1
|
de la Viuda V, Buceta J, Grobas I. Physical communication pathways in bacteria: an extra layer to quorum sensing. Biophys Rev 2025; 17:667-685. [PMID: 40376406 PMCID: PMC12075086 DOI: 10.1007/s12551-025-01290-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/13/2025] [Indexed: 05/18/2025] Open
Abstract
Bacterial communication is essential for survival, adaptation, and collective behavior. While chemical signaling, such as quorum sensing, has been extensively studied, physical cues play a significant role in bacterial interactions. This review explores the diverse range of physical stimuli, including mechanical forces, electromagnetic fields, temperature, acoustic vibrations, and light that bacteria may experience with their environment and within a community. By integrating these diverse communication pathways, bacteria can coordinate their activities and adapt to changing environmental conditions. Furthermore, we discuss how these physical stimuli modulate bacterial growth, lifestyle, motility, and biofilm formation. By understanding the underlying mechanisms, we can develop innovative strategies to combat bacterial infections and optimize industrial processes.
Collapse
Affiliation(s)
- Virgilio de la Viuda
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Javier Buceta
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| | - Iago Grobas
- Theoretical and Computational Systems Biology Program, Institute for Integrative Systems Biology (I2sysbio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Spain
| |
Collapse
|
2
|
Shi Z, Zhang Y, Chen W, Yu Z. Crosstalk between 6-methyladenine and 4-methylcytosine in Geobacter sulfurreducens exposed to extremely low-frequency electromagnetic field. iScience 2024; 27:110607. [PMID: 39262814 PMCID: PMC11388800 DOI: 10.1016/j.isci.2024.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
4-Methylcytosine (4mC) and 6-methyladenine (6mA) are the most prevalent types of DNA modifications in prokaryotes. However, whether there is crosstalk between 4mC and 6mA remain unknown. Here, methylomes and transcriptomes of Geobacter sulfurreducens exposed to different intensities of extremely low frequency electromagnetic fields (ELF-EMF) were investigated. Results showed that the second adenine of all the 5'-GTACAG-3' motif was modified to 6mA (M-6mA). For the other 6mA (O-6mA), the variation in their distance from the neighboring M-6mA increased with the intensity of ELF-EMF. Moreover, cytosine adjacent to O-6mA has a much higher probability of being modified to 4mC than cytosine adjacent to M-6mA, and the closer an unmodified cytosine is to 4mC, the higher the probability that the cytosine will be modified to 4mC. Furthermore, there was no significant correlation between DNA methylation and gene expression regulation. These results suggest a reference signal that goes from M-6mA to O-6mA to 4mC.
Collapse
Affiliation(s)
- Zhenhua Shi
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Yingrong Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Wanqiu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, 15 Shang Xia Dian Road, Cang Shan District, Fuzhou, Fujian 350002, China
| | - Zhen Yu
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, 7 Wu Si Road, Gu Lou District, Fuzhou, Fujian 350001, China
| |
Collapse
|
3
|
Derderian GP, Otenbaker N. A prospective study of patients with post treatment Lyme disease syndrome treated with modified VFEM energy. J Cosmet Dermatol 2024; 23:2044-2048. [PMID: 38613155 DOI: 10.1111/jocd.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND We previously demonstrated a possible therapeutic benefit of VFEM (variable frequency electromagnetic energy) technology for the treatment of Post Treatment Lyme Disease Syndrome (PTLDS) or Chronic Lyme Disease (CLD). As a result, we prospectively enrolled 10 patients, all having significant debility, to determine to what extent we could improve their quality of life. Eight patients completed the 10 treatments. RESULTS All eight patients had a significant improvement in quality of life within a 4-month time frame. CONCLUSION VFEM is a stand-alone modality that appears to demonstrate a significant improvement in quality of life in PTLDS or CLD with little or no risk or side effects of treatment.
Collapse
|
4
|
Askaripour K, Żak A. A systematic review on cellular responses of Escherichia coli to nonthermal electromagnetic irradiation. Bioelectromagnetics 2024; 45:16-29. [PMID: 37807247 DOI: 10.1002/bem.22484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/23/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023]
Abstract
Investigation of Escherichia coli under electromagnetic fields is of significance in human studies owing to its short doubling time and human-like DNA mechanisms. The present review aims to systematically evaluate the literature to conclude causality between 0 and 300 GHz electromagnetic fields and biological effects in E. coli. To that end, the OHAT methodology and risk of bias tool were employed. Exponentially growing cells exposed for over 30 min at temperatures up to3 7 ∘ C $3{7}^{\circ }\,{\rm{C}}$ with fluctuations below1 ∘ C ${1}^{\circ }\,{\rm{C}}$ were included from the Web-of-Knowledge, PubMed, or EMF-Portal databases. Out of 904 records identified, 25 articles satisfied the selection criteria, with four excluded during internal validation. These articles examined cell growth (11 studies), morphology (three studies), and gene regulation (11 studies). Most experiments (85%) in the included studies focused on the extremely low-frequency (ELF) range, with 60% specifically at 50 Hz. Changes in growth rate were observed in 74% of ELF experiments and 71% of radio frequency (RF) experiments. Additionally, 80% of ELF experiments showed morphology changes, while gene expression changes were seen in 33% (ELF) and 50% (RF) experiments. Due to the limited number of studies, especially in the intermediate frequency and RF ranges, establishing correlations between EMF exposure and biological effects on E. coli is not possible.
Collapse
Affiliation(s)
- Khadijeh Askaripour
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Pomorskie, Poland
| | - Arkadiusz Żak
- Department of Biomechatronics, Gdansk University of Technology, Gdansk, Pomorskie, Poland
| |
Collapse
|
5
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
6
|
Ciecholewska-Juśko D, Żywicka A, Junka A, Woroszyło M, Wardach M, Chodaczek G, Szymczyk-Ziółkowska P, Migdał P, Fijałkowski K. The effects of rotating magnetic field and antiseptic on in vitro pathogenic biofilm and its milieu. Sci Rep 2022; 12:8836. [PMID: 35614186 PMCID: PMC9132948 DOI: 10.1038/s41598-022-12840-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The application of various magnetic fields for boosting the efficacy of different antimicrobial molecules or in the character of a self-reliant antimicrobial agent is considered a promising approach to eradicating bacterial biofilm-related infections. The purpose of this study was to analyze the phenomenon of increased activity of octenidine dihydrochloride-based antiseptic (OCT) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the presence of the rotating magnetic field (RMF) of two frequencies, 5 and 50 Hz, in the in vitro model consisting of stacked agar discs, placed in increasing distance from the source of the antiseptic solution. The biofilm-forming cells' viability and morphology as well as biofilm matrix structure and composition were analyzed. Also, octenidine dihydrochloride permeability through biofilm and porous agar obstacles was determined for the RMF-exposed versus unexposed settings. The exposure to RMF or OCT apart did not lead to biofilm destruction, contrary to the setting in which these two agents were used together. The performed analyses revealed the effect of RMF not only on biofilms (weakening of cell wall/membranes, disturbed morphology of cells, altered biofilm matrix porosity, and composition) but also on its milieu (altered penetrability of octenidine dihydrochloride through biofilm/agar obstacles). Our results suggest that the combination of RMF and OCT can be particularly promising in eradicating biofilms located in such areas as wound pockets, where physical obstacles limit antiseptic activity.
