1
|
Chemoradiation impairs myofiber hypertrophic growth in a pediatric tumor model. Sci Rep 2020; 10:19501. [PMID: 33177579 PMCID: PMC7659015 DOI: 10.1038/s41598-020-75913-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
Pediatric cancer treatment often involves chemotherapy and radiation, where off-target effects can include skeletal muscle decline. The effect of such treatments on juvenile skeletal muscle growth has yet to be investigated. We employed a small animal irradiator to administer fractionated hindlimb irradiation to juvenile mice bearing implanted rhabdomyosarcoma (RMS) tumors. Hindlimb-targeted irradiation (3 × 8.2 Gy) of 4-week-old mice successfully eliminated RMS tumors implanted one week prior. After establishment of this preclinical model, a cohort of tumor-bearing mice were injected with the chemotherapeutic drug, vincristine, alone or in combination with fractionated irradiation (5 × 4.8 Gy). Single myofiber analysis of fast-contracting extensor digitorum longus (EDL) and slow-contracting soleus (SOL) muscles was conducted 3 weeks post-treatment. Although a reduction in myofiber size was apparent, EDL and SOL myonuclear number were differentially affected by juvenile irradiation and/or vincristine treatment. In contrast, a decrease in myonuclear domain (myofiber volume/myonucleus) was observed regardless of muscle or treatment. Thus, inhibition of myofiber hypertrophic growth is a consistent feature of pediatric cancer treatment.
Collapse
|
2
|
Lee CY, Petkova M, Morales-Gonzalez S, Gimber N, Schmoranzer J, Meisel A, Böhmerle W, Stenzel W, Schuelke M, Schwarz JM. A spontaneous missense mutation in the chromodomain helicase DNA-binding protein 8 (CHD8) gene: a novel association with congenital myasthenic syndrome. Neuropathol Appl Neurobiol 2020; 46:588-601. [PMID: 32267004 DOI: 10.1111/nan.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
AIMS Congenital myasthenic syndromes (CMS) are characterized by muscle weakness, ptosis and episodic apnoea. Mutations affect integral protein components of the neuromuscular junction (NMJ). Here we searched for the genetic basis of CMS in female monozygotic twins. METHODS We employed whole-exome sequencing for mutation detection and Sanger sequencing for segregation analysis. Immunohistology was done with antibodies against CHD8, rapsyn, β-catenin (βCAT) and golgin on fi-bro-blasts, human and mouse muscle. We recorded superresolution images of the NMJ using 3D-structured illumination microscopy. RESULTS We discovered a spontaneous missense mutation in CHD8 [chr14:g.21,884,051G>A, GRCh37.p11 | c.1732C>T, NM_00117062 | p.(R578C)], the gene encoding chromodomain helicase DNA-binding protein 8. This is the first missense mutation affecting Duplin, the short 110 kDa isoform of CHD8. It is known that CHD8/Duplin negatively regulates βCAT signalling in the WNT pathway and plays a role in chromatin remodelling. Inactivating CHD8 mutations are associated with autism spectrum disorder and intellectual disability in combination with facial dysmorphism, overgrowth and macrocephalus. No muscle-specific phenotype has been reported to date. Co-immunostaining with rapsyn on human and mouse muscle revealed a strong presence of CHD8 at the NMJ being located towards the sarcoplasmic side of the rapsyn cluster, where it co-localizes with βCAT. CONCLUSION We hypothesize CHD8 to have a role in the maintenance of the structural integrity and function of the NMJ. Both patients benefited from treatment with 3,4-diaminopyridine, a reversible blocker of voltage-gated potassium channels at the nerve terminal that prolongs the action potential and increases acetylcholine release.
