pre-conception folic acid and multivitamin supplementation for primary and secondary (recurrence) prevention of neural tube defects and other folate-sensitive congenital anomalies. TARGET POPULATION Women aged 12-45 years who could become pregnant should be aware of the risk of serious birth defects without adequate pre-conception and first-trimester folic acid supplementation. OPTIONS Optimizing folic acid supplementation is complex and depends on factors including dosage; type of supplement; bioavailability of folate from food, timing of initiating supplementation; and metabolic and genetic factors. For all women who could become pregnant, a low daily dosage of folic acid is recommended before conception and throughout pregnancy and breastfeeding. High-dosage folic acid supplementation is recommended only for women who can become pregnant and have had a previous pregnancy affected by a neural tube defect or other folate-sensitive congenital anomaly. Directed personalized approaches could be considered and adopted for women who can become pregnant and have complex risks (genetic, medical, or surgical risk factors), using new knowledge of co-factor metabolism and synergy, as well as red blood cell or serum folate testing. Such approaches would require changes to current provincial health care maternal serum folate screening/testing. OUTCOMES New approaches to oral folic acid supplementation, including triage tools, need to be considered to optimize the benefits of decreasing risk of neural tube defects and folate-sensitive congenital anomalies. BENEFITS, HARMS, AND COSTS Oral folic acid supplementation, or dietary folate intake combined with a multivitamin/micronutrient supplement, is associated with lower rates of neural tube defects, other folate-sensitive birth defects, and obstetrical complications. The costs are those attributable to daily vitamin supplementation and a healthy, folate-rich diet. EVIDENCE A literature search was designed and carried in PubMed and the Cochrane Library databases from 1990 to 2021 using following MeSH terms and keywords (and variants): folic acid supplementation; folate food fortification; primary neural tube defect prevention; prevention of recurrence of neural tube defects; folate-sensitive birth defects; folate supplementation benefit; folate supplementation risk; folate pregnant woman physiology; pregnant woman RBC folate level; pregnant woman serum folate levels; folate and epilepsy; folate and obesity. This guideline was based upon expert guidelines or opinions, systematic reviews, randomized controlled clinical trials, and observational case-control studies and case series retrieved, published in English from 1990 to 2021. VALIDATION METHODS The authors rated the quality of evidence and strength of recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. See online Appendix A (Tables A1 for definitions and A2 for interpretations of strong and weak recommendations). INTENDED AUDIENCE Maternity health care providers (physicians, midwives, nurses) and other providers of pregnancy-related wellness and health counselling. SUMMARY STATEMENTS RECOMMENDATIONS.
Collapse
|
4
|
Wilson RD, O'Connor DL. Directive clinique n o427 : Suppléments d'acide folique et multivitamines en prévention des anomalies congénitales sensibles à l'acide folique. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:720-732.e1. [PMID: 35691684 DOI: 10.1016/j.jogc.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIF Offrir des recommandations à jour sur l'utilisation de multivitamines et de suppléments d'acide folique avant la conception pour la prévention primaire et secondaire (récidive) des anomalies du tube neural et des autres anomalies congénitales sensibles à l'acide folique. POPULATION CIBLE Les femmes de 12 à 45 ans qui pourraient devenir enceintes doivent être informées des risques importants d'anomalies congénitales en l'absence d'une supplémentation adéquate en acide folique avant la conception et pendant le premier trimestre. OPTIONS La supplémentation optimale en acide folique est complexe et repose sur divers facteurs tels que la dose, le type de suppléments, la biodisponibilité du folate dans l'alimentation, le moment du début de la supplémentation ainsi que sur les facteurs métaboliques et génétiques. Pour toutes les femmes qui peuvent devenir enceintes, une faible dose quotidienne d'acide folique est recommandée avant la conception et pendant la grossesse et l'allaitement. La supplémentation à forte dose d'acide folique est recommandée uniquement chez les femmes qui peuvent devenir enceintes et qui ont un antécédent de grossesse avec anomalie du tube neural ou toute autre anomalie congénitale sensible à l'acide folique. Il est possible d'envisager et d'adopter une approche personnalisée chez les femmes qui peuvent devenir enceintes et qui présentent des risques complexes (facteurs de risque génétiques, médicaux ou chirurgicaux) en se fondant sur les nouvelles connaissances en matière de métabolisme