Collapse
Affiliation(s)
- Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534, Wrocław, Poland.
| | - Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin, Sikorskiego 37, 70-313, Szczecin, Poland
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371, Wrocław, Poland
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland.
| |
Collapse
|
7
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:81-122. [PMID: 34047144 DOI: 10.1515/reveh-2021-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ambient levels of electromagnetic fields (EMF) have risen sharply in the last 80 years, creating a novel energetic exposure that previously did not exist. Most recent decades have seen exponential increases in nearly all environments, including rural/remote areas and lower atmospheric regions. Because of unique physiologies, some species of flora and fauna are sensitive to exogenous EMF in ways that may surpass human reactivity. There is limited, but comprehensive, baseline data in the U.S. from the 1980s against which to compare significant new surveys from different countries. This now provides broader and more precise data on potential transient and chronic exposures to wildlife and habitats. Biological effects have been seen broadly across all taxa and frequencies at vanishingly low intensities comparable to today's ambient exposures. Broad wildlife effects have been seen on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and longevity and survivorship. Cyto- and geno-toxic effects have been observed. The above issues are explored in three consecutive parts: Part 1 questions today's ambient EMF capabilities to adversely affect wildlife, with more urgency regarding 5G technologies. Part 2 explores natural and man-made fields, animal magnetoreception mechanisms, and pertinent studies to all wildlife kingdoms. Part 3 examines current exposure standards, applicable laws, and future directions. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Wildlife loss is often unseen and undocumented until tipping points are reached. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced.
Collapse
Affiliation(s)
- B Blake Levitt
- National Association of Science Writers, Berkeley, CA, USA
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
8
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Drozd R, Wardach M, Migdał P, Szymczyk-Ziółkowska P, Styburski D, Fijałkowski K. Rotating Magnetic Field Increases β-Lactam Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus Strains. Int J Mol Sci 2021; 22:ijms222212397. [PMID: 34830278 PMCID: PMC8618647 DOI: 10.3390/ijms222212397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network–PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland;
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50-371 Wrocław, Poland;
| | - Daniel Styburski
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.); (R.D.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-93-41 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
9
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Pruss A, Kwiatkowski P, Wardach M, Fijałkowski K. The Impact of Intraspecies Variability on Growth Rate and Cellular Metabolic Activity of Bacteria Exposed to Rotating Magnetic Field. Pathogens 2021; 10:1427. [PMID: 34832583 PMCID: PMC8624435 DOI: 10.3390/pathogens10111427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
Majority of research on the influence of magnetic fields on microorganisms has been carried out with the use of different species or different groups of microorganisms, but not with the use of different strains belonging to one species. The purpose of the present study was to assess the effect of rotating magnetic fields (RMF) of 5 and 50 Hz on the growth and cellular metabolic activity of eight species of bacteria: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Enterococcus faecalis, Enterobacter cloacae, Moraxella catarrhalis, and Bacillus cereus. However, contrary to the research conducted so far, each species was represented by at least four different strains. Moreover, an additional group of S. aureus belonging to a single clonal type but representing different biotypes was also included in the experiment. The results showed a varied influence of RMF on growth dynamics and cellular metabolic activity, diversified to the greatest extent in dependence on the bacterial strain exposed to the RMF and to a lesser extent in dependence on the frequency of the generated magnetic field. It was found that, with regard to the exposed strain of the same species, the effect exerted by the RMF may be positive (i.e., manifests as the increase in the growth rate or/and cellular metabolic activity) or negative (i.e., manifests as a reduction of both aforementioned features) or none. Even when one clonal type of S. aureus was used, the results of RMF exposure also varied (although the degree of differentiation was lower than for strains representing different clones). Therefore, the research has proven that, apart from the previously described factors related primarily to the physical parameters of the magnetic field, one of the key parameters affecting the final result of its influence is the bacterial intraspecies variability.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network-PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
| | - Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| |
Collapse
|
10
|
Woroszyło M, Ciecholewska-Juśko D, Junka A, Wardach M, Chodaczek G, Dudek B, Fijałkowski K. The Effect of Rotating Magnetic Field on Susceptibility Profile of Methicillin-Resistant Staphylococcus aureus Strains Exposed to Activity of Different Groups of Antibiotics. Int J Mol Sci 2021; 22:ijms222111551. [PMID: 34768983 PMCID: PMC8583794 DOI: 10.3390/ijms222111551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022] Open
Abstract
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have become a global issue for healthcare systems due to their resistance to most β-lactam antibiotics, frequently accompanied by resistance to other classes of antibiotics. In this work, we analyzed the impact of combined use of rotating magnetic field (RMF) with various classes of antibiotics (β-lactams, glycopeptides, macrolides, lincosamides, aminoglycosides, tetracyclines, and fluoroquinolones) against nine S. aureus strains (eight methicillin-resistant and one methicillin-sensitive). The results indicated that the application of RMF combined with antibiotics interfering with cell walls (particularly with the β-lactam antibiotics) translate into favorable changes in staphylococcal growth inhibition zones or in minimal inhibitory concentration values compared to the control settings, which were unexposed to RMF. As an example, the MIC value of cefoxitin was reduced in all MRSA strains by up to 42 times. Apart from the β-lactams, the reduced MIC values were also found for erythromycin, clindamycin, and tetracycline (three strains), ciprofloxacin (one strain), gentamicin (six strains), and teicoplanin (seven strains). The results obtained with the use of in vitro biofilm model confirm that the disturbances caused by RMF in the bacterial cell walls increase the effectiveness of the antibiotics towards MRSA. Because the clinical demand for new therapeutic options effective against MRSA is undisputable, the outcomes and conclusions drawn from the present study may be considered an important road into the application of magnetic fields to fight infections caused by methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Marta Woroszyło
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Daria Ciecholewska-Juśko
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Wroclaw, Borowska 211a, 50-534 Wrocław, Poland
- Laboratory of Microbiology, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wrocław, Poland
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| | - Marcin Wardach
- Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland;
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland;
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Stanisława Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (M.W.); (D.C.-J.)
