1
|
Lai H, Levitt BB. The roles of intensity, exposure duration, and modulation on the biological effects of radiofrequency radiation and exposure guidelines. Electromagn Biol Med 2022; 41:230-255. [PMID: 35438055 DOI: 10.1080/15368378.2022.2065683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, we review the literature on three important exposure metrics that are inadequately represented in most major radiofrequency radiation (RFR) exposure guidelines today: intensity, exposure duration, and signal modulation. Exposure intensity produces unpredictable effects as demonstrated by nonlinear effects. This is most likely caused by the biological system's ability to adjust and compensate but could lead to eventual biomic breakdown after prolonged exposure. A review of 112 low-intensity studies reveals that biological effects of RFR could occur at a median specific absorption rate of 0.0165 W/kg. Intensity and exposure duration interact since the dose of energy absorbed is the product of intensity and time. The result is that RFR behaves like a biological "stressor" capable of affecting numerous living systems. In addition to intensity and duration, man-made RFR is generally modulated to allow information to be encrypted. The effects of modulation on biological functions are not well understood. Four types of modulation outcomes are discussed. In addition, it is invalid to make direct comparisons between thermal energy and radiofrequency electromagnetic energy. Research data indicate that electromagnetic energy is more biologically potent in causing effects than thermal changes. The two likely functionthrough different mechanisms. As such, any current RFR exposure guidelines based on acute continuous-wave exposure are inadequate for health protection.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
2
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
3
|
Liu W, Zheng X, Qu Z, Zhang M, Zhou C, Ma L, Zhang Y. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation. ACTA ACUST UNITED AC 2012; 32:755-759. [DOI: 10.1007/s11596-012-1030-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Indexed: 01/05/2023]
|
4
|
LI G, PANG XF. Effects of Electromagnetic Field Exposure on Electromagnetic Properties of Biological Tissues*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Dasdag S, Akdag MZ, Aksen F, Bashan M, Buyukbayram H. Does 900 MHZ GSM Mobile Phone Exposure Affect Rat Brain? Electromagn Biol Med 2009. [DOI: 10.1081/jbc-200044231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Previte MJR, Aslan K, Geddes CD. Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform. Anal Chem 2007; 79:7042-52. [PMID: 17696497 DOI: 10.1021/ac071042+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to achieve more than 500-fold increases in "on-demand" photon flux from chemically catalyzed chemiluminescent reactions. We also report a 6-fold increase in photon flux from HRP-catalyzed assays on disposable coverslips functionalized with HRP and placed proximal to the substrates modified with thin-film aluminum triangle disjointed "bow-tie" structures. In addition, we demonstrate the applicability of this technology to develop multiplexed or high-throughput chemiluminescent assays. We also demonstrate the clinical and biological relevance of this technology platform by affixing aluminum structures in proximity to HRP protein immobilized on nitrocellulose to improve the sensitivity for this model Western blot scheme by 50-fold. We believe analytical applications that rely on enzyme-catalyzed chemiluminescence, such as immunoassays, may greatly benefit from this new platform technology.
Collapse
Affiliation(s)
- Michael J R Previte
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
7
|
Previte MJR, Geddes CD. Microwave-Triggered Chemiluminescence with Planar Geometrical Aluminum Substrates: Theory, Simulation and Experiment. J Fluoresc 2007; 17:279-87. [PMID: 17404821 DOI: 10.1007/s10895-007-0170-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 02/06/2007] [Indexed: 11/30/2022]
Abstract
Previously we combined common practices in protein detection with chemiluminescence, microwave technology, and metal-enhanced chemiluminescence to demonstrate that we can use low power microwaves to substantially increase enzymatic chemiluminescent reaction rates on particulate silvered substrates. We now describe the applicability of continuous aluminum metal substrates to potentially further enhance or "trigger" enzymatic chemiluminescence reactions. Furthermore, our results suggest that the extent of chemiluminescence enhancement for surface and solution based enzyme reactions critically depends on the surface geometry of the aluminum film. In addition, we also use FDTD simulations to model the interactions of the incident microwave radiation with the aluminum geometries used. We demonstrate that the extent of microwave field enhancement for solution and surface based chemiluminescent reactions can be ascribed to "lightning rod" effects that give rise to different electric field distributions for microwaves incident on planar aluminum geometries. With these results, we believe that we can spatially and temporally control the extent of triggered chemiluminescence with low power microwave (Mw) pulses and maximize localized microwave triggered metal-enhanced chemiluminescence (MT-MEC) with optimized planar aluminum geometries. Thus we can potentially further improve the sensitivity of immunoassays with significantly enhanced signal-to-noise ratios.
