1
|
Gu J, Jin H, Hu J, Wang J, Yin D. Mechanistic Insights into 3-Isopropylphenol-Induced Neurotoxicity in Zebrafish: A Network Toxicology and Molecular Docking Approach. TOXICS 2025; 13:274. [PMID: 40278589 DOI: 10.3390/toxics13040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances discharged into the environment through human activities. 3-Isopropylphenol, a typical alkylphenol-based EDC, has been extensively studied due to its broad application and potential ecological impacts. However, the mechanism of its neurotoxicity remains unclear. In this study, the neurotoxic effects of 3-isopropylphenol were examined using the zebrafish model. We predicted its potential toxic mechanisms and action targets using network toxicology and molecular docking and verified them via RT-qPCR. Results showed that 3-isopropylphenol exposure inhibits the cAMP/PKA signaling pathway in zebrafish larvae, promoting apoptosis, impairing neural development, and suppressing locomotor behavior. These findings enhance our understanding of the toxic effects and mechanisms of 3-isopropylphenol on zebrafish larval neural development and aid in evaluating its potential ecological hazards.
Collapse
Affiliation(s)
- Jie Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Huilin Jin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jun Hu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Feng L, Xu L, Huang J, Wang Y, Xia Q, Meng J, Wang R, Liu K. Cardiotoxicity induced by xanthatin via activating apoptosis and ERS pathways in zebrafish. Drug Chem Toxicol 2025:1-12. [PMID: 40125983 DOI: 10.1080/01480545.2025.2481863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Xanthatin, a sesquiterpene lactone compound, isolated from Chinese herb, Xanthium strumarium L, has various activities, including anti-inflammatory, anti-tumor, anti-ulcer effects. However, it has been less studied in terms of its toxicity, especially the potential toxicity on heart. This study is mainly aimed to assess the cardiotoxicity of xanthatin in vivo using zebrafish larva and in vitro using cardiomyocytes H9C2. The cardiotoxicity in zebrafish was assessed by the pericardial edema, blood flow dynamics, SV-BA distance, and sub-intestinal vein. The apoptosis was determined by AO staining, the blood red cell reduction and distribution was detected by O-dianisidine staining, histopathological evaluations were detected by HE staining. The anti-proliferative and pro-apoptotic activities in H9C2 cells were assessed by EdU staining and Hoechst 33342/PI double staining. The in vivo results showed that xanthatin caused cardiac malformations and dysfunctions, including decreased heart rate, reduced red blood cell count, hemodynamics, stroke volume, increased SV-BA distance and sub-intestinal vein congestion. Furthermore, apoptosis occurred in the heart of the zebrafish after xanthatin exposure. Additionally, cat, Mn-sod, chop, perk, and hspa5 related to oxidative stress and ERS also changed by xanthatin. Apoptotic genes caspase3 and caspase9 were also increased. Moreover, the in vitro results showed that xanthatin had proapoptotic and antiproliferative effects. To sum up, these results suggest that xanthatin has cardiotoxicity and the oxidative stress, ERS and apoptosis pathways are involved in the cardiotoxicity induced by xanthatin. This finding will be helpful for the better understanding of the potential cardiotoxicity of xanthatin and the underlying mechanism.
Collapse
Affiliation(s)
- Lixin Feng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Yuxin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Jin Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, PR China
| |
Collapse
|
3
|
Bradford YM, Van Slyke CE, Muyskens JB, Tseng WC, Howe DG, Fashena D, Martin R, Paddock H, Pich C, Ramachandran S, Ruzicka L, Singer A, Taylor R, Westerfield M. ZFIN updates to support zebrafish environmental exposure data. Genetics 2025; 229:iyaf021. [PMID: 39903545 PMCID: PMC11912870 DOI: 10.1093/genetics/iyaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
The Zebrafish Information Network (ZFIN, zfin.org) is the database resource for genetic, genomic, and phenotypic data from research using zebrafish, Danio rerio. ZFIN curates information about genetic perturbations, gene expression, phenotype, gene function, and human disease models from zebrafish research publications and makes these data available to researchers worldwide. Over the past 20 years, zebrafish have increasingly been used to investigate the effects of environmental exposures, becoming an ideal model to study toxicity, phenotypic outcomes, and gene-chemical interactions. Despite this, database resources supporting zebrafish toxicology and environmental exposure research are limited. To fill this gap, ZFIN has expanded functionality to incorporate and convey toxicology data better. ZFIN annotations for gene expression, phenotype, and human disease models include information about genotypes and experimental conditions used. One type of experimental condition the database captures is the application of chemicals to zebrafish. ZFIN annotates chemicals using the Chemical Entities of Biological Interest Ontology (ChEBI) along with the Zebrafish Experimental Conditions Ontology (ZECO) to denote route of exposure and other experimental conditions. These features allow researchers to search phenotypes and human disease models linked to chemicals more efficiently. Here, we discuss how experimental conditions are displayed on ZFIN web pages, the data displayed on chemical term pages, and how to search and download data associated with chemical exposure experiments.
Collapse
Affiliation(s)
- Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Jonathan B Muyskens
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Wei-Chia Tseng
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Sridhar Ramachandran
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Taylor
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| |
Collapse
|
4
|
Sharma S, Rojas A, Gour A, Serradimigni R, Leong C, Sharma A, Dasgupta S. Assessing molecular changes underlying isopropylated phenyl phosphate (IPP)-induced larval sensorimotor response deficits in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117619. [PMID: 39742644 PMCID: PMC11955206 DOI: 10.1016/j.ecoenv.2024.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Isopropylated phenyl phosphates (IPP) are an additive organophosphate flame retardant (OPFR) that has been extensively used in furniture, electronics, automobiles, plastics, and children's products to slow down the spread of fire but its continued leaching leads to toxicity concerns. Toxicological information on this important legacy contaminant is limiting. Using zebrafish, our prior whole embryonic RNA-seq data revealed disruption of gene sets enriched for DNA methylation, neurotransmitter synthesis, retinoic acid signaling and eye development. Within this study, we used zebrafish embryos to systemically study these biological targets. Our initial range-finding experiments revealed significant morphological impacts like pericardial edema, yolk sac edema and spinal curvature, coupled with a significant increase in the levels of dopamine and 3-methoxytyramine. We then conducted an in vitro retinoic acid receptor (RAR) assay and showed that IPP inhibits RARα, but not RARβ and RARγ. Following this, our larval behavioral (photomotor and acoustic response assays) at environmentally relevant, sub-μM concentrations showed significant hypoactivity, indicating sensorimotor deficits within exposed embryo. We then assessed global DNA methylation using a combination of whole-mount immunohistochemistry and ELISA for 5-methylcytosine (5-mC) and showed significant IPP-induced hypermethylation within whole embryo in situ. Finally, we focused on eye and brains as targets. We dissected eyes and brains from IPP-exposed larvae and conducted 5-mC assessments and mRNA-sequencing. Interestingly, neither of the organs showed differences in 5-mC levels and the brains also did not show substantial transcriptomic effects. However, for eyes, mRNA sequencing showed 135 differentially expressed genes and these were enriched for several nervous system-associated pathways, including voltage gated ion channel activity, synaptic transmission and neurotransmitter signaling. Collectively, our data shows that IPP exposures can disrupt a battery of biological pathways spanning neurometabolomic, genetic, epigenetic as well as organ-level targets. Notably, these impacts occur at concentrations within environmental relevance where overt toxic morphological phenotypes are not recorded. Future work will focus on understanding the contribution of these molecular targets to behavioral phenotypes.
Collapse
Affiliation(s)
- Sunil Sharma
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo Rojas
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Abhishek Gour
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Connor Leong
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Abhisheak Sharma
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Subham Dasgupta
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Sow AA, Jamadagni P, Scaturro P, Patten SA, Chatel-Chaix L. A zebrafish-based in vivo model of Zika virus infection unveils alterations of the glutamatergic neuronal development and NS4A as a key viral determinant of neuropathogenesis. PLoS Pathog 2024; 20:e1012756. [PMID: 39621753 PMCID: PMC11637437 DOI: 10.1371/journal.ppat.1012756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Infection of pregnant women by Zika virus (ZIKV) is associated with severe neurodevelopmental defects in newborns through poorly defined mechanisms. Here, we established a zebrafish in vivo model of ZIKV infection to circumvent limitations of existing mammalian models. Leveraging the unique tractability of this system, we gained unprecedented access to the ZIKV-infected brain at early developmental stages. The infection of zebrafish larvae with ZIKV phenocopied the disease in mammals including a reduced head area and neural progenitor cells (NPC) infection and depletion. Moreover, transcriptomic analyses of NPCs isolated from ZIKV-infected embryos revealed a distinct dysregulation of genes involved in survival and neuronal differentiation, including downregulation of the expression of the glutamate transporter vglut1, resulting in an altered glutamatergic network in the brain. Mechanistically, ectopic expression of ZIKV protein NS4A in the larvae recapitulated the morphological defects observed in infected animals, identifying NS4A as a key determinant of neurovirulence and a promising antiviral target for developing therapies.