et synergie des cofacteurs et sur l'analyse du taux sérique et érythrocytaire d'acide folique. Ce genre d'approche exige une modification des protocoles provinciaux actuels de santé publique concernant le dépistage et l'analyse du taux sérique maternel d'acide folique. RéSULTATS: Les nouvelles stratégies de supplémentation en acide folique par voie orale, y compris dans les outils de triage, doivent être prises en compte pour diminuer de façon optimale le risque d'anomalies du tube neural et d'anomalies congénitales sensibles à l'acide folique. BéNéFICES, RISQUES ET COûTS: On observe une diminution du taux d'anomalies du tube neural, des autres anomalies congénitales sensibles à l'acide folique et des complications obstétricales chez les femmes qui prennent des suppléments oraux d'acide folique ou qui complémentent leur apport alimentaire en folate au moyen de multivitamines ou de suppléments de micronutriments. Les coûts relatifs sont liés à la prise quotidienne de suppléments vitaminiques et à l'adoption d'un régime alimentaire sain et riche en folate. DONNéES PROBANTES: Une recherche a été effectuée dans les bases de données PubMed et Cochrane Library pour trouver des articles publiés entre 1990 et 2021, en utilisant les termes MeSH et mots-clés (et leurs variantes) suivants : folate food fortification; primary neural tube defect prevention; prevention of recurrence of neural tube defects; folate-sensitive birth defects; folate supplementation benefit; folate supplementation risk; folate pregnant woman physiology; pregnant woman RBC folate level; pregnant woman serum folate levels; folate and epilepsy; folate and obesity. Cette directive clinique repose sur des lignes directrices et opinions de spécialistes, des revues systématiques, des essais cliniques randomisés et des études observationnelles de cas-témoin et de séries de cas qui ont été publiés en anglais entre 1990 et 2021. MéTHODES DE VALIDATION: Les auteurs ont évalué la qualité des données probantes et la force des recommandations en utilisant le cadre méthodologique GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Voir l'annexe A en ligne (tableau A1 pour les définitions et tableau A2 pour l'interprétation des recommandations fortes et faibles). PROFESSIONNELS CONCERNéS: Fournisseurs de soins de maternité (médecins, sages-femmes et infirmières) et autres fournisseurs d'accompagnement en santé et bien-être lié à la grossesse. DÉCLARATIONS SOMMAIRES: RECOMMANDATIONS.
Collapse
|
5
|
The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed Pharmacother 2021; 146:112541. [PMID: 34953391 DOI: 10.1016/j.biopha.2021.112541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To examine the strengths and limitations of existing data to provide guidance for the use of folate supplements as treatment, with or without other psychotropic medications, in various psychiatric disorders. To identify area for further research in terms of the biosynthesis of mechanism of folate and genetic variants in metabolic pathway in human. METHODS A systematic review of published literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess whether folate supplements are beneficial in certain psychiatric disorders (depression, bipolar disorder, schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder). Methodology of this review is registered with Prospero (Registration number CRD 42021266605). DATA SOURCES Eligible studies were identified using a systematic search of four electronic databases: Embase, Pubmed, PsycINFO, and Cochrane. The search strategy covered the time period from 1974 to August 16th, 2021. Therefore, this review examines randomized control trials or open-label trials completed during this period. RESULTS We identified 23 studies of folate supplements in various psychiatric disorders for critical review. Of these, 9 studies investigated the efficacy of folate supplements in major depressive disorders, 5 studies in schizophrenia, 6 studies in autism spectrum disorder, 2 studies in bipolar affective disorder and 1 study in attention deficit hyperactive disorder. The most consistent finding association of oral levomefolic acid or 5-methylfolate with improvement in clinical outcomes in mental health conditions as mentioned above, especially in major depressive disorder (including postpartum and post-menopausal depression), schizophrenia, autism spectrum disorder, attention deficit hyperactivity disorder and bipolar affective disorder. Folate supplements were well tolerated. LIMITATION Our results are not representative of all types of studies such as case reports or case series studies, nor are they representative of the studies conducted in languages that are not in English or not translated in English. CONCLUSION Increasing evidence from clinical trials consistently demonstrate folate supplements, especially levomefolic acid or 5-methylfolate, may improve clinical outcomes for certain psychiatric diseases, especially as an adjunct pharmacotherapy with minimal side effects.