Collapse
Affiliation(s)
- Michael J R Previte
- Institute of Fluorescence, Laboratory for Advanced Fluorescence Spectroscopy & Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | |
Collapse
|
8
|
Previte MJR, Aslan K, Malyn SN, Geddes CD. Microwave triggered metal enhanced chemiluminescence: Quantitative protein determination. Anal Chem 2007; 78:8020-7. [PMID: 17134135 DOI: 10.1021/ac061161+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new technology that offers a faster alternative to the chemiluminescence-based detection that is used in protein assay platforms today. By combining the use of silver nanostructures with chemiluminescent species, a technique that our laboratories have recently shown can enhance the system photon flux over 50-fold, with the use of low-power microwave heating to additionally accelerate, in essence "trigger", chemiluminescence-based reactions, then both ultrafast and ultrabright chemiluminescence assays can be realized. In addition, the preferential heating of the nanostructures by microwaves affords for microwave triggered metal enhanced chemiluminescence (MT-MEC) to be localized in proximity to the silvered surfaces, alleviating unwanted emission from the distal solution. To demonstrate MT-MEC, we have constructed a model assay sensing platform on both silvered and glass surfaces, where comparison with the identical glass substrate-based assay serves to confirm the significant benefits of using silver nanostructures for metal-enhanced chemiluminescence. Our new model assay technology can detect femtomoles of biotinylated BSA in less than 2 min and can indeed be modified to both detect and quantify a great many other biomolecules as well. As compared to traditional western blot approaches, MT-MEC offers protein quantification, high-sensitivity detection combined with ultrafast assay times, i.e., <2 min.
Collapse
Affiliation(s)
- Michael J R Previte
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
9
|
Previte MJR, Aslan K, Malyn S, Geddes CD. Microwave-Triggered Metal-Enhanced Chemiluminescence (MT-MEC): Application to Ultra-fast and Ultra-sensitive Clinical Assays. J Fluoresc 2006; 16:641-7. [PMID: 16952011 DOI: 10.1007/s10895-006-0121-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
In this rapid communication we describe a new approach to protein detection with chemiluminescence. By combining common practices in protein detection with chemiluminescence, microwave technology, and metal-enhanced chemiluminescence, we show that we can use low power microwaves to substantially increase enzymatic chemiluminescent reaction rates on metal substrates. As a result, we have found that we can in essence trigger chemiluminescence with low power microwave (Mw) pulses and ultimately, perform on-demand protein detection assays. Using microwave triggered metal-enhanced chemiluminescence (MT-MEC), we not only improve the sensitivity of immunoassays with enhanced signal-to-noise ratios, but we also show that we can accurately quantify protein concentrations by integrating the photon flux for discrete time intervals.