Collapse
Affiliation(s)
- Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | - Priyanka Jamadagni
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
| | | | - Shunmoogum A. Patten
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ), Québec, Canada
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Québec, Canada
| |
Collapse
|
6
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
7
|
Fender CL, Good SP, Garcia-Jaramillo M. An integrated approach to evaluating water contaminants and evaporation in agricultural water distribution systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117277. [PMID: 39515202 PMCID: PMC11608095 DOI: 10.1016/j.ecoenv.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study presents an innovative approach for assessing water quality in agricultural irrigation networks, integrating stable isotope analysis, in vivo zebrafish screening, and comprehensive chemical profiling to investigate the occurrence, transformation, and potential toxicity of organic contaminants. Stable isotope analysis was used to measure evaporation as a proxy for water residence time in the canal, while liquid chromatography-high resolution mass spectrometry (LC-HRMS) identified a range of organic compounds in water samples collected from both the irrigation canal and its source river. Results indicated a reduction in contaminant levels in the canal compared to the river, with the most significant evaporation and concentration changes occurring at a holding reservoir, suggesting that managing residence time could help reduce water loss in arid irrigation networks. The data also highlighted how evaporation, particularly during the dry, hot season, influences contaminant dynamics. Hierarchical clustering of LC-HRMS results showed notable differences between the chemical profiles of canal and river samples, indicating that irrigation systems may contribute to the degradation or removal of certain compounds. Over 60 % of detected compounds were naturally derived, with anthropogenic contaminants like pesticides and personal care products further highlighting human impacts. Priority contaminants, including DEET and 2-naphthalene sulfonic acid, likely originated from urban activities upstream. Initial screening using zebrafish embryos showed bioactivity across sites, confirming the presence of contaminants needing further examination. Correlation analysis linked natural compounds to evaporation rates, suggesting that flora and fauna play significant roles in the chemical makeup of canal water. Overall, this approach provides a comprehensive framework for monitoring irrigation water, offering insights into contaminant behavior and supporting the development of standardized methods for assessing chemical fate and ecological risks in agricultural irrigation systems.
Collapse
Affiliation(s)
- Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Stephen P Good
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA; Water Resources Graduate Program, Oregon State University, Corvallis, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Ali I, Ullah K, Bibi N, Ahmad B, Shah K, Qiang TY. The potential toxicity of chemically fabricated silver nanomaterials based on accumulation and histological changes in fish (Cyprinus carpio). Microsc Res Tech 2024; 87:2292-2300. [PMID: 38747100 DOI: 10.1002/jemt.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 09/02/2024]
Abstract
The bio-reductive fabrication of nanomaterials is a developing arena of study that seeks to fabricate nanoparticles (NPs) using microorganisms, plants, and animal blood. However, the chemical approach of AgNPs fulfills the need of abundant need of NPs. In contrast, chemically fabricated AgNPs are more toxic than biological AgNPs. Therefore, the current study aimed to assess and evaluate the chemically fabricated silver nanoparticles (AgNPs) for their possible toxicity in Common carp fish (Cyprinus carpio). The chemically synthesized silver nanoparticles were purchased from the market and applied for their possible toxicity. The chemically fabricated AgNPs were used against the Cyprinus carpio for bioaccumulation in different organs and histological alterations in the intestine and muscles. The results revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, liver, and muscles (p < .05). The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, no alterations were observed by the middle and lowest concentration of AgNPs, particularly, in the intestine. In conclusion, more extensive research is required to establish the hazards related to the use of nanoparticles to disclose their negative effects on fish and the aquatic environment. REASEARCH HIGHLIGHTS: The chemical method fabricates a large amount of AgNPs Additionally, considered more toxic than the bio-reductive method AgNPs have excellent and diverse applications AgNPs deposited in various organs and cause histological changes.
Collapse
Affiliation(s)
- Ihsan Ali
- College of Life Science, Northwest University, Xi'an, China
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Khadim Shah
- Institutes and Key Laboratories, Chemistry Department, Tsinghua University, Beijing, People's Republic of China
| | - Tian Yong Qiang
- School of Chemical and Biological Engineering, Lanzhou Jiotong University, Lanzhou, People's Republic of China
| |
Collapse
|
9
|
McAtee D, Abdelmoneim A. Effects of developmental exposure to arsenic species on behavioral stress responses in larval zebrafish and implications for stress-related disorders. Toxicol Sci 2024; 201:61-72. [PMID: 38833692 DOI: 10.1093/toxsci/kfae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Arsenic (As) is globally detected in drinking water and food products at levels repeatedly surpassing regulatory thresholds. Several neurological and mental health risks linked to arsenic exposure are proposed; however, the nature of these effects and their association with the chemical forms of arsenic are not fully understood. Gaining a clear understanding of the etiologies and characteristics of these effects is crucial, particularly in association with developmental exposures where the nervous system is most vulnerable. In this study, we investigated the effects of early developmental exposure (6- to 120-h postfertilization [hpf]) of larval zebrafish to environmentally relevant concentrations of arsenic species-trivalent/pentavalent, inorganic/organic forms-on developmental, behavioral, and molecular endpoints to determine their effect on stress response and their potential association with stress-related disorders. At 120 hpf, the developing larvae were assessed for a battery of endpoints including survival, developmental malformities, background activity, and behavioral responses to acute visual and acoustic stimuli. Pooled larval samples were analyzed for alterations in the transcript levels of genes associated with developmental neurotoxicity and stress-related disorders. Developmental exposures at target concentrations did not significantly alter survival, overall development, or background activity, and had minor effects on developmental morphology. Sodium arsenate and monomethylarsonic acid exaggerated the behavioral responses of larval zebrafish, whereas sodium arsenite depressed them. Sodium arsenate induced significant effects on molecular biomarkers. This study highlights the effects of developmental exposure to arsenicals on the behavioral stress response, the role chemical formulation plays in exerting toxicological effects, and the possible association with stress-related disorders.
Collapse
Affiliation(s)
- Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
10
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
11
|
Mhalhel K, Kadmi Y, Ben Chira A, Levanti M, Pansera L, Cometa M, Sicari M, Germanà A, Aragona M, Montalbano G. Urtica dioica Extract Abrogates Chlorpyrifos-Induced Toxicity in Zebrafish Larvae. Int J Mol Sci 2024; 25:6631. [PMID: 38928336 PMCID: PMC11203861 DOI: 10.3390/ijms25126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Yassine Kadmi
- LASIRE, Equipe Physico-Chimie de l’Environnement, CNRS UMR 8516, Université Lille, Sciences et Technologies, CEDEX, 59655 Villeneuve d′Ascq, France;
- Department of Chemistry, Université d’Artois, IUT de Béthune, 62400 Béthune, France
| | - Ahlem Ben Chira
- LR22ES01 Laboratory of Biomathematics, Faculty of Sciences of Sfax, Department of Mathematics, P.O. Box 1171, Sfax 3000, Tunisia;
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.L.); (L.P.); (M.C.); (M.S.); (A.G.); (M.A.)
| |
Collapse
|
12
|
McAtee D, Abdelmoneim A. A zebrafish-based acoustic motor response (AMR) assay to evaluate chemical-induced developmental neurotoxicity. Neurotoxicology 2024; 103:60-70. [PMID: 38851595 DOI: 10.1016/j.neuro.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Behavioral assays using early-developing zebrafish (Danio rerio) offer a valuable supplement to the in vitro battery adopted as new approach methodologies (NAMs) for assessing risk of chemical-induced developmental neurotoxicity. However, the behavioral assays primarily adopted rely on visual stimulation to elicit behavioral responses, known as visual motor response (VMR) assays. Ocular deficits resulting from chemical exposures can, therefore, confound the behavioral responses, independent of effects on the nervous system. This highlights the need for complementary assays employing alternative forms of sensory stimulation. In this study, we investigated the efficacy of acoustic stimuli as triggers of behavioral responses in larval zebrafish, determined the most appropriate data acquisition mode, and evaluated the suitability of an acoustic motor response (AMR) assay as means to assess alterations in brain activity and risk of chemical-induced developmental neurotoxicity. We quantified the motor responses of 120 h post-fertilization (hpf) larvae to acoustic stimuli with varying patterns and frequencies, and determined the optimal time intervals for data acquisition. Following this, we examined changes in acoustic and visual motor responses resulting from exposures to pharmacological agents known to impact brain activity (pentylenetetrazole (PTZ) and tricaine-s (MS-222)). Additionally, we examined the AMR and VMR of larvae following exposure to two environmental contaminants associated with developmental neurotoxicity: arsenic (As) and cadmium (Cd). Our findings indicate that exposure to a 100 Hz sound frequency in 100 ms pulses elicits the strongest behavioral response among the acoustic stimuli tested and data acquisition in 2 s time intervals is suitable for response assessment. Exposure to PTZ exaggerated and depressed both AMR and VMR in a concentration-dependent manner, while exposure to MS-222 only depressed them. Similarly, exposure to As and Cd induced respective hyper- and hypo-activation of both motor responses. This study highlights the efficiency of the proposed zebrafish-based AMR assay in demonstrating risk of chemical-induced developmental neurotoxicity and its suitability as a complement to the widely adopted VMR assay.
Collapse
Affiliation(s)
- Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Al-Zoubi RM, Abu-Hijleh H, Zarour A, Zakaria ZZ, Yassin A, Al-Ansari AA, Al-Asmakh M, Bawadi H. Zebrafish Model in Illuminating the Complexities of Post-Traumatic Stress Disorders: A Unique Research Tool. Int J Mol Sci 2024; 25:4895. [PMID: 38732113 PMCID: PMC11084870 DOI: 10.3390/ijms25094895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychological condition that may develop in certain individuals following exposure to life-threatening or traumatic events. Distressing symptoms, including flashbacks, are characterized by disrupted stress responses, fear, anxiety, avoidance tendencies, and disturbances in sleep patterns. The enduring effects of PTSD can profoundly impact personal and familial relationships, as well as social, medical, and financial stability. The prevalence of PTSD varies among different populations and is influenced by the nature of the traumatic event. Recently, zebrafish have emerged as a valuable model organism in studying various conditions and disorders. Zebrafish display robust behavioral patterns that can be effectively quantified using advanced video-tracking tools. Due to their relatively simple nervous system compared to humans, zebrafish are particularly well suited for behavioral investigations. These unique characteristics make zebrafish an appealing model for exploring the underlying molecular and genetic mechanisms that govern behavior, thus offering a powerful comparative platform for gaining deeper insights into PTSD. This review article aims to provide updates on the pathophysiology of PTSD and the genetic responses associated with psychological stress. Additionally, it highlights the significance of zebrafish behavior as a valuable tool for comprehending PTSD better. By leveraging zebrafish as a model organism, researchers can potentially uncover novel therapeutic interventions for the treatment of PTSD and contribute to a more comprehensive understanding of this complex condition.