Collapse
Affiliation(s)
- C Y Lee
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Petkova
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Morales-Gonzalez
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - N Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Meisel
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - W Böhmerle
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - W Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - J M Schwarz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Kann AP, Krauss RS. Multiplexed RNAscope and immunofluorescence on whole-mount skeletal myofibers and their associated stem cells. Development 2019; 146:dev179259. [PMID: 31519691 PMCID: PMC6826044 DOI: 10.1242/dev.179259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Skeletal muscle myofibers are large syncytial cells comprising hundreds of myonuclei, and in situ hybridization experiments have reported a range of transcript localization patterns within them. Although some transcripts are uniformly distributed throughout myofibers, proximity to specialized regions can affect the programming of myonuclei and functional compartmentalization of transcripts. Established techniques are limited by a lack of both sensitivity and spatial resolution, restricting the ability to identify different patterns of gene expression. In this study, we adapted RNAscope fluorescent in situ hybridization technology for use on whole-mount mouse primary myofibers, a preparation that isolates single myofibers with their associated muscle stem cells remaining in their niche. This method can be combined with immunofluorescence, enabling an unparalleled ability to visualize and quantify transcripts and proteins across the length and depth of skeletal myofibers and their associated stem cells. Using this approach, we demonstrate a range of potential uses, including the visualization of specialized transcriptional programming within myofibers, tracking activation-induced transcriptional changes, quantification of stem cell heterogeneity and evaluation of stem cell niche factor transcription patterns.
Collapse
Affiliation(s)
- Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Wang H, Zhao X, Yun W, Chen LH, Li ST. Effect of Inhibiting p38 on HuR Involving in β-AChR Post-transcriptional Mechanisms in Denervated Skeletal Muscle. Cell Mol Neurobiol 2019; 39:1029-1037. [PMID: 31172341 PMCID: PMC11457834 DOI: 10.1007/s10571-019-00698-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
Previous studies reported that RNA-binding protein human antigen R (HuR) mediates changes in the stability of AChR β-subunit mRNA after skeletal muscle denervation; also, p38 pathway regulated the stability of AChR β-subunit mRNA in C2C12 myotubes. However, the relationship between HuR and p38 in regulating the stability of AChR β-subunit mRNA have not been clarified. In this study, we wanted to examine the effect of inhibiting p38 on HuR in denervated skeletal muscle. Denervation model was built and 10% DMSO or SB203580 were administered respectively follow denervation. Tibialis muscles were collected in 10% DMSO-administered contralateral (undenervated) leg, 10% DMSO-administered denervated leg, SB203580-administered contralateral (undenervated) leg, and SB203580-administered denervated leg, respectively. P38 protein, β-AChR mRNA and protein, HuR protein, β-AChR mRNA stability, and HuR binding with AChR β-subunit mRNAs were measured. Results demonstrated that the administration of SB203580 can inhibit the increase of β-AChR protein expression and mRNA expression and stability, and RNA-binding protein human antigen R (HuR) expression, in cytoplasmic and nuclear fractions in skeletal muscle cells following denervation. Importantly, we observed that SB203580 also inhibited the increased level of binding activity between HuR and AChR β-subunit mRNAs following denervation. Collectively, these results suggested that inhibition of p38 can post-transcriptionally inhibit β-AChR upregulation via HuR in denervated skeletal muscle.
Collapse
Affiliation(s)
- Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Xiao Zhao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Wang Yun
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Lian-Hua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China.