Collapse
Affiliation(s)
- Michael J R Previte
- Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, Institute of Fluorescence, University of Maryland Biotechnology Institute, 725 West Lombard St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
10
|
Szabo I, Kappelmayer J, Alekseev SI, Ziskin MC. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 2006; 27:233-44. [PMID: 16437546 DOI: 10.1002/bem.20202] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vitro exposure of refrigerated samples (4 degrees C) of anti-coagulated blood with millimeter waves (MMWs) at incident power densities (IPDs) between 0.55 and 1.23 W/cm2 has been found to induce clot formation. We found a small but statistically significant change in clot size with increasing IPD value. MMW exposure of blood samples starting at room temperature (22 degrees C) did not induce blood coagulation; neither did conventional heating at temperatures up to 40 degrees C. Since cell-free plasma did not clot upon MMW exposure, the role of blood cells was particularly analyzed. Experiments on various mixtures of blood cells with plasma revealed an important role of red blood cells (RBC) in the coagulation process. Plasma coagulation also developed within the MMW beam above dense keratinocyte (HaCaT) monolayers suggesting it lacked cell-type specificity. We hypothesized that alteration of the membrane surface in exposed cells might be responsible for the circumscribed coagulation. The thrombogenic role of externalized phosphatidylserine (PS) molecules is well known. Therefore, we carried out experiments for immunolabeling PS molecules with fluorescein isothiocyanate (FITC)-conjugated Annexin V on exposed cells. Fluorescence microscopy of the adherent human keratinocytes (HaCaT) and murine melanoma cells (B16F10) showed that MMW exposure at an IPD of 1.23 W/cm2 is capable of inducing reversible externalization of PS molecules in cells within the beam area without detectable membrane damage. Nonadherent Jurkat cells exposed to MMW at an IPD of 34.5 mW/cm2 also showed reversible PS externalization with flow cytometry, whether the cell temperature was held constant or permitted to rise. These results suggest that certain biological effects induced by MMWs could be initiated by membrane changes in exposed cells.
Collapse
Affiliation(s)
- Imre Szabo
- Center for Biomedical Physics, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
11
|
Aslan K, Geddes CD. Microwave-Accelerated Metal-Enhanced Fluorescence: Platform Technology for Ultrafast and Ultrabright Assays. Anal Chem 2005; 77:8057-67. [PMID: 16351156 DOI: 10.1021/ac0516077] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe an exciting assay platform technology that promises to fundamentally address two underlying physical constraints of modern assays and immunoassays, namely, assay sensitivity and rapidity. By combining the use of metal-enhanced fluorescence with low-power microwave heating, we can indeed significantly increase the sensitivity of surface assays as well as >95 % kinetically complete the assay within a few seconds. Subsequently, this new technology promises to fundamentally change the way we currently employ immunoassays in clinical medicine. This new model platform system can be potentially applied to many other important assays, such as to the clinical assessment of myoglobin, where both assay speed and sensitivity is paramount for the assessment and treatment of acute myocardial infarction. To demonstrate the utility of microwave-accelerated metal-enhanced fluorescence (MAMEF), we show that a simple protein-based assay system can be optically amplified approximately 10-fold by using silver nanostructures, while being kinetically complete in less than 20 s. This new platform approach is subsequently over 10-fold more sensitive and approximately 90 times faster than a control assay that operates both at room temperature and without the use of metal-enhanced fluorescence. Finally, we show that low-power heating by microwaves in our model system does not denature proteins, as evidenced by no protein structural changes, probed by fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Kadir Aslan
- Institute of Fluorescence, Laboratory for Advanced Medical Plasmonics, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
12
|
Seaman RL, Phelix CF. Acute effects of pulsed microwaves and 3-nitropropionic acid on neuronal ultrastructure in the rat caudate-putamen. Bioelectromagnetics 2005; 26:82-101. [PMID: 15672367 DOI: 10.1002/bem.20054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ultrastructure of the medium sized "spiny" neuron in rat dorsal-lateral caudate-putamen was assessed after administration of 3-nitropropionic acid (3-NP) and exposure to pulsed microwaves. Sprague-Dawley male rats were given two daily intraperitoneal doses of 0 or 10 mg/kg 3-NP and 1.5 h after each dose were exposed to microwave radiation at a whole body averaged specific absorption rate (SAR) of 0 (sham exposure), 0.6, or 6 W/kg for 30 min. Microwave exposure consisted of 1.25 GHz radiation delivered as 5.9 micros pulses with repetition frequency 10 Hz. Tissue samples taken 2-3 h after the second sham or microwave exposure showed no injury with light microscope methods. Blinded qualitative assessment of ultrastructure of randomly selected neurons from the same samples did reveal differences. Subsequent detailed, quantitative measurements showed that, when followed by sham exposure, administration of 3-NP significantly increased endoplasmic reticulum (ER) intracisternal width, ER area density, and nuclear envelope thickness. Microwave exposure at 6 W/kg alone also significantly increased these measures. Exposure of 3-NP treated animals at 6 W/kg significantly increased effects of 3-NP on ultrastructure. Although exposure at 0.6 W/kg alone did not affect ultrastructure measures, exposure of 3-NP treated animals at 0.6 W/kg reduced the effects of 3-NP. We concluded that 3-NP changed neuronal ultrastructure and that the microwave exposures used here changed neuronal ultrastructure in ways that depended on microwave SAR and neuron metabolic status. The apparent cancellation of 3-NP induced changes by exposure to pulsed microwaves at 0.6 W/kg indicated the possibility that such exposure can protect against the effects of mitochondrial toxins on the nervous system.