Collapse
Affiliation(s)
- Raed M. Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar
| | - Haya Abu-Hijleh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| | - Ahmad Zarour
- Department of Surgery, Acute Care Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
| | - Zain Z. Zakaria
- Vice President for Medical and Health Sciences Office, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Aksam Yassin
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
- Center of Medicine and Health Sciences, Dresden International University, 01069 Dresden, Germany
| | - Abdulla A. Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (A.Y.); (A.A.A.-A.)
| | - Maha Al-Asmakh
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; (H.A.-H.); (M.A.-A.)
| |
Collapse
|
14
|
Kim W, Park Y, Kim M, Cha Y, Jung J, Jeon CO, Park W. Sustainable control of Microcystis aeruginosa, a harmful cyanobacterium, using Selaginella tamariscina extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116375. [PMID: 38677071 DOI: 10.1016/j.ecoenv.2024.116375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Eco-friendly reagents derived from plants represent a promising strategy to mitigate the occurrence of toxic cyanobacterial blooms. The use of an amentoflavone-containing Selaginella tamariscina extract (STE) markedly decreased the number of Microcystis aeruginosa cells, thus demonstrating significant anti-cyanobacterial activity. In particular, the Microcystis-killing fraction obtained from pulverized S. tamariscina using hot-water-based extraction at temperatures of 40 °C induced cell disruption in both axenic and xenic M. aeruginosa. Liquid chromatographic analysis was also conducted to measure the concentration of amentoflavone in the STE, thus supporting the potential M. aeruginosa-specific killing effects of STE. Bacterial community analysis revealed that STE treatment led to a reduction in the relative abundance of Microcystis species while also increasing the 16S rRNA gene copy number in both xenic M. aeruginosa NIBR18 and cyanobacterial bloom samples isolated from a freshwater environment. Subsequent testing on bacteria, cyanobacteria, and algae isolated from freshwater revealed that STE was not toxic for other taxa. Furthermore, ecotoxicology assessment involving Aliivibrio fischeri, Daphnia magna, and Danio rerio found that high STE doses immobilized D. magna but did not impact the other organisms, while there was no change in the water quality. Overall, due to its effective Microcystis-killing capability and low ecotoxicity, aqueous STE represents a promising practical alternative for the management of Microcystis blooms.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 02841, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
15
|
Kim Y, Bereketoglu C, Sercinoglu O, Pradhan A. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chem Res Toxicol 2024; 37:497-512. [PMID: 38419406 DOI: 10.1021/acs.chemrestox.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Collapse
Affiliation(s)
- Yeju Kim
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Onur Sercinoglu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| |
Collapse
|
16
|
Henry J, Bai Y, Kreuder F, Mawdsley D, Kaslin J, Wlodkowic D. Methods: A bioinformatic protocol for rapid analysis of zebrafish embryo photo-motory responses (PMR) in neurotoxicity testing. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109833. [PMID: 38218564 DOI: 10.1016/j.cbpc.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Chemobehavioural phenotyping presents unique opportunities for analyzing neurotoxicants and discovering behavior-modifying neuroceuticals in small aquatic model organisms such as zebrafish (Danio rerio). A recently popularized approach in this field involves the utilization of zebrafish embryos for a photo-motor response (PMR) bioassay. The PMR bioassay entails stimulating zebrafish embryos between 24 and 36 h post fertilization (hpf) with a high-intensity light stimulus, inducing a transient increase in the frequency of photo-induced embryo body flexions. These flexions can be computationally analyzed to derive behavioral signatures, enabling the categorization of neuromodulating chemicals. Despite the significant advantages of the PMR bioassay, its widespread implementation is hindered by lack of well described and straightforward high-throughput bioinformatic analysis of behavioral data. In this methods article, we present an easily implementable bioinformatics protocol specifically designed for rapid behavioral analysis of large cohorts of zebrafish specimens in PMR bioassays. We also address common pitfalls encountered during PMR analysis, discuss its limitations, and propose future directions for developing next-generation biometric analysis techniques in chemobehavioural assays utilizing zebrafish embryos.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Yutao Bai
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - David Mawdsley
- Defence Science and Technology Group, Fishermans Bend, VIC 3207, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
17
|
Kakakhel MA, Narwal N, Khan A, Ayub H, Jiang Z, Xiaotao S. Bio-reductive synthesis of silver nanoparticles, its antibacterial efficiency, and possible toxicity in common carp fish (Cyprinus carpio). Microsc Res Tech 2024; 87:349-359. [PMID: 37846045 DOI: 10.1002/jemt.24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
The biological synthesis of nanoparticles is an emerging field of study that seeks to synthesize nanoparticles using non-chemical mechanisms such as microorganisms, plants, and animal blood serum. Among these, plants have gained particular attention due to their ease of handling, availability, and ability to synthesize a wide range of nanoparticles. Therefore, the current study aimed to fabricate the silver nanoparticles (AgNPs) using Chinese medicinal plants (CMP) for their possible toxicity in common carp fish (Cyprinus carpio). For this purpose, CMP was dried, ground, and used as a bio-reductive agent. The fabricated AgNPs were characterized and a well dispersed AgNPs were obtained. Moreover, the C. carpio was exposed to the AgNPs for bioaccumulation and histological alterations. The obtained findings revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, muscles, liver, and brain. The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, very less alterations were caused by the lowest concentration, especially in the intestine. In conclusion, further in-depth research is needed to determine the risks associated with the usage of nanoparticles to reveal their harmful impacts on fish and the aquatic environment. HIGHLIGHTS: The biological fabrication of AgNPs is considered eco-friendly. Chinese medicinal plants play a significant role in AgNPs synthesis. AgNPs have excellent antibacterial activity. AgNPs are bioaccumulated in various organs of fish.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad, Pakistan
| | - Huma Ayub
- Department of Zoology, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Zewen Jiang
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| | - Shi Xiaotao
- Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
18
|
Nilén G, Larsson M, Hyötyläinen T, Keiter SH. A complex mixture of polycyclic aromatic compounds causes embryotoxic, behavioral, and molecular effects in zebrafish larvae (Danio rerio), and in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167307. [PMID: 37804991 DOI: 10.1016/j.scitotenv.2023.167307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Polycyclic aromatic compounds (PACs) are prevalent in the environment, typically found in complex mixtures and high concentrations. Our understanding of the effects of PACs, excluding the 16 priority polycyclic aromatic hydrocarbons (16 PAHs), remains limited. Zebrafish embryos and in vitro bioassays were utilized to investigate the embryotoxic, behavioral, and molecular effects of a soil sample from a former gasworks site in Sweden. Additionally, targeted chemical analysis was conducted to analyze 87 PACs in the soil, fish, water, and plate material. CALUX® assays were used to assess the activation of aryl hydrocarbon and estrogen receptors, as well as the inhibition of the androgen receptor. Larval behavior was measured by analyzing activity during light and darkness and in response to mechanical stimulation. Furthermore, qPCR analyses were performed on a subset of 36 genes associated with specific adverse outcomes, and the total lipid content in the larvae was measured. Exposure to the sample resulted in embryotoxic effects (LC50 = 0.480 mg dry matter soil/mL water). The mixture also induced hyperactivity in darkness and hypoactivity in light and in response to the mechanical stimulus. qPCR analysis revealed differential regulation of 15 genes, including downregulation of opn1sw1 (eye pigmentation) and upregulation of fpgs (heart failure). The sample caused significant responses in three bioassays (ERα-, DR-, and PAH-CALUX), and the exposed larvae exhibited elevated lipid levels. Chemical analysis identified benzo[a]pyrene as the predominant compound in the soil and approximately half of the total PAC concentration was attributed to the 16 PAHs. This study highlights the value of combining in vitro and in vivo methods with chemical analysis to assess toxic mechanisms at specific targets and to elucidate the possible interactions between various pathways in an organism. It also enhances our understanding of the risks associated with environmental mixtures of PACs and their distribution during toxicity testing.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
19
|
Hussen E, Aakel N, Shaito AA, Al-Asmakh M, Abou-Saleh H, Zakaria ZZ. Zebrafish ( Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. Int J Mol Sci 2023; 25:194. [PMID: 38203365 PMCID: PMC10779276 DOI: 10.3390/ijms25010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
The increasing popularity of electronic cigarettes (e-cigarettes) as an alternative to conventional tobacco products has raised concerns regarding their potential adverse effects. The cardiovascular system undergoes intricate processes forming the heart and blood vessels during fetal development. However, the precise impact of e-cigarette smoke and aerosols on these delicate developmental processes remains elusive. Previous studies have revealed changes in gene expression patterns, disruptions in cellular signaling pathways, and increased oxidative stress resulting from e-cigarette exposure. These findings indicate the potential for e-cigarettes to cause developmental and cardiovascular harm. This comprehensive review article discusses various aspects of electronic cigarette use, emphasizing the relevance of cardiovascular studies in Zebrafish for understanding the risks to human health. It also highlights novel experimental approaches and technologies while addressing their inherent challenges and limitations.