Collapse
|
6
|
Wilson R, O'Connor D. Maternal folic acid and multivitamin supplementation: International clinical evidence with considerations for the prevention of folate-sensitive birth defects. Prev Med Rep 2021; 24:101617. [PMID: 34976673 PMCID: PMC8684027 DOI: 10.1016/j.pmedr.2021.101617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
More evidence is available for maternal intake, absorption, distribution, tissue specific concentrations, and pregnancy outcomes with folic acid (fortification/supplementation) during preconception - first trimester. This Quality Improvement prevention review used expert guidelines/opinions, systematic reviews, randomized control trials/controlled clinical trials, and observational case control/case series studies, published in English, from 1990 to August 2021. Optimization for an oral maternal folic acid supplementation is difficult because it relies on folic acid dose, type of folate supplement, bio-availability of the folate from foods, timing of supplementation initiation, maternal metabolism/genetic factors, and many other factors. There is continued use of high dose pre-food fortification 'RCT evidenced-based' folic acid supplementation for NTD recurrence pregnancy prevention. Innovation requires preconception and pregnancy use of 'carbon one nutrient' supplements (folic acid, vitamin B12, B6, choline), using the appropriate evidence, need to be considered. The consideration and adoption of directed personalized approaches for maternal complex risk could use serum folate testing for supplementation dosing choice. Routine daily folic acid dosing for low-risk women should consider a multivitamin with 0.4 mg of folic acid starting 3 months prior to conception until completion of breastfeeding. Routine folic acid dosing or preconception measurement of maternal serum folate (after 4-6 weeks of folate supplementation) could be considered for maternal complex risk group with genetic/medical/surgical co-morbidities. These new approaches for folic acid oral supplementation are required to optimize benefit (decreasing folate sensitive congenital anomalies; childhood morbidity) and minimizing potential maternal and childhood risk.
Collapse
Affiliation(s)
- R.D. Wilson
- Cumming School of Medicine, Department of Obstetrics and Gynecology, University of Calgary, FMC NT 435, 1403 29 St NW, Calgary, Alberta, Canada
| | - D.L. O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020; 61:1365-1376. [PMID: 32948662 PMCID: PMC7604722 DOI: 10.1194/jlr.r120001116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody-based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.
Collapse
Affiliation(s)
- Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
- Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Jens Lutz
- Medical Clinic, Nephrology-Infectious Diseases, Central Rhine Hospital Group, Koblenz, Germany
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Dana Toib
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
- Section of Pediatric Rheumatology, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ambika P Ashraf
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotechnology Research Innovation Center, Copenhagen University, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Cao X, Wolf A, Kim SE, Cabrera RM, Wlodarczyk BJ, Zhu H, Parker M, Lin Y, Steele JW, Han X, Ramaekers VT, Steinfeld R, Finnell RH, Lei Y. CIC de novo loss of function variants contribute to cerebral folate deficiency by downregulating FOLR1 expression. J Med Genet 2020; 58:484-494. [PMID: 32820034 PMCID: PMC7895856 DOI: 10.1136/jmedgenet-2020-106987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023]
Abstract
Background Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including FOLR1 (folate receptor alpha, FRα), DHFR (dihydrofolate reductase) and PCFT (proton coupled folate transporter) have been previously identified in patients with CFD. Methods In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios. Results Notably, we found a de novo stop gain mutation in the capicua (CIC) gene. Using 48 sporadic CFD samples as a validation cohort, we identified three additional rare variants in CIC that are putatively deleterious mutations. Functional analysis indicates that CIC binds to an octameric sequence in the promoter regions of folate transport genes: FOLR1, PCFT and reduced folate carrier (Slc19A1; RFC1). The CIC nonsense variant (p.R353X) downregulated FOLR1 expression in HeLa cells as well as in the induced pluripotent stem cell (iPSCs) derived from the original CFD proband. Folate binding assay demonstrated that the p.R353X variant decreased cellular binding of folic acid in cells. Conclusion This study indicates that CIC loss of function variants can contribute to the genetic aetiology of CFD through regulating FOLR1 expression. Our study described the first mutations in a non-folate pathway gene that can contribute to the aetiology of CFD.