| |
Collapse
|
5
|
Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT, Chakkalakal JV. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. eLife 2017; 6. [PMID: 28583253 PMCID: PMC5462534 DOI: 10.7554/elife.26464] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/20/2017] [Indexed: 01/04/2023] Open
Abstract
Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline. DOI:http://dx.doi.org/10.7554/eLife.26464.001
Collapse
Affiliation(s)
- Wenxuan Liu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Alanna Klose
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Sophie Forman
- Department of Biology, University of Rochester, Rochester, United States
| | - Nicole D Paris
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | | | - Aidi Tan
- Bioinformatics Division and Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.,TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Morgan Flaherty
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, United States
| | - Joe V Chakkalakal
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, United States.,The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
6
|
HuR Mediates Changes in the Stability of AChR β-Subunit mRNAs after Skeletal Muscle Denervation. J Neurosci 2015; 35:10949-62. [PMID: 26245959 DOI: 10.1523/jneurosci.1043-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Acetylcholine receptors (AChRs) are heteromeric membrane proteins essential for neurotransmission at the neuromuscular junction. Previous work showed that muscle denervation increases expression of AChR mRNAs due to transcriptional activation of AChR subunit genes. However, it remains possible that post-transcriptional mechanisms are also involved in controlling the levels of AChR mRNAs following denervation. We examined whether post-transcriptional events indeed regulate AChR β-subunit mRNAs in response to denervation. First, in vitro stability assays revealed that the half-life of AChR β-subunit mRNAs was increased in the presence of denervated muscle protein extracts. A bioinformatics analysis revealed the existence of a conserved AU-rich element (ARE) in the 3'-untranslated region (UTR) of AChR β-subunit mRNA. Furthermore, denervation of mouse muscle injected with a luciferase reporter construct containing the AChR β-subunit 3'UTR, caused an increase in luciferase activity. By contrast, mutation of this ARE prevented this increase. We also observed that denervation increased expression of the RNA-binding protein human antigen R (HuR) and induced its translocation to the cytoplasm. Importantly, HuR binds to endogenous AChR β-subunit transcripts in cultured myotubes and in vivo, and this binding is increased in denervated versus innervated muscles. Finally, p38 MAPK, a pathway known to activate HuR, was induced following denervation as a result of MKK3/6 activation and a decrease in MKP-1 expression, thereby leading to an increase in the stability of AChR β-subunit transcripts. Together, these results demonstrate the important contribution of post-transcriptional events in regulating AChR β-subunit mRNAs and point toward a central role for HuR in mediating synaptic gene expression. SIGNIFICANCE STATEMENT Muscle denervation is a convenient model to examine expression of genes encoding proteins of the neuromuscular junction, especially acetylcholine receptors (AChRs). Despite the accepted model of AChR regulation, which implicates transcriptional mechanisms, it remains plausible that such events cannot fully account for changes in AChR expression following denervation. We show that denervation increases expression of the RNA-binding protein HuR, which in turn, causes an increase in the stability of AChR β-subunit mRNAs in denervated muscle. Our findings demonstrate for the first time the contribution of post-transcriptional events in controlling AChR expression in skeletal muscle, and points toward a central role for HuR in mediating synaptic development while also paving the way for developing RNA-based therapeutics for neuromuscular diseases.
Collapse
|
7
|
van Bergeijk P, Hoogenraad CC, Kapitein LC. Right Time, Right Place: Probing the Functions of Organelle Positioning. Trends Cell Biol 2015; 26:121-134. [PMID: 26541125 DOI: 10.1016/j.tcb.2015.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The proper spatial arrangement of organelles underlies many cellular processes including signaling, polarization, and growth. Despite the importance of local positioning, the precise connection between subcellular localization and organelle function is often not fully understood. To address this, recent studies have developed and employed different strategies to directly manipulate organelle distributions, such as the use of (light-sensitive) heterodimerization to control the interaction between selected organelles and specific motor proteins, adaptor molecules, or anchoring factors. We review here the importance of subcellular localization as well as tools to control local organelle positioning. Because these approaches allow spatiotemporal control of organelle distribution, they will be invaluable tools to unravel local functioning and the mechanisms that control positioning.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
8
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
9
|
Chang YF, Chou HJ, Yen YC, Chang HW, Hong YR, Huang HW, Tseng CN. Agrin induces association of Chrna1 mRNA and nicotinic acetylcholine receptor in C2C12 myotubes. FEBS Lett 2012; 586:3111-6. [PMID: 22884571 DOI: 10.1016/j.febslet.2012.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/05/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
Abstract
In the mammalian central nervous system transcripts of certain synaptic components are localized near the synapse, allowing for rapid regulation of protein levels. Here we test whether an mRNA localization mechanism also exists in the postsynaptic specialization induced by agrin in C2C12 myotubes. RT-PCR showed that Chrna1 was co-purified with nicotinic acetylcholine receptor (AChR) isolated by affinity column or by ultracentrifugation. In addition, Stau1 was found to interact with Chrna1 mRNA, and knocking down of Stau1 by RNAi resulted in defective AChR clustering. These results suggest that mRNA localization also participates in the formation of mammalian neuromuscular junction (NMJ).