Collapse
Affiliation(s)
- Eman Hussen
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nada Aakel
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Abdullah A. Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Maha Al-Asmakh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Zain Z. Zakaria
- Medical and Health Sciences Office, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
20
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
21
|
Kim Y, Kim SS, Park BH, Hwang KS, Bae MA, Cho SH, Kim S, Park HC. Mechanism of Bisphenol F Affecting Motor System and Motor Activity in Zebrafish. TOXICS 2023; 11:477. [PMID: 37368577 DOI: 10.3390/toxics11060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Bisphenol F (BPF; 4,4'-dihydroxydiphenylmethane) is one of the most frequently used compounds in the manufacture of plastics and epoxy resins. Previous studies have demonstrated that BPF affects locomotor behavior, oxidative stress, and neurodevelopment in zebrafish. However, its neurotoxic effects are controversial, and the underlying mechanisms are unclear. In order to determine whether BPF affects the motor system, we exposed zebrafish embryos to BPF and assessed behavioral, histological, and neurochemical changes. Spontaneous locomotor behavior and startle response were significantly decreased in BPF-treated zebrafish larvae compared with control larvae. BPF induced motor degeneration and myelination defects in zebrafish larvae. In addition, embryonic exposure to BPF resulted in altered metabolic profiles of neurochemicals, including neurotransmitters and neurosteroids, which may impact locomotion and motor function. In conclusion, exposure to BPF has the potential to affect survival, motor axon length, locomotor activity, myelination, and neurochemical levels of zebrafish larvae.
Collapse
Affiliation(s)
- Yeonhwa Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Byeong Heon Park
- Medical Science Research Center, Ansan Hospital, Korea University, Ansan 15588, Republic of Korea
| | - Kyu-Seok Hwang
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Suhyun Kim
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| | - Hae-Chul Park
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, Republic of Korea
| |
Collapse
|
22
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
23
|
Mendonça-Soares S, Fortuna M, Freddo N, Varela ACC, Pompermaier A, Mozzato MT, Costa VC, Tamagno WA, Rossato-Grando LG, Barcellos LJG. Behavioral, biochemical, and endocrine responses of zebrafish to 30-min exposure with environmentally relevant concentrations of imidacloprid-based insecticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27667-x. [PMID: 37195604 DOI: 10.1007/s11356-023-27667-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
The imidacloprid-based insecticides (IBIs) are among the most used insecticides worldwide, and chronic and acute toxic effects (days exposure protocols) have been reported in several species in studies of IBIs at lethal concentrations. However, there is little information on shorter time exposures and environmentally relevant concentrations. In this study, we investigated the effect of a 30-min exposure to environmentally relevant concentrations of IBI on the behavior, redox status, and cortisol levels of zebrafish. We showed that the IBI decreased fish locomotion and social and aggressive behaviors and induced an anxiolytic-like behavior. Furthermore, IBI increased cortisol levels and protein carbonylation and decreased nitric oxide levels. These changes were mostly observed at 0.013 and 0.0013 µg·L-1 of IBI. In an environmental context, these behavioral and physiological disbalances, which were immediately triggered by IBI, can impair the ability of fish to evade predators and, consequently, affect their survival.
Collapse
Affiliation(s)
- Suelen Mendonça-Soares
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil
| | - Luciana Grazziotin Rossato-Grando
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação Em Farmacologia, Universidade Federal de Santa Maria, Avenida Roraima, Bairro Camobi, Santa Maria, Rio Grande Do Sul, Brazil.
- Programa de Pós-Graduação Em Bioexperimentação, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Bairro São José, Passo Fundo, Rio Grande Do Sul, Brazil.
| |
Collapse
|
24
|
Hawkey AB, Mead M, Natarajan S, Gondal A, Jarrett O, Levin ED. Embryonic exposure to PFAS causes long-term, compound-specific behavioral alterations in zebrafish. Neurotoxicol Teratol 2023; 97:107165. [PMID: 36801483 PMCID: PMC10198882 DOI: 10.1016/j.ntt.2023.107165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are commonly used as surfactants and coatings for industrial processes and consumer products. These compounds have been increasingly detected in drinking water and human tissue, and concern over their potential effects on health and development is growing. However, relatively little data are available for their potential impacts on neurodevelopment and the degree to which different compounds within this class may differ from one another in their neurotoxicity. The present study examined the neurobehavioral toxicology of two representative compounds in a zebrafish model. Zebrafish embryos were exposed to 0.1-100uM perfluorooctanoic acid (PFOA) or 0.01-1.0uM perfluorooctanesulfonic acid (PFOS) from 5 to 122 h post-fertilization. These concentrations were below threshold for producing increased lethality or overt dysmorphologies, and PFOA was tolerated at a concentration 100× higher than PFOS. Fish were maintained to adulthood, with behavioral assessments at 6 days, 3 months (adolescence) and 8 months of age (adulthood). Both PFOA and PFOS caused behavioral changes in zebrafish, but PFOS and PFOS produced strikingly different phenotypes. PFOA was associated with increased larval motility in the dark (100uM), and enhanced diving responses in adolescence (100uM) but not adulthood. PFOS was associated with a reversed light-dark response in the larval motility test (0.1-1uM), whereby the fish were more active in the light than the dark. PFOS also caused time-dependent changes in locomotor activity in the novel tank test during adolescence (0.1-1.0uM) and an overall pattern of hypoactivity in adulthood at the lowest concentration (0.01uM). Additionally, the lowest concentration of PFOS (0.01uM) reduced acoustic startle magnitude in adolescence, but not adulthood. These data suggest that PFOS and PFOA both produce neurobehavioral toxicity, but these effects are quite distinct from one another.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Olivia Jarrett
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
| |
Collapse
|
25
|
Liu H, Fu R, Zhang Y, Mao L, Zhu L, Zhang L, Liu X, Jiang H. Integrate transcriptomic and metabolomic analysis reveals the underlying mechanisms of behavioral disorders in zebrafish (Danio rerio) induced by imidacloprid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161541. [PMID: 36731560 DOI: 10.1016/j.scitotenv.2023.161541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, poses a significant threat to aquatic ecosystems. Behavior is a functional indicator of the net sensory, motor, and integrative processes of the nervous system and is presumed to be more sensitive in detecting toxicity. In the present study, we investigated the behavioral effects of imidacloprid at the level of environmental concentrations (1, 10 and 100 μg/L) for a constant exposure to zebrafish adults, and performed the integrated transcriptomic and metabolomic analysis to analyze the molecular mechanism underlying behavioral effects of imidacloprid. Our results show that imidacloprid exposure significantly induce behavioral disruptions characterized by anxiety, depression, and reduced physiological function including exploratory, decision, social interaction and locomotor activity. Integrated transcriptomic and metabolomic analysis indicate that the disruption of circadian rhythm, metabolic imbalance of arginine and proline, and neurotransmitter disorder are the underlying molecular mechanisms of behavioral impairment induced by imidacloprid. The "gene-metabolite-disease" network consisted by 11 metabolites and 15 genes is associated human disease Alzheimer's disease (AD) and schizophrenia. Our results confirm the behavioral impairment induced by imidacloprid at environmental concentrations for constant exposure. The identified genes and metabolites can be used not only to illustrate the underlying mechanisms, but also can be developed as biomarkers in determining the ecological risk of imidacloprid to aquatic organisms even Homo sapiens.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiqiang Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Wang YH, Wang YQ, Yu XG, Lin Y, Liu JX, Wang WY, Yan CH. Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161296. [PMID: 36592900 DOI: 10.1016/j.scitotenv.2022.161296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is a metalloid commonly found worldwide. Environmental As exposure may cause potential health hazards and behavioral changes in humans and animals. However, the effects of environmental As concentrations on social behavior, especially during the juvenile stage, are unclear. In this study, we observed behavioral changes in juvenile zebrafish after 28 days of exposure to inorganic As (NaAsO2 100 and 500 ppb) in water, especially anxiety and social deficits. Additionally, the level of oxidative stress in the zebrafish brain after As treatment increased, the content of dopamine (DA) decreased, and the transcription level of genes involved in DA metabolism with the activity of monoamine oxidase (MAO) increased. Oxidative stress is a recognized mechanism of nerve damage induced by As exposure. The zebrafish were exposed to N-acetylcysteine (NAC) to reduce As exposure-induced oxidative stress. The results showed improvements in social behavior, DA content, MAO activity, and gene transcription in zebrafish. In conclusion, environmental As exposure can induce behavioral abnormalities, such as anxiety and social deficits in zebrafish, which may be caused by As-induced oxidative stress altering gene transcription levels, causing an increase in MAO activity and a decrease in DA.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ya-Qian Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Gang Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wei-Ye Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Alfonso S, Blanc M, Cousin X, Bégout ML. Exposure of zebrafish to an environmental mixture of persistent organic pollutants triggers an increase in anxiety-like syndrome but does not affect boldness in unexposed offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21439-21452. [PMID: 36269479 DOI: 10.1007/s11356-022-23689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants (POPs) that are present as complex mixtures in all environmental compartments, including aquatic ecosystems. However, little is known about the effects of such complex mixtures on teleost behaviour. In this study, zebrafish (Danio rerio) were chronically exposed to an environmentally relevant mixture (MIX) containing 22 PCB and 7 PBDE congeners through diet from 5 days post fertilization onwards. MIX-exposed F0 fish produced offspring (F1 and F2 generations) that were fed using plain food and grown until adulthood. In each generation, five behavioural traits (i.e. boldness, activity, sociality, exploration and anxiety) were evaluated by the mean of different experimental set-ups. Two distinct behavioural syndromes were identified: boldness, positively correlated to activity and exploration; and anxiety, associated with low sociality. F0 fish did not display any behavioural disruption resulting from POP exposure whereas F1 MIX fish were bolder than fish from other generations but did not differ significantly from F1 controls. F2 MIX fish displayed a higher anxiety syndrome than F2 controls. This is of particular importance since such behavioural changes in offspring generations may have persistent ecological consequences, may affect fitness and hence cause detrimental effects on wild fish populations exposed to POP mixtures.