- Correspondence: (A.J.); (K.F.); Tel.: +48-88-922-9341 (A.J.); +48-91-449-6714 (K.F.)
| |
Collapse
|
11
|
D’Ercole S, Di Lodovico S, Iezzi G, Pierfelice TV, D’Amico E, Cipollina A, Piattelli A, Cellini L, Petrini M. Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines 2021; 9:biomedicines9091261. [PMID: 34572449 PMCID: PMC8466218 DOI: 10.3390/biomedicines9091261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the effects of different programs of complex electromagnetic fields (C.M.F.s) on Candida albicans, in planktonic and sessile phase and on human gingival fibroblasts (HGF cells). In vitro cultures of C. albicans ATCC 10231 and HGF cells were exposed to different cycles of C.M.F.s defined as: oxidative stress, oxidative stress/antibacterial, antibacterial, antibacterial/oxidative stress. Colony forming units (CFUs), metabolic activity, cells viability (live/dead), cell morphology, filamentation analysis, and cytotoxicity assay were performed. The broth cultures, exposed to the different C.M.F.s, were grown on titanium discs for 48 h. The quantity comparisons of adhered C. albicans on surfaces were determined by CFUs and scanning electron microscopy. The C. albicans growth could be readily controlled with C.M.F.s reducing the number of cultivable planktonic cells vs. controls, independently by the treatment applied. In particular, the antibacterial program was associated with lower levels of CFUs. The quantification of the metabolic activity was significantly lower by using the oxidative stress program. Live/dead images showed that C.M.F.s significantly decreased the viability of C. albicans. C.M.F.s inhibited C. albicans virulence traits reducing hyphal morphogenesis, adhesion, and biofilm formation on titanium discs. The MTS assay showed no negative effects on the viability of HGF. Independent of the adopted protocol, C.M.F.s exert antifungal and anti-virulence action against C. albicans, no cytotoxicity effects on HGF and can be useful in the prevention and treatment of yeast biofilm infections.
Collapse
Affiliation(s)
- Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
- Correspondence:
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66013 Chieti, Italy; (S.D.L.); (L.C.)
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | - Emira D’Amico
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| | | | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
- Faculty of Medicine and Odontology, University of Valencia, 46004 Valencia, Spain
- Biomaterial Engineering, Catholic University of San Antonio de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena del Dott. L. Petruzzi, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66013 Chieti, Italy; (S.D.L.); (L.C.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy; (G.I.); (T.V.P.); (E.D.); (A.P.); (M.P.)
| |
Collapse
|
12
|
Effects of Complex Electromagnetic Fields on Candida albicans Adhesion and Proliferation on Polyacrylic Resin. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
(1) Background: The objectives of this study were to evaluate the effect of several sessions of the antibacterial protocol of complex electromagnetic fields (CMFs) on planktonic Candida albicans and fungal ability, after treatment with CMFs, to adhere and proliferate on acrylic resin materials. (2) Methods: Planktonic overnight cultures of Candida albicans were subjected to different entities of CMFs treatments. Four test groups were compared: “p1”: treated only with the first program of the antibacterial protocol; “p1–p5” subjected to the first five programs; “1 antibacterial” received one complete session of the protocol and “2 antibacterial” received two complete sessions. After the treatments, the number of colony forming units (CFUs) were recorded. Then, C. albicans broth cultures were cultivated on polyacrylic resin discs and evaluated for CFUs and subjected to scanning electron microscope (SEM) analysis. (3) Results: Microbiological analysis showed that CMFs promoted a significant reduction of C. albicans CFUs when the protocol “p1–p5” was applied. No statistically significant differences between test groups were observed if the time of exposure to CMFs was increased. SEM observations and CFUs showed that CMFs treatments have the ability to reduce C. albicans adherence and proliferation on discs. (4) Conclusions: The CMFs showed an antifungal effect as well as a decrease in C. albicans adhesion on polyacrylic resin.
Collapse
|
13
|
El-Kaliuoby MI, Amer M, Shehata N. Enhancement of Nano-Biopolymer Antibacterial Activity by Pulsed Electric Fields. Polymers (Basel) 2021; 13:1869. [PMID: 34200040 PMCID: PMC8200249 DOI: 10.3390/polym13111869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic wounds are commonly colonized with bacteria in a way that prevents full healing process and capacity for repair. Nano-chitosan, a biodegradable and nontoxic biopolymer, has shown bacteriostatic activity against a wide spectrum of bacteria. Effectively, pulsed electromagnetic fields are shown to have both wound healing enhancement and antibacterial activity. This work aimed to combine the use of nano-chitosan and exposure to a pulsed electric field to overcome two common types of infectious bacteria, namely P. aeruginosa and S. aureus. Here, bacteria growing rate, growth kinetics and cell cytotoxicity (levels of lactate dehydrogenase, protein leakage and nucleic acid leakage) were investigated. Our findings confirmed the maximum antibacterial synergistic combination of nano-chitosan and exposure against P. aeruginosa than using each one alone. It is presumed that the exposure has influenced bacteria membrane charge distribution in a manner that allowed more chitosan to anchor the surface and enter inside the cell. Significantly, cell cytotoxicity substantiates high enzymatic levels as a result of cell membrane disintegration. In conclusion, exposure to pulsed electromagnetic fields has a synergistic antibacterial effect against S. aureus and P. aeruginosa with maximum inhibitory effect for the last one. Extensive work should be done to evaluate the combination against different bacteria types to get general conclusive results. The ability of using pulsed electromagnetic fields as a wound healing accelerator and antibacterial cofactor has been proved, but in vivo experimental work in the future to verify the use of such a new combination against infectious wounds and to determine optimum treatment conditions is a must.
Collapse
Affiliation(s)
| | - Motaz Amer
- Basic and Applied Science Institute, College of Engineering Arab Academy for Science, Technology and Maritime Transports, Alexandria 21544, Egypt;
| | - Nader Shehata
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Safat 13133, Kuwait
- Utah Science Technology and Research (USTAR) Bio-Innovation Center, Utah State University, Logan, UT 84341, USA
| |
Collapse
|
14
|
Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. Int J Mol Sci 2021; 22:ijms22095037. [PMID: 34068809 PMCID: PMC8126245 DOI: 10.3390/ijms22095037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex, staged process. It involves extensive communication between the different cellular constituents of various compartments of the skin and its extracellular matrix (ECM). Different signaling pathways are determined by a mutual influence on each other, resulting in a dynamic and complex crosstalk. It consists of various dynamic processes including a series of overlapping phases: hemostasis, inflammation response, new tissue formation, and tissue remodeling. Interruption or deregulation of one or more of these phases may lead to non-healing (chronic) wounds. The most important factor among local and systemic exogenous factors leading to a chronic wound is infection with a biofilm presence. In the last few years, an increasing number of reports have evaluated the effects of extremely low frequency (ELF) electromagnetic fields (EMFs) on tissue repair. Each experimental result comes from a single element of this complex process. An interaction between ELF-EMFs and healing has shown to effectively modulate inflammation, protease matrix rearrangement, neo-angiogenesis, senescence, stem-cell proliferation, and epithelialization. These effects are strictly related to the time of exposure, waveform, frequency, and amplitude. In this review, we focus on the effect of ELF-EMFs on different wound healing phases.
Collapse
|
15
|
Proner MC, de Meneses AC, Veiga AA, Schlüter H, Oliveira DD, Luccio MD. Industrial Cooling Systems and Antibiofouling Strategies: A Comprehensive Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariane Carolina Proner
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Alessandra Cristina de Meneses
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Andrea Azevedo Veiga
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Helga Schlüter
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
16
|
relA and spoT Gene Expression is Modulated in Salmonella Grown Under Static Magnetic Field. Curr Microbiol 2021; 78:887-893. [PMID: 33515321 DOI: 10.1007/s00284-021-02346-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar. Bacteria were exposed to a SMF during 9 h, and RNA extraction was followed by reverse transcriptase polymerase chain reaction (RT-PCR). The relative quantification of mRNA expression levels using the 16S rRNA reference gene did not change during the SMF exposure. However, results showed a significant increase in gene expression for relA after 3 h of exposure (P < 0.05) and after 6 h for spoT (P < 0.05). The differential gene expression of relA and spoT could be considered as a potential stress response to a SMF exposure in Salmonella related to the production/degradation of (p)ppGpp.