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Meignin C, Davis I. Transmitting the message: intracellular mRNA localization. Curr Opin Cell Biol 2010; 22:112-9. [DOI: 10.1016/j.ceb.2009.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 11/25/2022]
|
11
|
Ayalon G, Davis JQ, Scotland PB, Bennett V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2009; 135:1189-200. [PMID: 19109891 DOI: 10.1016/j.cell.2008.10.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/11/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023]
Abstract
beta-dystroglycan (DG) and the dystrophin-glycoprotein complex (DGC) are localized at costameres and neuromuscular junctions in the sarcolemma of skeletal muscle. We present evidence for an ankyrin-based mechanism for sarcolemmal localization of dystrophin and beta-DG. Dystrophin binds ankyrin-B and ankyrin-G, while beta-DG binds ankyrin-G. Dystrophin and beta-DG require ankyrin-G for retention at costameres but not delivery to the sarcolemma. Dystrophin and beta-DG remain intracellular in ankyrin-B-depleted muscle, where beta-DG accumulates in a juxta-TGN compartment. The neuromuscular junction requires ankyrin-B for localization of dystrophin/utrophin and beta-DG and for maintenance of its postnatal morphology. A Becker muscular dystrophy mutation reduces ankyrin binding and impairs sarcolemmal localization of dystrophin-Dp71. Ankyrin-B also binds to dynactin-4, a dynactin subunit. Dynactin-4 and a subset of microtubules disappear from sarcolemmal sites in ankyrin-B-depleted muscle. Ankyrin-B thus is an adaptor required for sarcolemmal localization of dystrophin, as well as dynactin-4.
Collapse
Affiliation(s)
- Gai Ayalon
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
12
|
Chakkalakal JV, Miura P, Bélanger G, Michel RN, Jasmin BJ. Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling. Nucleic Acids Res 2008; 36:826-38. [PMID: 18084024 PMCID: PMC2241908 DOI: 10.1093/nar/gkm1107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
We examined the role of post-transcriptional mechanisms in controlling utrophin A mRNA expression in slow versus fast skeletal muscles. First, we determined that the half-life of utrophin A mRNA is significantly shorter in the presence of proteins isolated from fast muscles. Direct plasmid injection experiments using reporter constructs containing the full-length or truncated variants of the utrophin 3'UTR into slow soleus and fast extensor digitorum longus muscles revealed that a region of 265 nucleotides is sufficient to confer lower levels of reporter mRNA in fast muscles. Further analysis of this region uncovered a conserved AU-rich element (ARE) that suppresses expression of reporter mRNAs in cultured muscle cells. Moreover, stability of reporter mRNAs fused to the utrophin full-length 3'UTR was lower in the presence of fast muscle protein extracts. This destabilization effect seen in vivo was lost upon deletion of the conserved ARE. Finally, we observed that calcineurin signaling affects utrophin A mRNA stability through the conserved ARE. These results indicate that ARE-mediated mRNA decay is a key mechanism that regulates expression of utrophin A mRNA in slow muscle fibers. This is the first demonstration of ARE-mediated mRNA decay regulating the expression of a gene associated with the slow myogenic program.