Collapse
Affiliation(s)
- Xuanye Cao
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Annika Wolf
- Department of Pediatric Neurology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Sung-Eun Kim
- Department of Pediatrics, University of Texas at Austin, Austin, Texas, USA
| | - Robert M Cabrera
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bogdan J Wlodarczyk
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Huiping Zhu
- Department of Nutritional Sciences, University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Margaret Parker
- Department of Pediatrics, University of Texas at Austin, Austin, Texas, USA
| | - Ying Lin
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John W Steele
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Xiao Han
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vincent Th Ramaekers
- Department of Pediatric Neurology, University Hospital Center Liège, Liège, Belgium
| | - Robert Steinfeld
- Department of Pediatric Neurology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany .,University Children's Hospital Zurich, Zurich, Switzerland
| | - Richard H Finnell
- Department of Pediatrics, University of Texas at Austin, Austin, Texas, USA .,Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Houston, Texas, USA.,Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
9
|
Abstract
During embryonic development, the central nervous system forms as the neural plate and then rolls into a tube in a complex morphogenetic process known as neurulation. Neural tube defects (NTDs) occur when neurulation fails and are among the most common structural birth defects in humans. The frequency of NTDs varies greatly anywhere from 0.5 to 10 in 1000 live births, depending on the genetic background of the population, as well as a variety of environmental factors. The prognosis varies depending on the size and placement of the lesion and ranges from death to severe or moderate disability, and some NTDs are asymptomatic. This chapter reviews how mouse models have contributed to the elucidation of the genetic, molecular, and cellular basis of neural tube closure, as well as to our understanding of the causes and prevention of this devastating birth defect.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
10
|
Frye RE, Vassall S, Kaur G, Lewis C, Karim M, Rossignol D. Emerging biomarkers in autism spectrum disorder: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:792. [PMID: 32042808 DOI: 10.21037/atm.2019.11.53] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) affects approximately 2% of children in the United States (US) yet its etiology is unclear and effective treatments are lacking. Therapeutic interventions are most effective if started early in life, yet diagnosis often remains delayed, partly because the diagnosis of ASD is based on identifying abnormal behaviors that may not emerge until the disorder is well established. Biomarkers that identify children at risk during the pre-symptomatic period, assist with early diagnosis, confirm behavioral observations, stratify patients into subgroups, and predict therapeutic response would be a great advance. Here we underwent a systematic review of the literature on ASD to identify promising biomarkers and rated the biomarkers in regards to a Level of Evidence and Grade of Recommendation using the Oxford Centre for Evidence-Based Medicine scale. Biomarkers identified by our review included physiological biomarkers that identify neuroimmune and metabolic abnormalities, neurological biomarkers including abnormalities in brain structure, function and neurophysiology, subtle behavioral biomarkers including atypical development of visual attention, genetic biomarkers and gastrointestinal biomarkers. Biomarkers of ASD may be found prior to birth and after diagnosis and some may predict response to specific treatments. Many promising biomarkers have been developed for ASD. However, many biomarkers are preliminary and need to be validated and their role in the diagnosis and treatment of ASD needs to be defined. It is likely that biomarkers will need to be combined to be effective to identify ASD early and guide treatment.