Collapse
|
17
|
Benyoucef N, Pauss A, Abdi N, Sarde CO, Grib H, Mameri N. Enhancement of the denitrification performance of an activated sludge using an electromagnetic field in batch mode. CHEMOSPHERE 2021; 262:127698. [PMID: 32791365 DOI: 10.1016/j.chemosphere.2020.127698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
The influence of electromagnetic fields on bacterial denitrification has been tested on synthetic media with sludges from wastewater treatment stations, in batch mode. The effects of the intensity of the magnetic induction ratio B (mT), reaction volume and initial biomass concentration on the kinetics of the denitrification process were studied. Magnetic field had both an optimal stimulating effect on the activity of the denitrifying flora for B (mT)/mgx values of the order of 0.212, and an inhibitory effect for the values beyond the latter.Sludges underwent multiple exposure cycles to magnetic fields. It was shown that, after three exposure cycles, denitrification kinetics went from 6.5 to 12.7 mg N-NO-3.L-1.h-1 which corresponds to a 2.7 fold improvement. The improved performance persists even after the cessation of the magnetic field. Observation of the sludge by the environmentalelectron microscope shows that the microbial population forming the starting sludge; changed following exposure to the magnetic field. The action of the; electromagnetic field on the microbial populations in denitrification resulted in the modification of the diversity of the flora that is initially present, favoring the development of Proteo bacteria, particularly the Betaproteo bacteria subclass, which results in improved denitrification.
Collapse
Affiliation(s)
- Nabil Benyoucef
- Laboratoire BIOGEP, Ecole Nationale Polytechnique, 10 avenue HacenBadi, 16200, Algiers, Algeria
| | - André Pauss
- Université de Technologie de Compiègne, Transformations Intégrées de la Matière Renouvelable (TIMR), EA 4297, France
| | - Nadia Abdi
- Laboratoire BIOGEP, Ecole Nationale Polytechnique, 10 avenue HacenBadi, 16200, Algiers, Algeria
| | - Claude-Olivier Sarde
- Université de Technologie de Compiègne, Transformations Intégrées de la Matière Renouvelable (TIMR), EA 4297, France
| | - Hocine Grib
- Laboratoire BIOGEP, Ecole Nationale Polytechnique, 10 avenue HacenBadi, 16200, Algiers, Algeria
| | - Nabil Mameri
- Laboratoire BIOGEP, Ecole Nationale Polytechnique, 10 avenue HacenBadi, 16200, Algiers, Algeria.
| |
Collapse
|
18
|
Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation. Sci Rep 2020; 10:15470. [PMID: 32963304 PMCID: PMC7508806 DOI: 10.1038/s41598-020-72406-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
Biofilm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a biofilm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efficiently in preventing bacterial biofilm formation. When exposed to an alternating magnetic field, the flexible magnetic cantilevers vertically deflect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers’ beating prevents the initial stage of bacterial adhesion to the substrate surface and the subsequent biofilm growth. Our experimental data on E. coli liquid cultures demonstrate up to a 70% reduction in biofilm formation. A theoretical model has been developed to predict the amplitude of the cantilevers vertical deflection. Our results demonstrate proof-of-concept for a device that can magneto-mechanically prevent the first stage in bacterial biofilm formation, acting as on-demand fouling release active surfaces.
Collapse
|
19
|
El-Kaliuoby MI, Khalil AM, El-Khatib AM. Alterations of bacterial dielectric characteristics due to pulsed magnetic field exposure. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.19.00055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The effect of exposure to 0·1 Hz–0·1 kHz pulsed magnetic fields on models of gram-positive and gram-negative bacterial cells was investigated. The possible alterations in the electrical characteristics of dead and alive bacteria cells were monitored by using dielectric spectroscopy. The dielectric dispersions of cells were obtained over the range 42 Hz–8 MHz by measuring their dielectric permittivity and conductivity. The acquired results indicated exposure enhancement and inhibition effects on both bacterial models in different frequency windows. The spectroscopy results for all bacterial cells indicated two sizeable dispersions in low- and high-frequency ranges (so-called α- and β-dispersions) due to different polarization mechanisms. Remarkable variations in the dielectric relaxations were observed due to exposure as a result of possible alterations in the counterion clouds and ionic membrane permeability, plasma and cell wall charge residues. In conclusion, both bacterial models demonstrated considerable response to exposure, resulting in a significant electrochange in the cell membrane/wall structure. Moreover, by performing dielectric spectroscopy, it is possible to distinguish between normal and abnormal cells. It is worth mentioning that the observed results can be achieved when using resonance frequencies outside the range used in the study.
Collapse
|
20
|
Liu L, Zhang H, He J, Dong S. Investigation on the stress response of microbes in acute toxicity assay. Anal Chim Acta 2020; 1099:46-51. [DOI: 10.1016/j.aca.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
|
21
|
Growth Pattern of Magnetic Field-Treated Bacteria. Curr Microbiol 2019; 77:194-203. [DOI: 10.1007/s00284-019-01820-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
22
|
Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci Rep 2019; 9:14425. [PMID: 31595026 PMCID: PMC6783421 DOI: 10.1038/s41598-019-51046-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression in Escherichia coli K-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis of pgaD, fliC, cheY, malP, malZ, motB, alsC, alsK, appB and appX confirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure of E. coli DH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.
Collapse
Affiliation(s)
- Ilham H Said-Salman
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon.
| | - Fatima A Jebaii
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Hoda H Yusef
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Mateus-Vargas RH, Kemper N, Volkmann N, Kietzmann M, Meissner J, Schulz J. Low-frequency electromagnetic fields as an alternative to sanitize water of drinking systems in poultry production? PLoS One 2019; 14:e0220302. [PMID: 31344112 PMCID: PMC6657887 DOI: 10.1371/journal.pone.0220302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 11/19/2022] Open
Abstract
Low-frequency electromagnetic fields (LF-EMF) may present an alternative to conventional sanitation methods of water supply lines in animal production. The objective of this study was to evaluate the effect of the application of LF-EMF on bacterial concentrations and biofilms at scale-models of different drinking systems (circulating and non-circulating) conventionally used in poultry holdings. Treated systems were equipped with commercial devices producing pulsed electromagnetic signals of low frequency up to 10,000 Hz; max. 21 mT. Exposure of water to LF-EMF resulted in changes of the culturable bacterial counts, although with high standard deviations. Differing between systems types, LF-EMF treatment seemed to be responsible either for a limitation or for an increase of colony forming unit counts, with partly statistically significant differences, especially in early stages of treatment. In contrast, neither biofilm formation nor counts of cells suspended in water differed between treated and control lines over 28 days of experiment, as determined by fluorescence microscopy. Although this study indicates that LF-EMF may influence culturability of water microorganisms, no clear inhibitory effects on bacterial biofilm formation or on planktonic microbes by LF-EMF treatment were confirmed in the experiments.