Collapse
Affiliation(s)
- Joe V. Chakkalakal
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Robin N. Michel
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| |
Collapse
|
13
|
Hippenmeyer S, Huber RM, Ladle DR, Murphy K, Arber S. ETS Transcription Factor Erm Controls Subsynaptic Gene Expression in Skeletal Muscles. Neuron 2007; 55:726-40. [PMID: 17785180 DOI: 10.1016/j.neuron.2007.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/22/2007] [Accepted: 07/24/2007] [Indexed: 11/23/2022]
Abstract
Accumulation of specific proteins at synaptic structures is essential for synapse assembly and function, but mechanisms regulating local protein enrichment remain poorly understood. At the neuromuscular junction (NMJ), subsynaptic nuclei underlie motor axon terminals within extrafusal muscle fibers and are transcriptionally distinct from neighboring nuclei. In this study, we show that expression of the ETS transcription factor Erm is highly concentrated at subsynaptic nuclei, and its mutation in mice leads to severe downregulation of many genes with normally enriched subsynaptic expression. Erm mutant mice display an expansion of the muscle central domain in which acetylcholine receptor (AChR) clusters accumulate, show gradual fragmentation of AChR clusters, and exhibit symptoms of muscle weakness mimicking congenital myasthenic syndrome (CMS). Together, our findings define Erm as an upstream regulator of a transcriptional program selective to subsynaptic nuclei at the NMJ and underscore the importance of transcriptional control of local synaptic protein accumulation.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Biozentrum, Department of Cell Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Lui WY, Cheng CY. Regulation of cell junction dynamics by cytokines in the testis: a molecular and biochemical perspective. Cytokine Growth Factor Rev 2007; 18:299-311. [PMID: 17521954 PMCID: PMC2701191 DOI: 10.1016/j.cytogfr.2007.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Studies in the past decade in the field have demonstrated the significance of cytokines in regulating epithelial and endothelial cell junctions including tight and anchoring junctions in multiple organs including the testis. There are mounting evidences in recent years that cytokines play a crucial role in the restructuring of junctions at the Sertoli-Sertoli and Sertoli-germ cell interface in the seminiferous epithelium during spermatogenesis. These earlier studies, however, were focused on the effects of cytokines in maintaining the steady-state protein levels of integral membrane proteins at the sites of the blood-testis barrier (BTB) and anchoring junctions at the Sertoli-Sertoli and Sertoli-germ cell interface, such as basal and apical ectoplasmic specialization, respectively. The molecular pathway(s) and/or mechanism(s) underlying these effects remained virtually unexplored until very recently. Herein, we summarize and provide some discussions on studies that focused on the role of cytokines in regulating junction restructuring events in epithelia from a molecular and biochemical perspective. Specifically, we use the adult rat or mouse testis as a model to highlight the significance of transcriptional and translational regulation. Specific areas of research that require further attentions are also highlighted.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Department of Zoology, The University of Hong Kong, Pokfulam, Hong Kong
| | - C. Yan Cheng
- Center for Biomedical Research, The Population Council, 1230 York Avenue, New York, New York 10021
| |
Collapse
|
15
|
Wheeler TM, Krym MC, Thornton CA. Ribonuclear foci at the neuromuscular junction in myotonic dystrophy type 1. Neuromuscul Disord 2007; 17:242-7. [PMID: 17306536 PMCID: PMC2752326 DOI: 10.1016/j.nmd.2006.12.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/10/2006] [Accepted: 12/29/2006] [Indexed: 01/20/2023]
Abstract
In myotonic dystrophy type 1 (DM1) the muscle fibers express RNA containing an expanded CUG repeat (CUG(exp)). The CUG(exp) RNA is retained in the nucleus, forming ribonuclear foci. Splicing factors in the muscleblind (MBNL) family are sequestered in ribonuclear foci, resulting in abnormal regulation of alternative splicing. In extrajunctional nuclei, these effects on splicing regulation lead to reduced chloride conductance and altered insulin receptor signaling. Here we show that CUG(exp) RNA is also expressed in subsynaptic nuclei of muscle fibers and in motor neurons in DM1, causing sequestration of MBNL1 protein in both locations. In a transgenic mouse model, expression of CUG(exp) RNA at high levels in extrajunctional nuclei replicates many features of DM1, but the toxic RNA is poorly expressed in subsynaptic nuclei and the mice fail to develop denervation-like features of DM1 myopathology. Our findings indicate that subsynaptic nuclei and motor neurons are at risk for DM1-induced spliceopathy, which may affect function or stability of the neuromuscular junction.
