1
|
Haga CL, Boregowda SV, Booker CN, Krishnappa V, Strivelli J, Cappelli E, Phinney DG. Mesenchymal stem/stromal cells from a transplanted, asymptomatic patient with Fanconi anemia exhibit an aging-like phenotype and dysregulated expression of genes implicated in hematopoiesis and myelodysplasia. Cytotherapy 2023; 25:362-368. [PMID: 36481320 PMCID: PMC10006355 DOI: 10.1016/j.jcyt.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by defects in the repair of DNA inter-strand crosslinks and manifests as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia. FA also causes defects in mesenchymal stromal cell (MSC) function, but how different FA gene mutations alter function remains understudied. METHODS We compared the growth, differentiation and transcript profile of a single MSC isolate from an asymptomatic patient with FA with a FANCG nonsense mutation who underwent hematopoietic stem cell transplantation 10 years prior to that from a representative healthy donor (HD). RESULTS We show that FANCG-/- MSCs exhibit rapid onset of growth cessation, skewed bi-lineage differentiation in favor of adipogenesis and increased cellular oxidate stress consistent with an aging-like phenotype. Transcript profiling identified pathways related to cell growth, senescence, cellular stress responses and DNA replication/repair as over-represented in FANCG-/- MSC, and real-time polymerase chain reaction confirmed these MSCs expressed reduced levels of transcripts implicated in cell growth (TWIST1, FGFR2v7-8) and osteogenesis (TWIST1, RUNX2) and increased levels of transcripts regulating adipogenesis (GPR116) and insulin signaling. They also expressed reduced levels of mRNAs implicated in HSC self-maintenance and homing (KITLG, HGF, GDNF, PGF, CFB, IL-1B and CSF1) and elevated levels of those implicated in myelodysplasia (IL-6, GDF15). CONCLUSIONS Together, these findings demonstrate how inactivation of FANCG impacts MSC behavior, which parallels observed defects in osteogenesis, HSC depletion and leukemic blast formation seen in patients with FA.
Collapse
Affiliation(s)
- Christopher L Haga
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | | | - Cori N Booker
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Veena Krishnappa
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Donald G Phinney
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
2
|
Gao D, Herman JG, Guo M. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget 2018; 7:37331-37346. [PMID: 26967246 PMCID: PMC5095080 DOI: 10.18632/oncotarget.7949] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells.
Collapse
Affiliation(s)
- Dan Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China.,Medical College of NanKai University, Tianjin, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Ponte F, Carvalho F, Porto B. Protective effect of acetyl-l-carnitine and α-lipoic acid against the acute toxicity of diepoxybutane to human lymphocytes. Toxicology 2011; 289:52-58. [PMID: 21807063 DOI: 10.1016/j.tox.2011.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/15/2011] [Accepted: 07/16/2011] [Indexed: 12/21/2022]
Abstract
The biotransformation and oxidative stress may contribute to 1,2:3,4-diepoxybutane (DEB)-induced toxicity to human lymphocytes of Fanconi Anemia (FA) patients. Thus, the identification of putative inhibitors of bioactivation, as well as the determination of the protective role of oxidant defenses, on DEB-induced toxicity, can help to understand what is failing in FA cells. In the present work we studied the contribution of several biochemical pathways for DEB-induced acute toxicity in human lymphocyte suspensions, by using inhibitors of epoxide hydrolases, inhibitors of protective enzymes as glutathione S-transferase and catalase, the depletion of glutathione (GSH), and the inhibition of protein synthesis; and a variety of putative protective compounds, including antioxidants, and mitochondrial protective agents. The present study reports two novel findings: (i) it was clearly evidenced, for the first time, that the acute exposure of freshly isolated human lymphocytes to DEB results in severe GSH depletion and loss of ATP, followed by cell death; (ii) acetyl-l-carnitine elicits a significant protective effect on DEB induced toxicity, which was potentiated by α-lipoic acid. Collectively, these findings contribute to increase our knowledge of DEB-induce toxicity and will be very useful when applied in studies with lymphocytes from FA patients, in order to find out a protective agent against spontaneous and DEB-induced chromosome instability.