Collapse
Affiliation(s)
- Richard E Frye
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Deparment of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Sarah Vassall
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Gurjot Kaur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Christina Lewis
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Mohammand Karim
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Deparment of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | |
Collapse
|
11
|
Li H, Wang X, Zhao H, Wang F, Bao Y, Guo J, Chang S, Wu L, Cheng H, Chen S, Zou J, Cui X, Niswander L, Finnell RH, Wang H, Zhang T. Low folate concentration impacts mismatch repair deficiency in neural tube defects. Epigenomics 2019; 12:5-18. [PMID: 31769301 DOI: 10.2217/epi-2019-0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To know the cause of sequence variants in neural tube defect (NTD). Materials & methods: We sequenced genes implicated in neural tube closure (NTC) in a Chinese cohort and elucidated the molecular mechanism-driving mutations. Results: In NTD cases, an increase in specific variants was identified, potentially deleterious rare variants harbored in H3K36me3 occupancy regions that recruits mismatch repair (MMR) machinery. Lower folate concentrations in local brain tissues were also observed. In neuroectoderm cells, folic acid insufficiency attenuated association of Msh6 to H3K36me3, and reduced bindings to NTC genes. Rare variants in human NTDs were featured by MMR deficiency and more severe microsatellite instability. Conclusion: Our work suggests a mechanistic link between folate insufficiency and MMR deficiency that correlates with an increase of rare variants in NTC genes.
Collapse
Affiliation(s)
- Huili Li
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.,Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xiaolei Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Huizhi Zhao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Haiqin Cheng
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shuyuan Chen
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Xiaodai Cui
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Lee Niswander
- Department of Molecular, Cellular & Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard H Finnell
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction & Development, Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics & Development, Fudan University, Shanghai 200032, China.,Children's Hospital, Fudan University, Shanghai 201102, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development & Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
12
|
Surman C, Ceranoglu A, Vaudreuil C, Albright B, Uchida M, Yule A, Spencer A, Boland H, Grossman R, Rhodewalt L, Fitzgerald M, Biederman J. Does L-Methylfolate Supplement Methylphenidate Pharmacotherapy in Attention-Deficit/Hyperactivity Disorder?: Evidence of Lack of Benefit From a Double-Blind, Placebo-Controlled, Randomized Clinical Trial. J Clin Psychopharmacol 2019; 39:28-38. [PMID: 30566416 PMCID: PMC6750952 DOI: 10.1097/jcp.0000000000000990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE/BACKGROUND Interventions for attention-deficit/hyperactivity disorder (ADHD) may be inadequate for some patients. There is evidence that supplementation with L-methylfolate augments antidepressant agent effects and thus might also augment ADHD treatment effects by a common catecholaminergic mechanism. METHODS Forty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition diagnosis of ADHD participated in a randomized, double-blind, placebo-controlled, 12-week trial of 15 mg of L-methylfolate in combination with osmotic-release oral system methylphenidate. Osmotic-release oral system methylphenidate was dose optimized over the first 6 weeks. We evaluated the effects on ADHD symptoms, self-report on the Behavior Rating Inventory of Executive Function of executive function, methylphenidate dosing, neuropsychological test measures, the Adult ADHD Self-report scale, emotional dysregulation, social adjustment, and work productivity, as well as moderating effects of body mass index, autoantibodies to folate receptors, and select genetic polymorphisms. RESULTS L-Methylfolate was well tolerated, with no significant effect over placebo except improvement from abnormal measures on the mean adaptive dimension of the ASR scale (χ = 4.36, P = 0.04). Methylphenidate dosing was significantly higher in individuals on L-methylfolate over time (χ = 7.35, P = 0.007). Exploratory analyses suggested that variation in a guanosine triphosphate cyclohydrolase gene predicted association with higher doses of methylphenidate (P < 0.001). CONCLUSIONS L-Methylfolate was associated with no change in efficacy on measures relevant to neuropsychiatric function in adults with ADHD, other than suggestion of reduced efficacy of methylphenidate. Further investigation would be required to confirm this effect and its mechanism and the genotype prediction of effects on dosing.