Collapse
Affiliation(s)
- Sébastien Alfonso
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France.
- COISPA Tecnologia & Ricerca, Via dei trulli 18/20, Torre a Mare, 70126, Bari, Italy.
| | - Mélanie Blanc
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Xavier Cousin
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| | - Marie-Laure Bégout
- MARBEC, CNRS, Ifremer, IRD, INRAE, University Montpellier, Route de Maguelone, 34250, Palavas, France
| |
Collapse
|
29
|
Transcriptome Analysis of Thiram-Treated Zebrafish ( Danio rerio) Embryos Reveals Disruption of Reproduction Signaling Pathways. BIOLOGY 2023; 12:biology12020156. [PMID: 36829436 PMCID: PMC9953208 DOI: 10.3390/biology12020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Thiram, a dithiocarbamate fungicide, is used for the treatment of various fungal infections affecting crops and ornamentals. However, thiram-associated toxicity has been reported in animals, including fish, and the underlying molecular mechanisms are unclear. Herein, we employed zebrafish (ZF) to gain further insights into thiram toxicity-associated molecular mechanisms. We studied developmental abnormalities and performed whole-transcriptome analysis of ZF embryos exposed to thiram for 96 h. Embryos exposed to 4.0 μg/L thiram exhibited several phenotypic abnormalities, including bradycardia, spinal curvature, hatching arrest, and growth retardation. Whole-transcriptome analysis revealed 1754 differentially expressed genes (DEGs), with 512 upregulated and 1242 downregulated DEGs. The majority of biological processes affected by thiram were metabolic. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis yielded terms related to reproduction, such as steroid biosynthesis and steroid hormone biosynthesis. Quantitative real-time polymerase chain reaction validation results were in line with sequencing data for ten DEGs. The study results improve our current understanding of the effects of thiram exposure in ZF.
Collapse
|
30
|
Wang B, Chen J, Sheng Z, Lian W, Wu Y, Liu M. Embryonic exposure to fentanyl induces behavioral changes and neurotoxicity in zebrafish larvae. PeerJ 2022; 10:e14524. [PMID: 36540796 PMCID: PMC9760023 DOI: 10.7717/peerj.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The use of fentanyl during pregnancy, whether by prescription or illicit use, may result in high blood levels that pose an early risk to fetal development. However, little is known regarding the neurotoxicity that might arise from excessive fentanyl exposure in growing organisms, particularly drug-related withdrawal symptoms. In this study, zebrafish embryos were exposed to fentanyl solutions (0.1, 1, and 5 mg/L) for 5 days post fertilization (dpf), followed by a 5-day recovery period, and then the larvae were evaluated for photomotor response, anxiety behavior, shoaling behavior, aggression, social preference, and sensitization behavior. Fentanyl solutions at 1 and 5 mg/L induced elevated anxiety, decreased social preference and aggressiveness, and behavioral sensitization in zebrafish larvae. The expression of genes revealed that embryonic exposure to fentanyl caused substantial alterations in neural activity (bdnf, c-fos) and neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). These results suggest that fentanyl exposure during embryonic development is neurotoxic, highlighting the importance of zebrafish as an aquatic species in research on the neurobehavioral effects of opioids in vertebrates.
Collapse
Affiliation(s)
- Binjie Wang
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Jiale Chen
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Zhong Sheng
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Wanting Lian
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Yuanzhao Wu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Meng Liu
- The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Horzmann KA, Lin LF, Taslakjian B, Yuan C, Freeman JL. Anxiety-related behavior and associated brain transcriptome and epigenome alterations in adult female zebrafish exposed to atrazine during embryogenesis. CHEMOSPHERE 2022; 308:136431. [PMID: 36126741 DOI: 10.1016/j.chemosphere.2022.136431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/08/2023]
Abstract
Atrazine often contaminates drinking water sources, exceeding the maximum contaminant level established by the US Environmental Protection Agency at 3 parts per billion (ppb; μg/L). Atrazine is linked to endocrine disruption, neurotoxicity, and cancer, with delayed health effects observed after developmental exposure in line with the developmental origins of health and disease (DOHaD) hypothesis. To test the hypothesis that embryonic atrazine exposure induces delayed neurotoxicity in adult female zebrafish (Danio rerio), embryos were exposed to 0, 0.3, 3, or 30 ppb atrazine during embryogenesis (1-72 h post fertilization (hpf)) and raised to adults with no additional atrazine exposure. Behavioral outcomes were tested through a novel tank test, light-dark box, and open field test and indicated female zebrafish had more anxious phenotypes at 9 months post fertilization (mpf). Female brain transcriptomic analysis at 9 mpf found altered gene expression pathways related to organismal injury and cancer with beta-estradiol and estrogen receptor as top upstream regulators. These results were compared to 9 mpf male and 6 mpf female groups with the same atrazine embryonic exposures and showed differences in specific genes that were altered, but similarities in top molecular pathways. Molecular pathways associated with behavior were observed only in the 6 mpf transcriptomic profiles, suggesting prediction of observed behavioral outcomes at 9 mpf. The expression of genes associated with serotonin neurotransmission was also evaluated at 14 mpf to determine persistence; however, no significant changes were observed. Brain global methylation in 12 mpf zebrafish observed an increased percent 5 mC in females with embryonic 0.3 ppb atrazine exposure. Finally, the body length, body weight, and brain weight were determined at 14 mpf and were altered in all treatment groups. These results indicate that embryonic atrazine exposure does cause delayed neurotoxicity within the DOHaD framework, which is significant given atrazine's presence and persistence in the environment.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn AL, 36849, USA.
| | - Li F Lin
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Boghos Taslakjian
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
32
|
Zhu B, Lei L, Fu K, Zhao S, Hua J, Yang L, Han J, Li R, Zhou B. Neurotoxicity of tetrabromobisphenol A and SiO2 nanoparticle co-exposure in zebrafish and barrier function of the embryonic chorion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157364. [PMID: 35843329 DOI: 10.1016/j.scitotenv.2022.157364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Silicon dioxide nanoparticles (n-SiO2) absorb tetrabromobisphenol A (TBBPA) and modify its bioavailability and toxicity in the aquatic phase; embryonic chorion is an efficient barrier against nanoparticles (e.g., SiO2) and influences their toxicity. However, few studies have investigated developmental neurotoxicity in fish after co-exposure to TBBPA and n-SiO2, especially considering the barrier function of the chorion. In the present study, zebrafish embryos were exposed to TBBPA (50, 100, and 200 μg/L) alone or in combination with n-SiO2 (25 mg/L) until 24 or 120 h post fertilization (hpf), in the presence and absence of the chorion. The results confirmed that TBBPA exposure alone significantly downregulated the expression of neurodevelopment marker genes (mbp, alpha-tubulin, shha, and gfap), altered acetylcholinesterase activity and acetylcholine content, and affected locomotor behavior at different developmental stages. Moreover, the results indicated that n-SiO2 promoted TBBPA-induced neurotoxic effects in zebrafish larvae at 120 hpf, including further repression of the transcription of CNS-related genes, disruption of the cholinergic system, and decrease in the average swimming speed under dark/light stimulation. However, scanning electron microscopy/energy dispersive spectroscopy analysis revealed that at 24 hpf, the embryonic chorion efficiently blocked n-SiO2 and consequently decreased the bioaccumulation of TBBPA and TBBPA-induced neurotoxicity in dechorionated zebrafish embryos. Taken together, the results demonstrate that n-SiO2 affected the bioavailability and neurodevelopmental toxicity of TBBPA, and their combined toxicity to zebrafish embryos was mitigated by embryonic chorion, which will facilitate risk assessment on n-SiO2 and TBBPA and improve understanding the function of the fish embryonic chorion.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songlin Zhao
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
33
|
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14153793. [PMID: 35954455 PMCID: PMC9367516 DOI: 10.3390/cancers14153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The increasing use of radiopharmaceuticals for medical diagnostics and radiotherapy raises concerns regarding health risks for both humans and the environment. Additionally, in the context of major nuclear accidents like in Chernobyl and Fukushima, very little is known about the effects of chronic exposure to low and moderate dose rates of ionizing radiation (IR). Many studies demonstrated the sensibility of the developmental brain, but little data exists for IR at low dose rates and their impact on adults. In this study, we characterized the molecular mechanisms that orchestrate stress behavior caused by chronic exposure to low to moderate dose rates of IR using the adult zebrafish model. We observed the establishment of a congruent stress response at both the molecular and individual levels. Abstract High levels of ionizing radiation (IR) are known to induce neurogenesis defects with harmful consequences on brain morphogenesis and cognitive functions, but the effects of chronic low to moderate dose rates of IR remain largely unknown. In this study, we aim at defining the main molecular pathways impacted by IR and how these effects can translate to higher organizational levels such as behavior. Adult zebrafish were exposed to gamma radiation for 36 days at 0.05 mGy/h, 0.5 mGy/h and 5 mGy/h. RNA sequencing was performed on the telencephalon and completed by RNA in situ hybridization that confirmed the upregulation of oxytocin and cone rod homeobox in the parvocellular preoptic nucleus. A dose rate-dependent increase in differentially expressed genes (DEG) was observed with 27 DEG at 0.05 mGy/h, 200 DEG at 0.5 mGy/h and 530 DEG at 5 mGy/h. Genes involved in neurotransmission, neurohormones and hypothalamic-pituitary-interrenal axis functions were specifically affected, strongly suggesting their involvement in the stress response behavior observed after exposure to dose rates superior or equal to 0.5 mGy/h. At the individual scale, hypolocomotion, increased freezing and social stress were detected. Together, these data highlight the intricate interaction between neurohormones (and particularly oxytocin), neurotransmission and neurogenesis in response to chronic exposure to IR and the establishment of anxiety-like behavior.