Collapse
Affiliation(s)
- Rafael H. Mateus-Vargas
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
- * E-mail:
| | - Nicole Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| | - Nina Volkmann
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| | - Manfred Kietzmann
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg, Hannover, Germany
| | - Jessica Meissner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg, Hannover, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm, Hannover, Germany
| |
Collapse
|
24
|
Al-Harbi FF, Alkhalifah DHM, Elqahtani ZM, Ali FM, Mohamed SA, Abdelbacki AMM. Nonthermal control of Escherichia coli growth using extremely low frequency electromagnetic (ELF-EM) waves. Biomed Mater Eng 2019; 29:809-820. [PMID: 30282336 DOI: 10.3233/bme-181025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Escherichia coli (E. coli) bacteria normally live in the intestines of people and animals. Most E. coli are harmless and the treatment of the infection could be achieved by using antibiotics, however the effectiveness is still debatable and needs more investigation. OBJECTIVE Researching the inhibition resonance frequency of square amplitude modulating waves (QAMW) that can inhibit the growth activity of E. coli and its ability to make division. METHODS A range of different extremely low frequencies of square amplitude modulated waves (QAMW) from 0.1 to 1.0 Hz from two generators with a constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength 200 V/m were used to treat E. coli cells at 37 °C. RESULTS The exposure of E. coli to 0.3 Hz QAMW for 90 min was the most inhibited frequency where the bacterial growth inhibited by 42.3%. Furthermore, a significant increase in antibiotic susceptibility to protein and cell wall inhibitors was investigated. Also, results of the chromosomal DNA sequences, dielectric relaxation and TEM indicated highly significant molecular and morphological changes after the exposure. CONCLUSIONS We concluded that the exposure of E. coli to QAMW at the inhibiting frequency interfered with the bioelectric signals generated from the bacteria during the cell division and changed the cellular activity and DNA sequences, and these changes lead to a significant inhibition of the bacterial growth. This is a new promising technique that aids to avoid the repetitive use of antibiotics against the bacterial pathogens.
Collapse
Affiliation(s)
- F F Al-Harbi
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Dalal H M Alkhalifah
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Zainab M Elqahtani
- Physics Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia
| | - Fadel M Ali
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | | | - A M M Abdelbacki
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
25
|
Konopacki M, Rakoczy R. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Gosselin F, Mathieu L, Block JC, Carteret C, Muhr H, Jorand FPA. Assessment of an anti-scale low-frequency electromagnetic field device on drinking water biofilms. BIOFOULING 2018; 34:1020-1031. [PMID: 30612474 DOI: 10.1080/08927014.2018.1532998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Low intensity and very low-frequency electromagnetic fields (EMF) used for preventing scaling in water distribution systems were tested for the first time for their potential impact on drinking water biofilms. The assays were carried out in laboratory-scale flow-through reactors that mimic water distribution systems. The drinking water biofilms were not directly exposed to the core of the EMF generator and only subjected to waterborne electromagnetic waves. The density and chlorine susceptibility of nascent or mature biofilms grown under exposure to EMF were evaluated in soft and hard water. This EMF treatment was able to modify CaCO3 crystallization but it did not significantly affect biofilms. Indeed, over all the tested conditions, there was no significant change in cell number, or in the integrity of the cells (membrane, culturability), and no measurable effect of chlorine on the biofilm.
Collapse
Affiliation(s)
- F Gosselin
- a CNRS, LCPME , Université de Lorraine , Nancy , France
| | - L Mathieu
- b LCPME , EPHE, PSL Research University , Nancy , France
| | - J-C Block
- a CNRS, LCPME , Université de Lorraine , Nancy , France
| | - C Carteret
- a CNRS, LCPME , Université de Lorraine , Nancy , France
| | - H Muhr
- c CNRS, LRGP , Université de Lorraine , Nancy , France
| | - F P A Jorand
- a CNRS, LCPME , Université de Lorraine , Nancy , France
| |
Collapse
|
27
|
Choe M, Choe W, Cha S, Lee I. Changes of cationic transport in AtCAX5 transformant yeast by electromagnetic field environments. J Biol Phys 2018; 44:433-448. [PMID: 29882183 DOI: 10.1007/s10867-018-9500-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022] Open
Abstract
The electromagnetic field (EMF) is newly considered as an exogenous environmental stimulus that is closely related to ion transportation on the cellular membrane, maintaining the internal ionic homeostasis. Cation transports of Ca2+ and other metal ions, Cd2+, Zn2+, and Mn2+were studied in terms of the external Ca2+ stress, [Ca2+]ext, and exposure to the physical EMF. A specific yeast strain K667 was used for controlling CAX5 (cation/H+ exchanger) expression. Culture samples were exposed to 60 Hz, 0.1 mT sinusoidal or square magnetics waves, and intracellular cations of each sample were measured and analyzed. AtCAX5 transformant yeast grew normally under the metallic stress. However, the growth of the control group was significantly inhibited under the same cation concentration; 60 Hz and 0.1 mT magnetic field enhanced intracellular cation concentrations significantly as exposure time increased both in the AtCAX5 transformed yeast and in the control group. However, the AtCAX5-transformed yeast showed higher concentration of the intracellular cations than the control group under the same exposure EMF. AtCAX5-transformed yeasts displayed an increment in [Ca2+]int, [K+]int, [Na+]int, and [Zn2+]int concentration under the presence of both sinusoidal and square-waved EMF stresses compared to the control group, which shows that AtCAX5 expressed in the vacuole play an important role in maintaining the homeostasis of intracellular cations. These findings could be utilized in the cultivation of the crops which were resistant to excessive exogenous ions or in the production of biomass containing a large proportion of ions for nutritional food or in the bioremediation process in metal-polluted environments.
Collapse
Affiliation(s)
- Munmyong Choe
- R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea
| | - Won Choe
- R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea
| | - Songchol Cha
- R & D Center, Pyongyang University of Science & Technology, Pyongyang, Democratic People's Republic of Korea
| | - Imshik Lee
- Institute of Physics, Nankai University, Weijin Rd., Tianjin, 300071, China.