Collapse
Affiliation(s)
- Craig Surman
- From the Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Moriyama T, Kakiuchi D, Grasso L, Hutto DL, Fernando D, Schweizer C. Farletuzumab, a monoclonal antibody directed against folate receptor alpha, shows no evidence of teratogenicity in cynomolgus monkeys. Reprod Toxicol 2018; 79:89-95. [PMID: 29928988 DOI: 10.1016/j.reprotox.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022]
Abstract
Farletuzumab is a humanized monoclonal antibody targeting human folate receptor alpha, which is being developed as an anti-cancer drug. A non-human primate reproductive study was conducted to evaluate whether it could cause any embryonic or fetal abnormalities. Farletuzumab was administered intravenously to pregnant cynomolgus monkeys (n = 16/group) at doses of 0 or 67.5 mg/kg once weekly during gestation day (GD) 20 through 97. C-section was performed on GD100 ± 2, and fetuses were evaluated for morphologic (external, visceral and skeletal) effects. No farletuzumab-related changes were observed in maternal animals or fetuses, which are supported by the fact that farletuzumab has no effects on cellular uptake of folate. These data support the potential use of farletuzumab for oncologic indications during pregnancy.
Collapse
Affiliation(s)
| | - Dai Kakiuchi
- Eisai Co. Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Luigi Grasso
- Morphotek Inc., 210 Welsh Pool Rd., Exton, PA 19341, USA
| | | | | | | |
Collapse
|
14
|
Dong Y, Wang L, Lei Y, Yang N, Cabrera RM, Finnell RH, Ren A. Gene variants in the folate pathway are associated with increased levels of folate receptor autoantibodies. Birth Defects Res 2018; 110:973-981. [PMID: 29732742 DOI: 10.1002/bdr2.1334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Folate receptors (FRs) facilitate embryonic uptake of folates and are important for proper early embryonic development. There is accumulating evidence that blocking FR autoantibodies contribute to developmental diseases. However, genetic factors associated with the expression of FR autoantibodies remain unknown. OBJECTIVE We investigated the effects of genetic polymorphisms in folate pathway genes on FR autoantibody titers in women. METHODS We recruited 302 pregnant women in China. The FR antigen-down immunoassay was used to measure levels of FR autoantibodies including human immunoglobulin G (IgG) and immunoglobulin M (IgM) in maternal plasma. Genotypes were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry and polymerase chain reaction methods. General linear model was used to analyze the effects of genetic variants on FR autoantibody levels. RESULTS Significant associations were observed between genotypic variations and levels of FR autoantibodies. Plasma levels of FR autoantibodies in women with the TT genotype at MTHFR rs1801133 were significantly higher than those of women with the CC genotype (IgG: β = 0.62, 95% CI 0.21-1.04; IgM: β = 0.42, 95% CI 0.12-0.72). For DNMT3A rs7560488, the level of FR autoantibody IgG significantly increased in the TT genotype compared with CC genotype (β = 0.90, 95% CI 0.20-1.59). For MTHFD2 rs828903, genotype GG was associated with elevated levels of FR autoantibody IgM compared to the AA genotype (β = 0.60, 95% CI 0.10-1.10). No association was detected between genetic variants of the DHFR gene with FR autoantibodies levels. CONCLUSION Genetic variations in MTHFR, DNMT3A, and MTHFD2 genes were associated with elevated plasma levels of FR autoantibodies.