Collapse
Affiliation(s)
- Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Thierry D. Charlier
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Santé (PSE-Santé)/Service de Recherche en Dosimétrie (SDOS)/Laboratoire de Micro-Irradiation, de Métrologie et de Dosimétrie des Neutrons (LMDN), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas Les Flots, France
| | - Oliver Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| |
Collapse
|
34
|
Vasamsetti BMK, Chon K, Kim J, Oh JA, Yoon CY, Park HH. Developmental Toxic Effects of Thiram on Developing Zebrafish (Danio rerio) Embryos. TOXICS 2022; 10:toxics10070369. [PMID: 35878274 PMCID: PMC9317679 DOI: 10.3390/toxics10070369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Thiram, an oxidized dimer of dithiocarbamate, has fungicidal and ectoparasiticidal roles. This study aimed to determine the effects of thiram on the development of zebrafish (ZF) embryos. The developmental toxicity test was performed in accordance with the OECD 236 test guidelines, and ZF embryos were subjected to several thiram concentrations and a DMSO (0.01%) control. Subsequently, embryo mortalities and developmental anomalies were evaluated at different hours post fertilization (hpf). Thiram was highly toxic to ZF, with calculated median lethal concentrations (LC50) of thiram at 48 and 96 h as 13.10 ± 2.17 and 8.87 ± 2.09 μg/L, respectively. Thiram-treated embryos/larvae exhibited a variety of deformities, such as abnormal somites, reduced eye pigment, abnormal tail shape, yolk sac edema, hatching defects, and curved spines, with a median effective concentration (EC50) of 3.88 ± 1.23, 5.04 ± 1.82, 6.23 ± 0.92, 5.24 ± 2.22, 1.39 ± 0.25, and 2.60 ± 0.82 μg/L, respectively. Teratogenic index (TI) values ranged from 1.42 to 6.66 for the scored deformities. At 48 hpf, the average heartbeat of the control group was 177.20 ± 5.63 per minute, while the highest thiram-treated group (40 μg/L) was 99.50 ± 18.12 per minute. In addition, cardiac-related issues, such as pericardial edema and abnormal blood flow, were observed in thiram-treated ZF embryos. Overall, these findings suggest that thiram is teratogenic to ZF.
Collapse
|
35
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
36
|
Dong H, Mao L, Bai C, Ye K, Wu H, Lei Y, Yu S, Liu Y, Tao J, Pan W, Xu H, Lin J, Zhu J, Dong Q. Characterization of Developmental Neurobehavioral Toxicity in a Zebrafish MPTP-Induced Model: A Novel Mechanism Involving Anemia. ACS Chem Neurosci 2022; 13:1877-1890. [PMID: 35758696 DOI: 10.1021/acschemneuro.2c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Zebrafish represent an economical alternative to rodents for developmental neurotoxicity (DNT) testing. Mechanistic understanding is the key to successfully translating zebrafish findings to humans. In the present study, we used a well-known dopaminergic (DA) neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model chemical to uncover the molecular pathways for observed DNT effects. To enhance the specificity of potential molecular targets, we restricted our exposure to a concentration that is nonteratogenic yet exhibits high DNT effects and an exposure window sensitive to MPTP. Our DNT assessment based on a battery of motor and social behavioral tests revealed an effective concentration of 1 μM and a sensitive window of 48-96 h postfertilization (hpf) for MPTP-induced hypoactivity. It is worth noting that this hypoactivity persisted into later larval development until 28 dpf. We observed increased cell apoptosis, oxidative stress, and decreased ATP levels in larvae immediately after exposure at 96 hpf. Significant reductions of DA neurons were found in the retina at 72, 96, and 120 hpf. No visible deformity was found in motoneurons at 72, 96, and 120 hpf. Transcriptome analysis uncovered a novel pathway manifested by significant upregulation of genes enriched with erythropoiesis. Sensitive window exposure of MPTP and other DA neurotoxins rotenone and paraquat exhibited a concentration-dependent effect on transcriptional changes of embryonic hemoglobins and anemia. Given that anemia is a significant risk factor for Parkinson's disease and MPTP is known to cause parkinsonism in humans, we concluded that anemia resulting from dysregulation of primitive erythropoiesis during embryonic development might serve as a common mechanism underlying DA neurotoxin-induced DNT effects between zebrafish and humans.
Collapse
Affiliation(s)
- Haojia Dong
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Luying Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Chenglian Bai
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiwei Ye
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Han Wu
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuhang Lei
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Sunrui Yu
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Liu
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Junyan Tao
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Jianhong Zhu
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiaoxiang Dong
- School of Public Health and Preventive Medicine, Wenzhou Medical University, Wenzhou 325035, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, P. R. China
| |
Collapse
|
37
|
Lanthanides Toxicity in Zebrafish Embryos Are Correlated to Their Atomic Number. TOXICS 2022; 10:toxics10060336. [PMID: 35736944 PMCID: PMC9227082 DOI: 10.3390/toxics10060336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Rare earth elements (REEs) are critical metallic materials with a broad application in industry and biomedicine. The exponential increase in REEs utilization might elevate the toxicity to aquatic animals if they are released into the water due to uncareful handling. The specific objective of our study is to explore comprehensively the critical factor of a model Lanthanide complex electronic structures for the acute toxicity of REEs based on utilizing zebrafish as a model animal. Based on the 96 h LC50 test, we found that the majority of light REEs display lower LC50 values (4.19–25.17 ppm) than heavy REEs (10.30–41.83 ppm); indicating that they are atomic number dependent. Later, linear regression analyses further show that the average carbon charge on the aromatic ring (aromatic Cavg charge) can be the most significant electronic structural factor responsible for the Lanthanides’ toxicity in zebrafish embryos. Our results confirm a very strong correlation of LC50 to Lanthanide’s atomic numbers (r = 0.72), Milliken charge (r = 0.70), and aromatic Cavg charge (r = −0.85). This most significant correlation suggests a possible toxicity mechanism that the Lanthanide cation’s capability to stably bind to the aromatic ring on the residue of targeted proteins via a covalent chelating bond. Instead, the increasing ionic bond character can reduce REEs’ toxicity. In addition, Lanthanide toxicity was also evaluated by observing the disruption of photo motor response (PMR) activity in zebrafish embryos. Our study provides the first in vivo evidence to demonstrate the correlation between an atomic number of Lanthanide ions and the Lanthanide toxicity to zebrafish embryos.
Collapse
|
38
|
Abrão LDC, Costa-Silva DG, Santos MGD, Cerqueira MBR, Badiale-Furlong E, Muccillo-Baisch AL, Hort MA. Toxicity evaluation of traditional and organic yerba mate ( Ilex paraguariensis A. St.-Hil.) extracts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:461-479. [PMID: 35189780 DOI: 10.1080/15287394.2022.2035873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yerba mate (Ilex paraguariensis A. St.-Hil.) is an important source of biologically active compounds with pharmacological potential. The aim of this study was to examine the toxicity of different extracts obtained from either traditional or organic cultivated yerba mate in vitro and in vivo. Aqueous, ethanolic and methanolic extracts were obtained from commercial samples of yerba mate and total phenolic content was determined employing Folin-Ciocalteau reagent. The aqueous extracts presented higher content of total phenols, compared to ethanolic and methanolic extracts, and also demonstrated lower cytotoxicity, which is the basis for testing were carried out only using aqueous extracts. The main phenolic acids found in traditional aqueous (TA) extract were chlorogenic, gallic and protocatechuic acids. Gallic and hydroxybenzoic acids were detected in aqueous cultivated organic (OA) extract. Pretreatment with OA extract (100 µg/ml, 1 hr) was cytoprotective against rotenone-induced toxicity (1 µM). For in vivo toxicity assay, zebrafish embryos were exposed to OA or TA extracts (10-160 µg/ml) at 4 hr post fertilization. TA extract decreased embryos survival in a concentration-dependent manner, reduced the hatching rate at 40 µg/ml, increased edema frequency at 80 µg/ml and altered body curvature at 120 µg/ml. Further, TA extract produced locomotor disorders at concentrations equal to or greater than 10 µg/ml. In contrast, OA extract exhibited no apparent toxic effect on organogenesis and behavior up to 100 µg/ml. In summary, the OA cultivated extract showed the lowest cytotoxicity in vitro, enhanced reduction in rotenone-induced toxicity, and produced less toxicity in zebrafish embryos compared to the TA extract.