Collapse
Affiliation(s)
- Filipa Ponte
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Anibal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | |
Collapse
|
4
|
Cleaver JE. Historical Aspects of Xeroderma Pigmentosum and Nucleotide Excision Repair. MOLECULAR MECHANISMS OF XERODERMA PIGMENTOSUM 2008; 637:1-9. [DOI: 10.1007/978-0-387-09599-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. ACTA ACUST UNITED AC 2006; 175:225-35. [PMID: 17060495 PMCID: PMC2064564 DOI: 10.1083/jcb.200607061] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.
Collapse
|
6
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
7
|
Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 2004; 6:251-61. [PMID: 15380516 DOI: 10.1016/j.ccr.2004.07.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 06/22/2004] [Accepted: 07/15/2004] [Indexed: 12/16/2022]
Abstract
Pathological expression of human ErbB-2 protein, also known as HER-2, is common in many types of cancer. ErbB-2 is a member of the EGF receptor tyrosine kinase family and has been rigorously studied as a signaling molecule on the cell membrane. Here, we report that ErbB-2 is also expressed in the nucleus in cultured cells as well as primary tumor tissues. Nuclear ErbB-2 was found to associate with multiple genomic targets in vivo, including the cyclooxygenase enzyme COX-2 gene promoter. ErbB-2 forms a complex at a specific nucleotide sequence of the COX-2 promoter and is able to stimulate its transcription. This study demonstrates the presence of ErbB-2 in the nucleus and identifies the function of ErbB-2 as a transcriptional regulator.
Collapse
Affiliation(s)
- Shao-Chun Wang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pichierri P, Franchitto A, Rosselli F. BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 2004; 23:3154-63. [PMID: 15257300 PMCID: PMC514912 DOI: 10.1038/sj.emboj.7600277] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 05/25/2004] [Indexed: 12/28/2022] Open
Abstract
Fanconi anaemia (FA) and Bloom syndrome (BS) are autosomal recessive diseases characterised by chromosome fragility and cancer proneness. Here, we report that BLM and the FA pathway are activated in response to both crosslinked DNA and replication fork stall. We provide evidence that BLM and FANCD2 colocalise and co-immunoprecipitate following treatment with either DNA crosslinkers or agents inducing replication arrest. We also find that the FA core complex is necessary for BLM phosphorylation and assembly in nuclear foci in response to crosslinked DNA. Moreover, we show that knock-down of the MRE11 complex, whose function is also under the control of the FA core complex, enhances cellular and chromosomal sensitivity to DNA interstrand crosslinks in BS cells. These findings suggest the existence of a functional link between BLM and the FA pathway and that BLM and the MRE11 complex are in two separated branches of a pathway resulting in S-phase checkpoint activation, chromosome integrity and cell survival in response to crosslinked DNA.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Annapaola Franchitto
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Filippo Rosselli
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
9
|
Zanier R, Briot D, Dugas du Villard JA, Sarasin A, Rosselli F. Fanconi anemia C gene product regulates expression of genes involved in differentiation and inflammation. Oncogene 2004; 23:5004-13. [PMID: 15077170 DOI: 10.1038/sj.onc.1207677] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of Fanconi anemia (FA) proteins activity by recessive inherited mutations in one of the FA genes leads to a disease characterized by bone marrow failure, myeloid leukemia and DNA damage hypersensitivity. The aim of this work was to improve our understanding of the FA syndrome defining the transcription profile of the FA complementation group C (FANCC)-deficient cells in comparison to their ectopically corrected counterpart using oligonucleotide microarrays. In this way, 49 RNAs have been isolated, which showed a consistent differential pattern of expression among FANCC mutated and corrected cells. The observed specific changes in gene expression suggest that FANCC regulates specifically myeloid differentiation and unmasks a previously unsuspected anti-inflammatory role for the FA proteins. In spite of the DNA damage hypersensitivity of the syndrome, no gene coding for a protein directly involved in DNA repair/damage response was found to be deregulated in our analysis. This observation suggests that FANCC does not directly control genes involved in DNA repair at the transcriptional level, but does not exclude a regulation at the translational or post-translational level, or by protein/protein interactions. The potential role of the differentially expressed genes in FA phenotype as well as a functional- and cellular-based clustering of the identified genes are presented and discussed.