Collapse
Affiliation(s)
- T M Wheeler
- Department of Neurology, University of Rochester, 601 Elmwood Avenue, Box 673, Rochester, NY 14642, USA
| | | | | |
Collapse
|
16
|
Cuellar H, Kim JA, Unguez GA. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus. FASEB J 2006; 20:2540. [PMID: 17077280 DOI: 10.1096/fj.06-6474fje] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrocytes, the current-producing cells of electric organs (EOs) in electric fish, are unique in that they derive from striated muscle and they possess biochemical characteristics of both muscle and non-muscle cells. In the freshwater teleost Sternopygus macrurus, electrocytes are multinucleated cells that do not contract yet retain expression of some proteins common to skeletal muscle cells. Given the role that transcriptional regulation plays in the activation of the myogenic program in vertebrates, we examined the expression patterns of several genes associated with multiple functions of skeletal muscle in mature electrocytes of S. macrurus. Our expression analyses detected transcripts for alpha-actin, alpha-acetylcholine (ACh) receptor (alpha-AChR), desmin, muscle creatine kinase (MCK), myosin heavy chain (MHC) isoforms, titin, tropomyosin, and troponin-T genes in the EO. However, immunolabeling studies revealed that electrocytes do not contain MCK, MHCs, or tropomyosin or troponin-T proteins. These results underscore the contribution of gene regulatory mechanisms in the maintenance of the muscle-like phenotype of EO that may be transcriptional-independent. We also report the classification and frequency of distinct transcripts from a random selection of 420 clones from an EO cDNA library. This is the first characterization of expressed genes in an EO, and it is an important step toward identifying mechanisms that affect different muscle protein systems for the evolution of highly specialized noncontractile tissues. Evidence of post-transcriptional regulation in the maintenance of a partial muscle phenotype by electrogenic cells of S. macrurus.
Collapse
Affiliation(s)
- Heriberto Cuellar
- Department of Biology, Foster Hall, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
17
|
Stocksley MA, Awad SS, Young C, Lightowlers RN, Brenner HR, Slater CR. Accumulation of Nav1 mRNAs at differentiating postsynaptic sites in rat soleus muscles. Mol Cell Neurosci 2005; 28:694-702. [PMID: 15797716 DOI: 10.1016/j.mcn.2004.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 11/17/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine receptors (AChRs) and voltage-gated sodium channels (Na(V)1s) accumulate at different times in the development of the murine neuromuscular junction (NMJ). We used in situ hybridization to study the relationship of Na(V)1 mRNA accumulation to this difference. mRNAs encoding both muscle Na(V)1 isoforms, Na(v)1.4 and Na(v)1.5, were first concentrated at NMJs at birth, when the proteins start to accumulate. Within 4 weeks, Na(v)1.4 mRNA increased 5-fold at the NMJ while Na(v)1.5 mRNA became undetectable. Na(V)1 mRNA accumulation occurred even if the nerve was cut at birth. Like AChR mRNA, Na(V)1 mRNA accumulated at denervated synaptic sites on regenerating muscles and in response to ectopically expressed neural agrin. Clustering of Na(V)1 at the NMJ follows that of its mRNA while AChR clustering precedes its mRNA clustering by several days. This suggests that factors other than local mRNA upregulation determine the timing of clustering of these two important postsynaptic ion channels.
Collapse
Affiliation(s)
- Mark A Stocksley
- School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
18
|
Miura P, Thompson J, Chakkalakal JV, Holcik M, Jasmin BJ. The utrophin A 5'-untranslated region confers internal ribosome entry site-mediated translational control during regeneration of skeletal muscle fibers. J Biol Chem 2005; 280:32997-3005. [PMID: 16061482 DOI: 10.1074/jbc.m503994200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Utrophin up-regulation in muscle fibers of Duchenne muscular dystrophy patients represents a potential therapeutic strategy. It is thus important to delineate the regulatory events presiding over utrophin in muscle in attempts to develop pharmacological interventions aimed at increasing utrophin expression. A number of studies have now shown that under several experimental conditions, the abundance of utrophin is increased without a corresponding elevation in its mRNA. Here, we examine whether utrophin expression is regulated at the translational level in regenerating muscle fibers. Treatment of mouse tibialis anterior muscles with cardiotoxin to induce muscle degeneration/regeneration led to a large (approximately 14-fold) increase in the levels of utrophin A with a modest change in expression of its transcript (40%). Isolation of the mouse utrophin A 5'-untranslated region (UTR) revealed that it is relatively long with a predicted high degree of secondary structure. In control muscles, the 5'-UTR of utrophin A caused an inhibition upon translation of a reporter protein. Strikingly, this inhibition was removed during regeneration, indicating that expression of utrophin A in regenerating muscles is translationally regulated via its 5'-UTR. Using bicistronic reporter vectors, we observed that this translational effect involves an internal ribosome entry site in the utrophin A 5'-UTR. Thus, internal ribosome entry site-mediated translation of utrophin A can, at least partially, account for the discordant expression of utrophin A protein and transcript in regenerating muscle. These findings provide a novel target for up-regulating levels of utrophin A in Duchenne muscular dystrophy muscle fibers via pharmacological interventions.