| |
Collapse
|
28
|
Skowron K, Grudlewska K, Gryń G, Skowron K, Świeca A, Paluszak Z, Zimek Z, Rafalski A, Gospodarek-Komkowska E. Effect of electron beam and gamma radiation on drug-susceptible and drug-resistantListeria monocytogenesstrains in salmon under different temperature. J Appl Microbiol 2018; 125:828-842. [DOI: 10.1111/jam.13902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/18/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- K. Skowron
- Department of Microbiology; Nicolaus Copernicus University in Toruń; Collegium Medicum of L. Rydygier in Bydgoszcz; Bydgoszcz Poland
| | - K. Grudlewska
- Department of Microbiology; Nicolaus Copernicus University in Toruń; Collegium Medicum of L. Rydygier in Bydgoszcz; Bydgoszcz Poland
| | - G. Gryń
- Plant Breeding and Acclimatization Institute - National Research Institute; Bydgoszcz Poland
| | - K.J. Skowron
- Faculty of Telecommunications, Computer Science and Electrical Engineering; University of Science and Technology; Bydgoszcz Poland
| | - A. Świeca
- Department of Microbiology and Food Technology; University of Science and Technology; Bydgoszcz Poland
| | - Z. Paluszak
- Department of Microbiology and Food Technology; University of Science and Technology; Bydgoszcz Poland
| | - Z. Zimek
- Center of Research and Radiation Technology; Institute of Nuclear Chemistry and Technology; Warsaw Poland
| | - A. Rafalski
- Center of Research and Radiation Technology; Institute of Nuclear Chemistry and Technology; Warsaw Poland
| | - E. Gospodarek-Komkowska
- Department of Microbiology; Nicolaus Copernicus University in Toruń; Collegium Medicum of L. Rydygier in Bydgoszcz; Bydgoszcz Poland
| |
Collapse
|
29
|
Saleem I, Masood S, Smith D, Chu WK. Adhesion of gram-negative rod-shaped bacteria on 1D nano-ripple glass pattern in weak magnetic fields. Microbiologyopen 2018; 8:e00640. [PMID: 29799166 PMCID: PMC6391264 DOI: 10.1002/mbo3.640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
This research project has major applications in the healthcare and biomedical industries. Bacteria reside in human bodies and play an integral role in the mechanism of life. However, their excessive growth or the invasion of similar agents can be dangerous and may cause fatal or incurable diseases. On the other hand, increased exposure to electromagnetic radiation and its impact on health and safety is a common concern to medical science. Some nanostructure materials have interesting properties regarding facilitating or impeding cell growth. An understanding of these phenomena can be utilized to establish the optimum benefit of these structures in healthcare and medical research. We focus on the commonly found rod‐shaped, gram‐negative bacteria and their orientation and community development on the cellular level in the presence of weak magnetic fields on one dimensional nano‐ripple glass patterns to investigate the impact of nanostructures on the growth pattern of bacteria. The change in bacterial behavior on nanostructures and the impact of magnetic fields will open up new venues in the utilization of nanostructures. It is noticed that bacterial entrapment in nano‐grooves leads to the growth of larger colonies on the nanostructures, whereas magnetic fields reduce the size of colonies and suppress their growth.
Collapse
Affiliation(s)
- Iram Saleem
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas
| | - Samina Masood
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas
| | - Derek Smith
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas
| | - Wei-Kan Chu
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas
| |
Collapse
|
30
|
Di Lodovico S, Del Vecchio A, Cataldi V, Di Campli E, Di Bartolomeo S, Cellini L, Di Giulio M. Microbial Contamination of Smartphone Touchscreens of Italian University Students. Curr Microbiol 2017; 75:336-342. [PMID: 29247337 DOI: 10.1007/s00284-017-1385-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
In this study, the microbial contamination of smartphones from Italian University students was analyzed. A total of 100 smartphones classified as low, medium, and high emission were examined. Bacteria were isolated on elective and selective media and identified by biochemical tests. The mean values of cfu/cm2 were 0.79 ± 0.01; in particular, a mean of 1.21 ± 0.12, 0.77 ± 0.1 and 0.40 ± 0.10 cfu/cm2 was present on smartphones at low, medium, and high emission, respectively. The vast majority of identified microorganisms came from human skin, mainly Staphylococci, together with Gram-negative and positive bacilli and yeasts. Moreover, the main isolated species and their mixture were exposed for 3 h to turned on and off smartphones to evaluate the effect of the electromagnetic wave emission on the bacterial cultivability, viability, morphology, and genotypic profile in respect to the unexposed broth cultures. A reduction rate of bacterial growth of 79 and 46% was observed in Staphylococcus aureus and Staphylococcus epidermidis broth cultures, respectively, in the presence of turned on smartphone. No differences in viability were observed in all detected conditions. Small colony variants and some differences in DNA fingerprinting were detected on bacteria when the smartphones were turned on in respect to the other conditions. The colonization of smartphones was limited to human skin microorganisms that can acquire phenotype and genotypic modifications when exposed to microwave emissions.
Collapse
Affiliation(s)
- Silvia Di Lodovico
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| | - Angela Del Vecchio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| | - Valentina Cataldi
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| | - Emanuela Di Campli
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| | - Soraya Di Bartolomeo
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| | - Luigina Cellini
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy.
| | - Mara Di Giulio
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo, Italy
| |
Collapse
|
31
|
Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency. Biochem Biophys Res Commun 2017; 494:365-371. [PMID: 28988110 DOI: 10.1016/j.bbrc.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity.
Collapse
|
32
|
Salmen SH, Alharbi SA, Faden AA, Wainwright M. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J Biol Sci 2017; 25:105-110. [PMID: 29379365 PMCID: PMC5775109 DOI: 10.1016/j.sjbs.2017.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to evaluate the impact of high frequency electromagnetic fields (HF-EMF at 900 and 1800 MHz) on DNA, growth rate and antibiotic susceptibility of S. aureus, S. epidermidis, and P. aeruginosa. In this study, bacteria were exposed to 900 and 1800 MHz for 2 h and then inoculated to new medium when their growth rate and antibiotic susceptibility were evaluated. Results for the study of bacterial DNA unsuccessful to appearance any difference exposed and non-exposed S. aureus and S. epidermidis. Exposure of S. epidermidis and S. aureus to electromagnetic fields mostly produced no statistically significant decrease in bacterial growth, except for S. aureus when exposure to 900 MHz at 12 h. Exposure of P. aeruginosa to electromagnetic fields at 900 MHz however, lead to a significant reduction in growth rate, while 1800 MHz had insignificant effect. With the exception of S. aureus, treated with amoxicillin (30 µg) and exposed to electromagnetic fields, radiation treatment had no significant effect on bacterial sensitivity to antibiotics.
Collapse
Affiliation(s)
- Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa A Faden
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - M Wainwright
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Zhang J, Xu C, Wan Y, Gao M. Effects of extremely low frequency magnetic field on production of mannatide byα-hemolytic Streptococcus. Bioelectromagnetics 2016; 37:331-7. [DOI: 10.1002/bem.21984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 05/12/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jialan Zhang
- College of Animal Science; Yangtze University; Jingzhou Hubei China
| | - Cui Xu
- College of Life Science; Yangtze University; Jingzhou Hubei China
| | - Yunlei Wan
- College of Life Science; Yangtze University; Jingzhou Hubei China
| | - Mengxiang Gao
- College of Life Science; Yangtze University; Jingzhou Hubei China
- Jingchu Food Research and Development Center; Yangtze University; Jingzhou Hubei China
| |
Collapse
|
34
|
Oncul S, Cuce EM, Aksu B, Inhan Garip A. Effect of extremely low frequency electromagnetic fields on bacterial membrane. Int J Radiat Biol 2015; 92:42-9. [PMID: 26514970 DOI: 10.3109/09553002.2015.1101500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. MATERIALS AND METHODS Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. RESULTS ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. CONCLUSION These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.