Collapse
Affiliation(s)
- Romina Zanier
- UPR2169 CNRS, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
10
|
Abstract
Erythropoiesis is a complex multistep process encompassing the differentiation of hemopoietic stem cells to mature erythrocytes. The steps involved in this complex differentiation process are numerous and involve first the differentiation to early erythoid progenitors (burst-forming units-erythroid, BFU-E), then to late erythroid progenitors (colony-forming units-erythroid) and finally to morphologically recognizable erythroid precursors. A key event of late stages of erythropoiesis is nuclear condensation, followed by extrusion of the nucleus to produce enucleated reticulocytes and finally mature erythrocytes. During the differentiation process, the cells became progressively sensitive to erythropoietin that controls both the survival and proliferation of erythroid cells. A normal homeostasis of the erythropoietic system requires an appropriate balance between the rate of erythroid cell production and red blood cell destruction. Growing evidences outlined in the present review indicate that apoptotic mechanism play a relevant role in the control of erythropoiesis under physiologic and pathologic conditions. Withdrawal of erythropoietin or stimulation of death receptors such as Fas or TRAIL-Rs leads to activation of a subset of caspase-3, -7 and -8, which then cleave the transcription factors GATA-1 and TAL-1 and trigger apoptosis. In addition, there is evidence that a number of caspases are physiologically activated during erythroid differentiation and are functionally required for erythroid maturation. Several caspase substrates are cleaved in differentiating cells, including the protein acinus whose activation by cleavage is required for chromatin condensation. The studies on normal erythropoiesis have clearly indicated that immature erythroid precursors are sensitive to apoptotic triggering mediated by activation of the intrinsic and extrinsic apoptotic pathways. These apoptotic mechanisms are frequently exacerbated in some pathologic conditions, associated with the development of anemia (ie, thalassemias, multiple myeloma, myelodysplasia, aplastic anemia). The considerable progress in our understanding of the apoptotic mechanisms underlying normal and pathologic erythropoiesis may offer the way to improve the treatment of several pathologic conditions associated with the development of anemia.
Collapse
Affiliation(s)
- U Testa
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
11
|
Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23:1178-87. [PMID: 14988723 PMCID: PMC380971 DOI: 10.1038/sj.emboj.7600113] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 01/12/2004] [Indexed: 02/07/2023] Open
Abstract
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| | - Filippo Rosselli
- UPR 2169 du CNRS, Institut Gustave Roussy PR2, Villejuif Cedex, France
| |
Collapse
|
12
|
Ferber MJ, Thorland EC, Brink AATP, Rapp AK, Phillips LA, McGovern R, Gostout BS, Cheung TH, Chung TKH, Fu WY, Smith DI. Preferential integration of human papillomavirus type 18 near the c-myc locus in cervical carcinoma. Oncogene 2003; 22:7233-42. [PMID: 14562053 DOI: 10.1038/sj.onc.1207006] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The development of cervical cancer is highly associated with human papillomavirus (HPV) infection. Greater than 99% of all cervical tumors contain HPV DNA. Integration of high-risk HPV has been temporally associated with the acquisition of a malignant phenotype. Recent work from our lab has shown that HPV16, the most common high-risk HPV associated with cervical carcinoma, preferentially integrates at loci containing human common fragile sites (CFSs). CFSs are regions of genomic instability that have also been associated with deletions, translocations, and gene amplification during cancer development. The current work shows that HPV18, the second most prevalent high-risk HPV type found in cervical tumors, preferentially targets the CFSs. We identified 27 unique HPV18 integrations in cervical tumors, of which 63% (P<0.001) occur in CFSs. However, the distribution of HPV18 integrations found were profoundly different from those found for HPV16. Specifically, 30% of all HPV18 integrations occurred within the chromosomal band 8q24 near the c-myc proto-oncogene. None of the HPV16 integrations occurred in this region. Previous low-resolution mapping suggested that c-myc may be a target of HPV integration. Our data at nucleotide resolution confirm that in HPV18-positive cervical tumors, the region surrounding c-myc is indeed a hot spot of viral integration. These results demonstrate that CFSs are preferred sites of integration for HPV18 in cervical tumors. In addition, we have identified multiple cellular genes that have been disrupted by HPV18 integration in cervical tumors. Our results suggest that the sites of HPV18 integration are nonrandom and may play an important role in the development of cervical tumors.