Collapse
Affiliation(s)
- Lian da Costa Abrão
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Dennis Guilherme Costa-Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Michele Goulart Dos Santos
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Eliana Badiale-Furlong
- Programa de Pós-graduação em Engenharia e Ciência de Alimentos, Escola de Química e Alimentos, Universidade Federal do Rio Grande, Brazil
| | - Ana Luiza Muccillo-Baisch
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
39
|
Hsieh JH, Behl M, Parham F, Ryan K. Exploring the influence of experimental design on toxicity outcomes in zebrafish embryo tests. Toxicol Sci 2022; 188:198-207. [PMID: 35639960 DOI: 10.1093/toxsci/kfac053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compound toxicity data obtained from independent zebrafish laboratories can vary vastly, complicating the use of zebrafish screening for regulatory decisions. Differences in the assay protocol parameters are the primary source of variability. We investigated this issue by utilizing data from the NTP DNT-DIVER database (https://doi.org/10.22427/NTP-DATA-002-00062-0001-0000-1), which consists of data from zebrafish developmental toxicity (devtox) and locomotor response (designated as 'neurotox') screens from three independent laboratories, using the same set of 87 compounds. The data were analyzed using the benchmark concentration (BMC) modeling approach, which estimates the concentration of interest based on a predetermined response threshold. We compared the BMC results from three laboratories (A, B, C) in three toxicity outcome categories: mortality, cumulative devtox, and neurotox, in terms of activity calls and potency values. We found that for devtox screening, laboratories with similar/same protocol parameters (B vs C) had an active call concordance as high as 86% with negligible potency difference. For neurotox screening, active call concordances between paired laboratories are lower than devtox screening (highest 68%). When protocols with different protocol parameters were compared, the concordance dropped, and the potency shift was on average about 3.8-fold for the cumulative devtox outcome and 5.8-fold for the neurotox outcome. The potential contributing protocol parameters for potency shift are listed or ranked. This study provides a quantitative assessment of the source of variability in zebrafish screening protocols and sets the groundwork for the ongoing Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) effort at the National Toxicology Program (NTP).
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Neurocrine Biosciences Inc, 12780 El Camino Real, San Diego, CA, 92130
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
40
|
Shankar P, Garcia GR, LaDu JK, Sullivan CM, Dunham CL, Goodale BC, Waters KM, Stanisheuski S, Maier CS, Thunga P, Reif DM, Tanguay RL. The Ahr2-Dependent wfikkn1 Gene Influences Zebrafish Transcriptome, Proteome, and Behavior. Toxicol Sci 2022; 187:325-344. [PMID: 35377459 DOI: 10.1093/toxsci/kfac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is required for vertebrate development and is also activated by exogenous chemicals, including polycyclic aromatic hydrocarbons (PAHs) and TCDD. AHR activation is well-understood, but roles of downstream molecular signaling events are largely unknown. From previous transcriptomics in 48-hours post fertilization (hpf) zebrafish exposed to several PAHs and TCDD, we found wfikkn1 was highly co-expressed with cyp1a (marker for AHR activation). Thus, we hypothesized wfikkn1's role in AHR signaling, and showed that wfikkn1 expression was Ahr2 (zebrafish ortholog of human AHR)-dependent in developing zebrafish exposed to TCDD. To functionally characterize wfikkn1, we made a CRISPR-Cas9 mutant line with a 16-bp deletion in wfikkn1's exon, and exposed wildtype and mutants to DMSO or TCDD. 48-hpf mRNA sequencing revealed over 700 genes that were differentially expressed (p < 0.05, log2FC > 1) between each pair of treatment combinations, suggesting an important role for wfikkn1 in altering both the 48-hpf transcriptome and TCDD-induced expression changes. Mass spectrometry-based proteomics of 48-hpf wildtype and mutants revealed 325 significant differentially expressed proteins. Functional enrichment demonstrated wfikkn1 was involved in skeletal muscle development and played a role in neurological pathways after TCDD exposure. Mutant zebrafish appeared morphologically normal but had significant behavior deficiencies at all life stages, and absence of Wfikkn1 did not significantly alter TCDD-induced behavior effects at all life stages. In conclusion, wfikkn1 did not appear to be significantly involved in TCDD's overt toxicity but is likely a necessary functional member of the AHR signaling cascade.
Collapse
Affiliation(s)
- Prarthana Shankar
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Gloria R Garcia
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Jane K LaDu
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Christopher M Sullivan
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Cheryl L Dunham
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| | - Britton C Goodale
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 USA
| | - Katrina M Waters
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331.,Biological Sciences Division, Pacific Northwest Laboratory, 902 Battelle Boulevard, Richland, P.O. Box 999, USA WA 99352
| | | | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, 97330, USA
| | - Preethi Thunga
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Robyn L Tanguay
- The Sinnhuber Aquatic Research Laboratory Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, USA OR 97331
| |
Collapse
|
41
|
Yoshida M. Recording the ventilation activity of free-swimming zebrafish and its application to novel tank tests. Physiol Behav 2022; 244:113665. [PMID: 34871650 DOI: 10.1016/j.physbeh.2021.113665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Bioelectric signals related to ventilatory movements in fish can be detected via externally located electrodes. In this study, a technique to continuously monitor the electric ventilatory signals in free-swimming zebrafish was developed. This technique was applied to monitoring ventilation activity as a physiological measure in conjunction with various behavioral measures in a novel tank environment. It was found that in addition to ventilation rate, time domain analysis of changes in ventilation rate is useful for evaluating the emotional state of zebrafish. By integrating the physiological and behavioral measures in analyses, a 1 h novel tank test trial revealed that the habituation process involves two phases. The first phase, which lasted 10 min, involved rapid attenuation of the initial fear/anxiety response to encountering a novel environment. The second phase lasted 20 min and involved further attenuation of anxiety and an increase in exploration behavior. These data suggest that combining ventilation-related physiological measures with conventional behavioral measures enables multidimensional examination of the habituation process in a novel tank environment with more precision than is possible when relying on behavioral responses alone.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| |
Collapse
|
42
|
Petersen BD, Bertoncello KT, Bonan CD. Standardizing Zebrafish Behavioral Paradigms Across Life Stages: An Effort Towards Translational Pharmacology. Front Pharmacol 2022; 13:833227. [PMID: 35126165 PMCID: PMC8810815 DOI: 10.3389/fphar.2022.833227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.
Collapse
Affiliation(s)
- Barbara Dutra Petersen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kanandra Taisa Bertoncello
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Carla Denise Bonan,
| |
Collapse
|
43
|
Burton DF, Boa-Amponsem OM, Dixon MS, Hopkins MJ, Herbin TA, Toney S, Tarpley M, Rodriguez BV, Fish EW, Parnell SE, Cole GJ, Williams KP. Pharmacological activation of the Sonic hedgehog pathway with a Smoothened small molecule agonist ameliorates the severity of alcohol-induced morphological and behavioral birth defects in a zebrafish model of fetal alcohol spectrum disorder. J Neurosci Res 2022; 100:1585-1601. [PMID: 35014067 PMCID: PMC9271529 DOI: 10.1002/jnr.25008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Ethanol exposure during the early stages of embryonic development can lead to a range of morphological and behavioral differences termed fetal alcohol spectrum disorders (FASDs). In a zebrafish model, we have shown that acute ethanol exposure at 8-10 hr postfertilization (hpf), a critical time of development, produces birth defects similar to those clinically characterized in FASD. Dysregulation of the Sonic hedgehog (Shh) pathway has been implicated as a molecular basis for many of the birth defects caused by prenatal alcohol exposure. We observed in zebrafish embryos that shh expression was significantly decreased by ethanol exposure at 8-10 hpf, while smo expression was much less affected. Treatment of zebrafish embryos with SAG or purmorphamine, small molecule Smoothened agonists that activate Shh signaling, ameliorated the severity of ethanol-induced developmental malformations including altered eye size and midline brain development. Furthermore, this rescue effect of Smo activation was dose dependent and occurred primarily when treatment was given after ethanol exposure. Markers of Shh signaling (gli1/2) and eye development (pax6a) were restored in embryos treated with SAG post-ethanol exposure. Since embryonic ethanol exposure has been shown to produce later-life neurobehavioral impairments, juvenile zebrafish were examined in the novel tank diving test. Our results further demonstrated that in zebrafish embryos exposed to ethanol, SAG treatment was able to mitigate long-term neurodevelopmental impairments related to anxiety and risk-taking behavior. Our results indicate that pharmacological activation of the Shh pathway at specific developmental timing markedly diminishes the severity of alcohol-induced birth defects.
Collapse
Affiliation(s)
- Derek F Burton
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Oswald M Boa-Amponsem
- Integrated Biosciences PhD Program, North Carolina Central University, Durham, North Carolina, USA.,Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA
| | - Maria S Dixon
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Michael J Hopkins
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Te-Andre Herbin
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Shiquita Toney
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Michael Tarpley
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Blanca V Rodriguez
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gregory J Cole
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.,Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA.,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
44
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
45
|
Nozari A, Gagné R, Lu C, Yauk C, Trudeau VL. Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:847322. [PMID: 35573988 PMCID: PMC9097470 DOI: 10.3389/fendo.2022.847322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Fluoxetine (FLX) and other selective serotonin reuptake inhibitors are widely used to treat depressive disorders during pregnancy. Early-life exposure to FLX is known to disrupt the normal function of the stress axis in humans, rodents, and teleosts. We used a zebrafish line with a cortisol-inducible fluorescent transgene to study the effects of developmental daily exposure to FLX (54 µg/L) on the transcriptomic profile of brain tissues in exposed larvae and later as 6-month-old adults. High throughput RNA sequencing was conducted on brain tissues in unstressed and stressed conditions. Long-lasting effects of FLX were observed in telencephalon (Tel) and hypothalamus (Hyp) of adult zebrafish with 1927 and 5055 genes significantly (≥1.2 fold-change, false-discovery p-value < 0.05) dysregulated in unstressed condition, respectively. Similar findings were observed in Hyp with 1245 and 723 genes being significantly dysregulated in stressed adults, respectively. Differentially expressed genes converted to Homo sapiens orthologues were used for Ingenuity Pathway Analysis. The results showed alteration of pathways involved in neuroendocrine signaling, cholesterol metabolism and synaptogenesis. Enriched networks included lipid metabolism, molecular transport, and nervous system development. Analysis of putative upstream transcription regulators showed potential dysregulation of clocka and nr3c1 which control circadian rhythm, stress response, cholesterol metabolism and histone modifications. Several genes involved in epigenetic regulation were also affected by FLX, including dnmt3a, adarb1, adarb2, hdac4, hdac5, hdac8, and atf2. We report life-long disruptive effects of FLX on pathways associated with neuroendocrine signaling, stress response and the circadian rhythm, and all of which are implicated in the development of depressive disorders in humans. Our results raise concern for the persistent endocrine-disrupting potential of brief antidepressant exposure during embryonic development.