Collapse
Affiliation(s)
- Yuqi Dong
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunping Lei
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Yang
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Robert M Cabrera
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Findley TO, Tenpenny JC, O'Byrne MR, Morrison AC, Hixson JE, Northrup H, Au KS. Mutations in folate transporter genes and risk for human myelomeningocele. Am J Med Genet A 2017; 173:2973-2984. [PMID: 28948692 DOI: 10.1002/ajmg.a.38472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms linking folate deficiency and neural tube defect (NTD) risk in offspring remain unclear. Folate transporters (SLC19A1, SLC46A1, SLC25A32, and FOLH1) and folate receptors (FOLR1, FOLR2, and FOLR3) are suggested to play essential roles in transporting folate from maternal intestinal lumen to the developing embryo. Loss of function variants in these genes may affect folate availability and contribute to NTD risk. This study examines whether variants within the folate transporter and receptor genes are associated with an increased risk for myelomeningocele (MM). Exons and their flanking intron sequences of 348 MM subjects were sequenced using the Sanger sequencing method and/or next generation sequencing to identify variants. Frequencies of alleles of single nucleotide polymorphisms (SNPs) in MM subjects were compared to those from ethnically matched reference populations to evaluate alleles' associated risk for MM. We identified eight novel variants in SLC19A1 and twelve novel variants in FOLR1, FOLR2, and FOLR3. Pathogenic variants include c.1265delG in SLC19A1 resulting in an early stop codon, four large insertion deletion variants in FOLR3, and a stop_gain variant in FOLR3. No new variants were identified in SLC46A1, SLC25A32, or FOLH1. In SLC19A1, c.80A>G (rs1051266) was not associated with our MM cohort; we did observe a variant allele G frequency of 61.7%, higher than previously reported in other NTD populations. In conclusion, we discovered novel loss of function variants in genes involved in folate transport in MM subjects. Our results support the growing evidence of associations between genes involved in folate transport and susceptibility to NTDs.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Joy C Tenpenny
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michelle R O'Byrne
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Shriners Hospital for Children, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
16
|
Frye RE, Wynne R, Rose S, Slattery J, Delhey L, Tippett M, Kahler SG, Bennuri SC, Melnyk S, Sequeira JM, Quadros EV. Thyroid dysfunction in children with autism spectrum disorder is associated with folate receptor α autoimmune disorder. J Neuroendocrinol 2017; 29. [PMID: 28199771 DOI: 10.1111/jne.12461] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/11/2022]
Abstract
Folate receptor α (FRα) autoantibodies (FRAAs) are prevalent in autism spectrum disorder (ASD). FRAAs disrupt folate transport across the blood-brain barrier by binding to the FRα. Thyroid dysfunction is frequently found in children with ASD. We measured blocking and binding FRAAs and thyroid-stimulating hormone (TSH), free thyroxine (T4) (FT4), total triiodothyronine (T3) (TT3), reverse T3 (rT3), thyroid-releasing hormone (TRH) and other metabolites in 87 children with ASD, 84 of whom also underwent behaviour and cognition testing and in 42 of whom FRAAs, TSH and FT4 were measured at two time points. To better understand the significance of the FRα in relation to thyroid development, we examined FRα expression on prenatal and postnatal thyroid. TSH, TT3 and rT3 were above the normal range in 7%, 33% and 51% of the participants and TRH was below the normal range in 13% of the participants. FT4 was rarely outside the normal range. TSH concentration was positively and the FT4/TSH, TT3/TSH and rT3/TSH ratios were inversely related to blocking FRAA titres. On repeated measurements, changes in TSH and FT4/TSH ratio were found to correspond to changes in blocking FRAA titres. TSH and the FT4/TSH, TT3/TSH and rT3/TSH ratios were related to irritability on the Aberrant Behavior Checklist and several scales of the Social Responsiveness Scale (SRS), whereas TT3 was associated with SRS subscales and TRH was related to Vineland Adaptive Behavior Scale subscales. The thyroid showed significant FRα expression during the early prenatal period, although expression decreased significantly in later gestation and postnatal thyroid tissue. The results of the present study suggest that thyroid dysfunction in ASD may be related to blocking FRAA. The high expression of FRα in the early foetal thyroid suggests that foetal and neonatal exposure to maternal FRAAs could affect the development of the thyroid and may contribute to the pathology in ASD.
Collapse
Affiliation(s)
- R E Frye
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - R Wynne
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S Rose
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Slattery
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - L Delhey
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - M Tippett
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S G Kahler
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S C Bennuri
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - S Melnyk
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J M Sequeira
- Department of Medicine, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| | - E V Quadros
- Department of Medicine, State University of New York - Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|