Collapse
Affiliation(s)
- Matthew J Ferber
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG, Huber PAJ. Yeast two-hybrid screens imply involvement of fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport. Exp Cell Res 2003; 289:211-21. [PMID: 14499622 DOI: 10.1016/s0014-4827(03)00261-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.
Collapse
Affiliation(s)
- Tanja Y Reuter
- Department of Biochemistry, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
15
|
Yamamoto K, Ishiai M, Matsushita N, Arakawa H, Lamerdin JE, Buerstedde JM, Tanimoto M, Harada M, Thompson LH, Takata M. Fanconi anemia FANCG protein in mitigating radiation- and enzyme-induced DNA double-strand breaks by homologous recombination in vertebrate cells. Mol Cell Biol 2003; 23:5421-30. [PMID: 12861027 PMCID: PMC165738 DOI: 10.1128/mcb.23.15.5421-5430.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rare hereditary disorder Fanconi anemia (FA) is characterized by progressive bone marrow failure, congenital skeletal abnormality, elevated susceptibility to cancer, and cellular hypersensitivity to DNA cross-linking chemicals and sometimes other DNA-damaging agents. Molecular cloning identified six causative genes (FANCA, -C, -D2, -E, -F, and -G) encoding a multiprotein complex whose precise biochemical function remains elusive. Recent studies implicate this complex in DNA damage responses that are linked to the breast cancer susceptibility proteins BRCA1 and BRCA2. Mutations in BRCA2, which participates in homologous recombination (HR), are the underlying cause in some FA patients. To elucidate the roles of FA genes in HR, we disrupted the FANCG/XRCC9 locus in the chicken B-cell line DT40. FANCG-deficient DT40 cells resemble mammalian fancg mutants in that they are sensitive to killing by cisplatin and mitomycin C (MMC) and exhibit increased MMC and radiation-induced chromosome breakage. We find that the repair of I-SceI-induced chromosomal double-strand breaks (DSBs) by HR is decreased approximately 9-fold in fancg cells compared with the parental and FANCG-complemented cells. In addition, the efficiency of gene targeting is mildly decreased in FANCG-deficient cells, but depends on the specific locus. We conclude that FANCG is required for efficient HR-mediated repair of at least some types of DSBs.
Collapse
Affiliation(s)
- Kazuhiko Yamamoto
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pagano G, Youssoufian H. Fanconi anaemia proteins: major roles in cell protection against oxidative damage. Bioessays 2003; 25:589-95. [PMID: 12766948 DOI: 10.1002/bies.10283] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fanconi anaemia (FA) is a cancer-prone genetic disorder that is characterised by cytogenetic instability and redox abnormalities. Although rare subtypes of FA (B, D1 and D2) have been implicated in DNA repair through links with BRCA1 and BRCA2, such a role has yet to be demonstrated for gene products of the common subtypes. Instead, these products have been strongly implicated in xenobiotic metabolism and redox homeostasis through interactions of FANCC with cytochrome P-450 reductase and with glutathione S-transferase, and of FANCG with cytochrome P-450 2E1, as well as redox-dependent signalling through an interaction between FANCA and Akt kinase. We hypothesise that FA proteins act directly (via FANCC and FANCG) and indirectly (via FANCA, BRCA2 and FANCD2) with the machinery of cellular defence to modulate oxidative stress. The latter interactions may co-ordinate the link between the response to DNA damage and oxidative stress parameters (3, 6-12).