Collapse
Affiliation(s)
- Amin Nozari
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau,
| |
Collapse
|
46
|
Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) alters transcriptional profiles, lipid metabolism and behavior in zebrafish larvae. Heliyon 2021; 7:e07951. [PMID: 34553086 PMCID: PMC8441171 DOI: 10.1016/j.heliyon.2021.e07951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/11/2023] Open
Abstract
Plasticizers are commonly used in different consumer goods and personal care products to provide flexibility, durability and elasticity to polymers. Due to their reported toxicity, the use of several plasticizers, including phthalates has been regulated and/or banned from the market. Di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) is an alternative plasticizer that was introduced to replace toxic plasticizers. Increasing global demand and lack of toxicity data and safety assessment of DINCH have raised the concern to human and animal health. Hence, in the present study, we investigated the adverse effects of DINCH (at concentrations ranging from 0.01 to 10 μM) in early developmental stages of zebrafish using different endpoints such as hatching rate, developmental abnormalities, lipid content, behavior analysis and gene expression. We found that DINCH caused hatching delay in a dose-dependent manner and altered the expression of genes involved in stress response. Lipid staining using Oil Red O stain showed a slight lipid accumulation around the yolk, brain, eye and neck with increasing concentration. Genes associated with lipid transport such as fatty acid synthesis, β-oxidation, elongation, lipid transport were significantly altered by DINCH. Genes involved in cholesterol biosynthesis and homeostasis were also affected by DINCH indicating possible developmental neurotoxicity. Behavioral analysis of larvae demonstrated a distinct locomotor activity upon exposure to DINCH. The present data shows that DINCH could induce physiological and metabolic toxicity to aquatic organisms. Hence, further analyses and environmental monitoring of DINCH should be conducted to determine its safety and toxicity levels.
Collapse
|
47
|
Boyda J, Hawkey AB, Holloway ZR, Trevisan R, Di Giulio RT, Levin ED. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol 2021; 87:107011. [PMID: 34224825 PMCID: PMC8440393 DOI: 10.1016/j.ntt.2021.107011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Organophosphate (OP) compounds comprise one of the most widely used classes of insecticides worldwide. OPs have been shown to have negative human health impacts, particularly developmental neurotoxicity. However, neurotoxic impacts in later adulthood and during the aging process are relatively uncharacterized. The present study examined diazinon (DZN), an OP, to determine the neurobehavioral consequences, in addition to mitochondrial dysfunction on a macroscale (whole organism basal respiration) and on a microscale (whole organ mitochondrial respiration), using zebrafish (ZF) as a model. One group of 14-month-old adult ZF were exposed acutely as adults (0.4, 1.25, and 4.0 μM) for five days and tested as adults, and another group was exposed developmentally 5-120 h post-fertilization (70, 210, and 700 nM) and tested at larval, adolescent, adult, and aging life stages. ZF exposed acutely as adults did not display many significant neurobehavioral impacts or mitochondrial dysfunction. Conversely, the embryonically exposed ZF showed altered behavioral functions at each stage of life which emerged and attenuated as fish transitioned from each developmental stage to the next. Mitochondrial oxygen consumptions measurement results for developmentally DZN exposed ZF showed significant increases in the low and middle dose groups in organs such as the brain and testes. Overall, there is an indication that early developmental exposure to DZN had continuing adverse neurobehavioral and cellular consequences throughout their lives well into adulthood and aging periods.
Collapse
Affiliation(s)
- Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
48
|
Gunasekharan M, Choi TI, Rukayadi Y, Mohammad Latif MA, Karunakaran T, Mohd Faudzi SM, Kim CH. Preliminary Insight of Pyrrolylated-Chalcones as New Anti-Methicillin-Resistant Staphylococcus aureus (Anti-MRSA) Agents. Molecules 2021; 26:molecules26175314. [PMID: 34500755 PMCID: PMC8434082 DOI: 10.3390/molecules26175314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (1–15) were synthesized and evaluated for their potency against MRSA. The hydroxyl-containing compounds (8, 9, and 10) showed the most significant anti-MRSA efficiency, with the MIC and MBC values ranging from 0.08 to 0.70 mg/mL and 0.16 to 1.88 mg/mL, respectively. The time-kill curve and SEM analyses exhibited bacterial cell death within four hours after exposure to 9, suggesting its bactericidal properties. Furthermore, the docking simulation between 9 and penicillin-binding protein 2a (PBP2a, PDB ID: 6Q9N) suggests a relatively similar bonding interaction to the standard drug with a binding affinity score of −7.0 kcal/mol. Moreover, the zebrafish model showed no toxic effects in the normal embryonic development, blood vessel formation, and apoptosis when exposed to up to 40 µM of compound 9. The overall results suggest that the pyrrolylated-chalcones may be considered as a potential inhibitor in the design of new anti-MRSA agents.
Collapse
Affiliation(s)
- Mohanapriya Gunasekharan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Yaya Rukayadi
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Alif Mohammad Latif
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (S.M.M.F.); (C.-H.K.)
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: (S.M.M.F.); (C.-H.K.)
| |
Collapse
|
49
|
Defining drinking water metal contaminant mixture risk by coupling zebrafish behavioral analysis with citizen science. Sci Rep 2021; 11:17303. [PMID: 34453073 PMCID: PMC8397788 DOI: 10.1038/s41598-021-96244-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Contaminated drinking water is an important public health consideration in New England where well water is often found to contain arsenic and other metals such as cadmium, lead, and uranium. Chronic or high level exposure to these metals have been associated with multiple acute and chronic diseases, including cancers and impaired neurological development. While individual metal levels are often regulated, adverse health effects of metal mixtures, especially at concentrations considered safe for human consumption remain unclear. Here, we utilized a multivariate analysis that examined behavioral outcomes in the zebrafish model as a function of multiple metal chemical constituents of 92 drinking well water samples, collected in Maine and New Hampshire. To collect these samples, a citizen science approach was used, that engaged local teachers, students, and scientific partners. Our analysis of 4016 metal-mixture combinations shows that changes in zebrafish behavior are highly mixture dependent, and indicate that certain combinations of metals, especially those containing arsenic, cadmium, lead, and uranium, even at levels considered safe in drinking water, are significant drivers of behavioral toxicity. Our data emphasize the need to consider low-level chemical mixture effects and provide a framework for a more in-depth analysis of drinking water samples. We also provide evidence for the efficacy of utilizing citizen science in research, as the broader impact of this work is to empower local communities to advocate for improving their own water quality.
Collapse
|
50
|
Audira G, Lai YH, Huang JC, Chen KHC, Hsiao CD. Phenomics Approach to Investigate Behavioral Toxicity of Environmental or Occupational Toxicants in Adult Zebrafish (Danio rerio). Curr Protoc 2021; 1:e223. [PMID: 34387947 DOI: 10.1002/cpz1.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last few years, environmental pollution, especially water pollution, has become a serious issue worldwide. Thus, methods that can help us understand the impact and effects of these pollutants, especially on aquatic animals, are needed. Behavioral assessment has emerged as a crucial tool in toxicology and pharmacology because many studies have shown, in multiple animal models, that various pharmacological compounds can alter behavior, with many of the findings being translatable to humans. Moreover, behavior study can also be used as a suitable indicator in the ecotoxicological risk assessment of pollutants. Several model organisms, especially rodent models, have been extensively employed for behavior studies. However, assessments using this model are generally time consuming, expensive, and require extensive facilities for housing experimental animals. Moreover, behavioral studies typically use different measurements and assessment tools, making comparisons difficult. In addition, even though behavioral phenomics has the potential to comprehensively illustrate the toxicities of chemicals, there is only a limited number of studies focusing on animal behavior using such a global approach. Here, we describe a phenomics approach that can be used to investigate the impact of pollutants using zebrafish. The approach consists of several behavioral tests, including response to a novel environment, mirror-reflection image, predator fish, and conspecifics, after exposure to a test chemical. Phenotype fingerprinting, a method for summarizing individual phenotypes based on the results of the behavioral tests, is then conducted to reduce data complexity and display the pattern of each compound on behavioral phenotypes in zebrafish. This approach may be useful to researchers studying the potential adverse effects of different pollutants. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Novel tank test Basic Protocol 2: Shoaling test Basic Protocol 3: Aggression test (mirror biting test) Basic Protocol 4: Social interaction test Basic Protocol 5: Fear response test Basic Protocol 6: PCA and heatmap clustering.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li, Taiwan
| |
Collapse
|