Collapse
Affiliation(s)
- Sule Oncul
- a Biophysics Department , School of Medicine, Faculty of Medicine, Medeniyet University , Istanbul
| | - Esra M Cuce
- b Department of Biophysics , Marmara University School of Medicine , Istanbul , Turkey
| | - Burak Aksu
- c Department of Microbiology , Marmara University School of Medicine , Istanbul , Turkey
| | - Ayse Inhan Garip
- b Department of Biophysics , Marmara University School of Medicine , Istanbul , Turkey
| |
Collapse
|
35
|
Gérard M, Noamen O, Evelyne G, Eric V, Gilles C, Marc H. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment. WATER RESEARCH 2015; 83:184-194. [PMID: 26150067 DOI: 10.1016/j.watres.2015.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 06/06/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (<10 nT and 2 V/m) in the biofilm-exposed region at a distance of 1 m from the electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case.
Collapse
Affiliation(s)
- Merlin Gérard
- LOCIE UMR CNRS 5271, Université de Savoie, 73376, Le Bourget du Lac, France.
| | - Omri Noamen
- LOCIE UMR CNRS 5271, Université de Savoie, 73376, Le Bourget du Lac, France
| | - Gonze Evelyne
- LOCIE UMR CNRS 5271, Université de Savoie, 73376, Le Bourget du Lac, France
| | - Valette Eric
- Planet Horizons Technologies, Technopole 5, 3960 Sierre, Switzerland
| | - Cauffet Gilles
- Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France; CNRS, G2Elab, F-38000 Grenoble, France
| | - Henry Marc
- LCMES UMR CNRS 7140 Université de Stasbourg, 67000 Strasbourg, France
| |
Collapse
|
36
|
Baraúna RA, Santos AV, Graças DA, Santos DM, Ghilardi R, Pimenta AMC, Carepo MSP, Schneider MPC, Silva A. Exposure to an extremely low-frequency electromagnetic field only slightly modifies the proteome of Chromobacterium violaceumATCC 12472. Genet Mol Biol 2015; 38:227-30. [PMID: 26273227 PMCID: PMC4530650 DOI: 10.1590/s1415-4757382220140240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/30/2014] [Indexed: 11/21/2022] Open
Abstract
Several studies of the physiological responses of different organisms exposed to extremely low-frequency electromagnetic fields (ELF-EMF) have been described. In this work, we report the minimal effects of in situ exposure to ELF-EMF on the global protein expression of Chromobacterium violaceum using a gel-based proteomic approach. The protein expression profile was only slightly altered, with five differentially expressed proteins detected in the exposed cultures; two of these proteins (DNA-binding stress protein, Dps, and alcohol dehydrogenase) were identified by MS/MS. The enhanced expression of Dps possibly helped to prevent physical damage to DNA. Although small, the changes in protein expression observed here were probably beneficial in helping the bacteria to adapt to the stress generated by the electromagnetic field.
Collapse
Affiliation(s)
- Rafael A Baraúna
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Agenor V Santos
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Diego A Graças
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Daniel M Santos
- Laboratório de Venenos e Toxinas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rubens Ghilardi
- Superintendência do Meio Ambiente, Centrais Elétricas do Norte do Brasil S/A, Brasília, DF, Brazil
| | - Adriano M C Pimenta
- Laboratório de Venenos e Toxinas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta S P Carepo
- Rede de Química e Tecnologia, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria P C Schneider
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Artur Silva
- Laboratório de Polimorfismo de DNA, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
37
|
Saifuddin N, Aisswarya K, Juan YP, Priatharsi P. Sequestration of High Carbon Dioxide Concentration for Induction of Lipids in Microalgae for Biodiesel Production. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jas.2015.1045.1058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Tessaro LWE, Murugan NJ, Persinger MA. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields. Microbiol Res 2015; 172:26-33. [PMID: 25721476 DOI: 10.1016/j.micres.2014.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species.
Collapse
Affiliation(s)
- Lucas W E Tessaro
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada P3E 2C6; Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.
| | - Nirosha J Murugan
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada P3E 2C6; Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| | - Michael A Persinger
- Behavioural Neuroscience Program, Laurentian University, Sudbury, Ontario, Canada P3E 2C6; Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.
| |
Collapse
|
39
|
Ahmed I, Istivan T, Cosic I, Pirogova E. Evaluation of the effects of Extremely Low Frequency (ELF) Pulsed Electromagnetic Fields (PEMF) on survival of the bacterium Staphylococcus aureus. ACTA ACUST UNITED AC 2013. [DOI: 10.1140/epjnbp12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Pérez H, Cordova-Fraga T, López-Briones S, Martínez-Espinosa JC, Rosas EF, Espinoza A, Villagómez-Castro JC, Sosa M, Topsu S, Bernal-Alvarado JJ. Portable device for magnetic stimulation: assessment survival and proliferation in human lymphocytes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:094701. [PMID: 24089844 DOI: 10.1063/1.4819796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A device's instrumentation for magnetic stimulation on human lymphocytes is presented. This is a new procedure to stimulate growing cells with ferrofluid in vortices of magnetic field. The stimulation of magnetic vortices was provided at five different frequencies, from 100 to 2500 Hz and intensities from 1.13 to 4.13 mT. To improve the stimulation effects, a paramagnetic ferrofluid was added on the cell culture medium. The results suggest that the frequency changes and the magnetic field variation produce an important increase in the number of proliferating cells as well as in the cellular viability. This new magnetic stimulation modality could trigger an intracellular mechanism to induce cell proliferation and cellular survival only on mitogen stimulated cells.
Collapse
Affiliation(s)
- H Pérez
- Department of Physical Engineering - DCI, Universidad de Guanajuato campus León, Loma del Bosque 103, Lomas del Campestre, 37150 León, GTO, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Portelli LA, Schomay TE, Barnes FS. Inhomogeneous background magnetic field in biological incubators is a potential confounder for experimental variability and reproducibility. Bioelectromagnetics 2013; 34:337-48. [DOI: 10.1002/bem.21787] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 01/29/2013] [Indexed: 01/03/2023]
|
42
|
Martirosyan V, Baghdasaryan N, Ayrapetyan S. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field onE. coliK-12. Electromagn Biol Med 2012; 32:291-300. [DOI: 10.3109/15368378.2012.712587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Zhang J, Wang S, Xu B, Gao M. Effect of alternating magnetic field treatments on enzymatic parameters of cellulase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1384-1388. [PMID: 22083721 DOI: 10.1002/jsfa.4711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cellulase is an enzyme of the glycosyl hydrolase family that catalyses the cleavage of β-1,4 glycosidic bonds in cellulose. In this study an alternating magnetic field was applied to evaluate cellulase activity using carboxymethyl cellulose (CMC) as substrate. RESULTS The maximum and minimum activities of cellulase occurred when magnetic fields of 2.2 and 4.2 mT respectively were applied for 20 min. Following these treatments, the enzymatic parameters K(m) and V(m) were determined based on fitting to the Michaelis-Menten equations. Generally, K(m) showed the opposite trend to V(m) under magnetic field treatments. Treatment of enzyme/substrate solutions at 4.2 mT inhibited enzyme activity whereas treatment at 2.2 mT promoted it. CONCLUSION It appears that treating enzyme/substrate solutions with different magnetic fields can inhibit or promote enzyme activity. Further research is needed to determine how the magnetic field influences the enzyme and substrate.