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G. Pascale Foundation, Paediatric Oncology Research Centre, via M. Semmola, I-80131 Naples, Italy.
| | | |
Collapse
|
17
|
Seo GJ, Kim SE, Lee YM, Lee JW, Lee JR, Hahn MJ, Kim ST. Determination of substrate specificity and putative substrates of Chk2 kinase. Biochem Biophys Res Commun 2003; 304:339-43. [PMID: 12711320 DOI: 10.1016/s0006-291x(03)00589-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chk2/hCds1, the human homolog of Saccharomyces cerevisiae Rad53p and Schizosaccharomyces pombe Cds1p, plays a critical role in the DNA damage checkpoint pathway. While several in vivo targets of Chk2 have been identified, the other target proteins of Chk2 responsible for multiple functions, such as cell cycle arrest, DNA repair, and apoptosis, remain to be elucidated. We utilized the GST-peptide approach to identify physiological substrates for Chk2. Mutational analyses using GST-linked Cdc25A containing serine 123 revealed that residues at positions -5 and -3 are critical determinants for the recognition of the Chk2 substrate. We determined the general phosphorylation consensus sequence and identified in vitro targets of Chk2 using GST peptides as substrates. The newly identified in vitro target proteins include Abl1, Bub1R, Bub1, Bub3, Psk-H1, Smc3, Plk1, Cdc25B, Dcamkl1, Mre11, Pms1, and Xrcc9.
Collapse
Affiliation(s)
- Gil-Ju Seo
- Department of Molecular Cellular Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, 300 Chunchun-Dong, Changan-Ku, 440-746, Suwon, Kyunggi-Do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Sridharan D, Brown M, Lambert WC, McMahon LW, Lambert MW. Nonerythroid alphaII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J Cell Sci 2003; 116:823-35. [PMID: 12571280 DOI: 10.1242/jcs.00294] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The events responsible for repair of DNA interstrand cross-links in mammalian cells, the proteins involved and their interactions with each other are poorly understood. The present study demonstrates that the structural protein nonerythroid alpha spectrin (alphaSpIISigma*), present in normal human cell nuclei, plays an important role in repair of DNA interstrand cross-links. These results show that alphaSpIISigma* relocalizes to nuclear foci after damage of normal human cells with the DNA interstrand cross-linking agent 8-methoxypsoralen plus ultraviolet A (UVA) light and that FANCA and the known DNA repair protein XPF localize to the same nuclear foci. That alphaSpIISigma* is essential for this re-localization is demonstrated by the finding that in cells from patients with Fanconi anemia complementation group A (FA-A), which have decreased ability to repair DNA interstrand cross-links and decreased levels of alphaSpIISigma*, there is a significant reduction in formation of damage-induced XPF as well as alphaSpIISigma* nuclear foci, even though levels of XPF are normal in these cells. In corrected FA-A cells, in which levels of alphaSpIISigma* are restored to normal, numbers of damage-induced nuclear foci are also returned to normal. Co-immunoprecipitation studies show that alphaSpIISigma*, FANCA and XPF co-immunoprecipitate with each other from normal human nuclear proteins. These results demonstrate that alphaSpIISigma*, FANCA and XPF interact with each other in the nucleus and indicate that there is a close functional relationship between these proteins. These studies suggest that an important role for alphaSpIISigma* in the nucleus is to act as a scaffold, aiding in recruitment and alignment of repair proteins at sites of damage.
Collapse
Affiliation(s)
- Deepa Sridharan
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School and the Graduate School of Biomedical Sciences, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|