Collapse
Affiliation(s)
- Ronald L Seaman
- McKesson BioServices Corporation and Microwave Bioeffects Branch, US Army Medical Research Detachment, Brooks City-Base, Texas 78235, USA.
| | | |
Collapse
|
13
|
Zmyślony M, Politanski P, Rajkowska E, Szymczak W, Jajte J. Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics 2004; 25:324-8. [PMID: 15197754 DOI: 10.1002/bem.10191] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to test the hypothesis that the 930 MHz continuous wave (CW) electromagnetic field, which is the carrier of signals emitted by cellular phones, affects the reactive oxygen species (ROS) level in living cells. Rat lymphocytes were used in the experiments. A portion of the lymphocytes was treated with iron ions to induce oxidative processes. Exposures to electromagnetic radiation (power density 5 W/m2, theoretical calculated SAR = 1.5 W/kg) were performed within a GTEM cell. Intracellular ROS were measured by the fluorescent probe dichlorofluorescin diacetate (DCF-DA). The results show that acute (5 and 15 min) exposure does not affect the number of produced ROS. If, however, FeCl2 with final concentration 10 microg/ml was added to the lymphocyte suspensions to stimulate ROS production, after both durations of exposure, the magnitude of fluorescence (ROS level during the experiment) was significantly greater in the exposed lymphocytes. The character of the changes in the number of free radicals observed in our experiments was qualitatively compatible with the theoretical prediction from the model of electromagnetic radiation effect on radical pairs.
Collapse
Affiliation(s)
- Marek Zmyślony
- Physical Hazards Department, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | | | | | | | | |
Collapse
|
14
|
Nikolaeva MA, Kulakov VI, Korotkova IV, Golubeva EL, Kuyavskaya DV, Sukhikh GT. Antisperm antibodies detection by flow cytometry is affected by aggregation of antigen-antibody complexes on the surface of spermatozoa. Hum Reprod 2000; 15:2545-53. [PMID: 11098024 DOI: 10.1093/humrep/15.12.2545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Flow cytometry (FCM) analysis of live antibody-coated spermatozoa subjected to immunofluorescence staining (FCM test) is considered an objective method for the quantitative detection of antisperm antibodies (ASA). But the cross-linking of cell surface antigen (Ag) with bivalent antibodies and/or antigen-antibody (Ag-Ab) complexes with second antibodies may induce the reorganization of surface components (patching and capping) and result in their shedding from the sperm surface. The present study estimates the relationship between aggregation of Ag-Ab complexes on the sperm surface and the results of indirect FCM test. Swim-up spermatozoa of normozoospermic men were incubated with ASA-positive sera from infertile patients and with second antibodies fluorescein isothiocyanate (FITC)-labelled goat anti-human IgG polyclonal antiserum under different conditions and then analysed by FCM and fluorescence microscopy. It was shown that low temperature, cytochalasin B, excess or lack of the primary and/or secondary antibodies and sperm fixation by paraformaldehyde may inhibit aggregation and shedding of Ag-Ab complexes and dramatically increase ASA quantity determined on the sperm surface. However, inhibition of aggregation on the live sperm surface was observed only in a minority of ASA-positive samples and was poorly reproducible using semen of different donors. A high probability of Ag-Ab complex shedding from the sperm surface during experimental manipulation limits the use of indirect FCM test for quantitative ASA determination.
Collapse
Affiliation(s)
- M A Nikolaeva
- Laboratory of Clinical Immunology, Russian Scientific Centre for Obstetrics, Gynecology and Perinatology, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
15
|
|