Collapse
Affiliation(s)
- Jialan Zhang
- College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, China
| | | | | | | |
Collapse
|
44
|
Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol 2012; 2012:587293. [PMID: 22577384 PMCID: PMC3335185 DOI: 10.1155/2012/587293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/26/2012] [Indexed: 12/02/2022] Open
Abstract
We aimed to investigate the effects of exposure to extremely low-frequency electromagnetic fields (2 mT; 50 Hz) on the growth rate and antibiotic sensitivity of E. coli ATCC 25922 and P. aeruginosa ATCC 27853. The electromagnetic field treatment significantly influenced the growth rate of both strains when incubated in the presence of subinhibitory concentrations of kanamycin (1 μg/mL) and amikacin (0.5 μg/mL), respectively. In particular, at 4, 6, and 8 h of incubation the number of cells was significantly decreased in bacteria exposed to electromagnetic field when compared with the control. Additionally, at 24 h of incubation, the percentage of cells increased (P. aeruginosa∼42%; E. coli∼5%) in treated groups with respect to control groups suggesting a progressive adaptive response. By contrast, no remarkable differences were found in the antibiotic susceptibility and on the growth rate of both bacteria comparing exposed groups with control groups.
Collapse
|
45
|
Huwiler SG, Beyer C, Fröhlich J, Hennecke H, Egli T, Schürmann D, Rehrauer H, Fischer HM. Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields. Bioelectromagnetics 2012; 33:488-96. [DOI: 10.1002/bem.21709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
|
46
|
Belyaev I. Toxicity and SOS response to ELF magnetic field and nalidixic acid in E. coli cells. Mutat Res 2011; 722:84-8. [PMID: 21453783 DOI: 10.1016/j.mrgentox.2011.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Extremely low frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF have also been discussed and tested. In this study, we analyzed the effect of ELF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time dependence (AVTD) technique. Possible genotoxic ELF effects at the specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation, were investigated by clonogenic assay, cell growth kinetics, and analysis of SOS-response using inducible recA-lacZ fusion and the β-galactosidase assay. Genotoxic agent nalidixic acid (NAL) was used as positive control and in combination with ELF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced cytotoxic effect. In contrast to NAL, ELF increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on frequency within the frequency range of 7-11Hz. While NAL induced SOS response, ELF exposure did not induce the recA-lacZ fusion. Exposure to ELF did not modify the genotoxic effects of NAL either. All together, the data show that ELF, under specific conditions of exposure, acted as nontoxic but cell growth stimulating agent.
Collapse
Affiliation(s)
- Igor Belyaev
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
47
|
Giorgi G, Marcantonio P, Bersani F, Gavoçi E, Del Re B. Effect of extremely low frequency magnetic field exposure on DNA transposition in relation to frequency, wave shape and exposure time. Int J Radiat Biol 2011; 87:601-8. [PMID: 21504343 DOI: 10.3109/09553002.2011.570855] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied. MATERIALS AND METHODS Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min). RESULTS Both mini-Tn10 and Tn5 transposition decreased under SiMF and increased under PMF, as compared to sham exposure control. No significant difference was found between frequencies and between exposure times. CONCLUSIONS ELF-MF exposure affects transposition activity and the effects critically depend on the wave shape of the field, but not on the frequency and the exposure time, at least in the range observed.
Collapse
Affiliation(s)
- Gianfranco Giorgi
- Department of Evolutionary Experimental Biology, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
48
|
Belyaev I. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells. Mutat Res 2011; 722:56-61. [PMID: 21497670 DOI: 10.1016/j.mrgentox.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/11/2011] [Accepted: 03/15/2011] [Indexed: 12/24/2022]
Abstract
Extremely low-frequency magnetic fields (ELF-MF) have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF-MF have also been discussed and tested. In this study, we analysed the effect of ELF-MF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time-dependence (AVTD) technique. Possible genotoxic effects of the specific combination of static and ELF-MF, which has been proven to affect chromatin conformation, were investigated by a clonogenic assay, by assessing cell-growth kinetics, and by analysis of the SOS-response by means of inducible recA-lacZ fusion-gene products and the β-galactosidase assay. The genotoxic agent nalidixic acid (NAL) was used as a positive control and in combination with ELF-MF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced a cytotoxic effect. In contrast to NAL, ELF-MF fields increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on the frequency within the range of 7-11Hz. While NAL induced an SOS-response, exposure to ELF-MF did not induce the recA-lacZ fusion-gene product. Exposure to ELF-MF did not modify the genotoxic effects of NAL either. All together, the data show that ELF-MF, under specific conditions of exposure, acted as a non-toxic but cell-growth stimulating agent.
Collapse
Affiliation(s)
- Igor Belyaev
- Laboratory of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic.
| |
Collapse
|
49
|
Ruiz-Gómez MJ, Sendra-Portero F, Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int J Radiat Biol 2010; 86:602-11. [PMID: 20545572 DOI: 10.3109/09553001003734519] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate whether extremely-low frequency magnetic field (MF) exposure produce alterations in the growth, cell cycle, survival and DNA damage of wild type (wt) and mutant yeast strains. MATERIALS AND METHODS wt and high affinity DNA binding factor 1 (hdf1), radiation sensitive 52 (rad52), rad52 hdf1 mutant Saccharomyces cerevisiae strains were exposed to 2.45 mT, sinusoidal 50 Hz MF for 96 h. MF was generated by a pair of Helmholtz coils. During this time the growth was monitored by measuring the optical density at 600 nm and cell cycle evolution were analysed by microscopic morphological analysis. Then, yeast survival was assayed by the drop test and DNA was extracted and electrophoresed. RESULTS A significant increase in the growth was observed for rad52 strain (P = 0.005, Analysis of Variance [ANOVA]) and close to significance for rad52 hdf1 strain (P = 0.069, ANOVA). In addition, the surviving fraction values obtained for MF-exposed samples were in all cases less than for the controls, being the P value obtained for the whole set of MF-treated strains close to significance (P = 0.066, Student's t-test). In contrast, the cell cycle evolution and the DNA pattern obtained for wt and the mutant strains were not altered after exposure to MF. CONCLUSIONS The data presented in the current report show that the applied MF (2.45 mT, sinusoidal 50 Hz, 96 h) induces alterations in the growth and survival of S. cerevisiae strains deficient in DNA strand breaks repair. In contrast, the MF treatment does not induce alterations in the cell cycle and does not cause DNA damage.
Collapse
Affiliation(s)
- Miguel J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Malaga, Spain.
| | | | | |
Collapse
|
50
|
Tagourti J, El May A, Aloui A, Chatti A, Ben Aissa R, Landoulsi A. Static magnetic field increases the sensitivity of Salmonella to gentamicin. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0081-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|