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Cobra Cardiotoxin Proteins/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Genetic Vectors
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Models, Genetic
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Plasmids/metabolism
- Protein Biosynthesis
- Protein Structure, Secondary
- RNA/metabolism
- RNA, Messenger/metabolism
- Regeneration
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/metabolism
- Up-Regulation
- Utrophin/chemistry
- Utrophin/genetics
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
19
|
Kishi M, Kummer TT, Eglen SJ, Sanes JR. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. ACTA ACUST UNITED AC 2005; 169:355-66. [PMID: 15851520 PMCID: PMC2171857 DOI: 10.1083/jcb.200411012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5β, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5β is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in “corraling” AChRs. Consistent with this idea, perturbing LL5β expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Anatomy and Neurobiology, Washington University Medical Center, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
20
|
Grady RM, Starr DA, Ackerman GL, Sanes JR, Han M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc Natl Acad Sci U S A 2005; 102:4359-64. [PMID: 15749817 PMCID: PMC555524 DOI: 10.1073/pnas.0500711102] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate skeletal muscle fibers contain hundreds of nuclei, of which three to six are functionally specialized and stably anchored beneath the postsynaptic membrane at the neuromuscular junction (NMJ). The mechanisms that localize synaptic nuclei and the roles they play in neuromuscular development are unknown. Syne-1 is concentrated at the nuclear envelope of synaptic nuclei; its Caenorhabditis elegans orthologue ANC-1 functions to tether nuclei to the cytoskeleton. To test the involvement of Syne proteins in nuclear anchoring, we generated transgenic mice overexpressing the conserved C-terminal Klarsicht/ANC-1/Syne homology domain of Syne-1. The transgene acted in a dominant interfering fashion, displacing endogenous Syne-1 from the nuclear envelope. Muscle nuclei failed to aggregate at the NMJ in transgenic mice, demonstrating that localization and positioning of synaptic nuclei require Syne proteins. We then exploited this phenotype to show that synaptic nuclear aggregates are dispensable for maturation of the NMJ.
Collapse
Affiliation(s)
- R Mark Grady
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
21
|
Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E, Cartaud J, Legay C. MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. ACTA ACUST UNITED AC 2004; 165:505-15. [PMID: 15159418 PMCID: PMC2172359 DOI: 10.1083/jcb.200307164] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
At the neuromuscular junction, acetylcholinesterase (AChE) is mainly present as asymmetric forms in which tetramers of catalytic subunits are associated to a specific collagen, collagen Q (ColQ). The accumulation of the enzyme in the synaptic basal lamina strictly relies on ColQ. This has been shown to be mediated by interaction between ColQ and perlecan, which itself binds dystroglycan. Here, using transfected mutants of ColQ in a ColQ-deficient muscle cell line or COS-7 cells, we report that ColQ clusterizes through a more complex mechanism. This process requires two heparin-binding sites contained in the collagen domain as well as the COOH terminus of ColQ. Cross-linking and immunoprecipitation experiments in Torpedo postsynaptic membranes together with transfection experiments with muscle-specific kinase (MuSK) constructs in MuSK-deficient myotubes or COS-7 cells provide the first evidence that ColQ binds MuSK. Together, our data suggest that a ternary complex containing ColQ, perlecan, and MuSK is required for AChE clustering and support the notion that MuSK dictates AChE synaptic localization at the neuromuscular junction.
Collapse
Affiliation(s)
- Annie Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique (CNRS), Universités Paris 6 and Paris 7, 75251 Paris, Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bélanger G, Stocksley MA, Vandromme M, Schaeffer L, Furic L, DesGroseillers L, Jasmin BJ. Localization of the RNA-binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. J Neurochem 2003; 86:669-77. [PMID: 12859680 DOI: 10.1046/j.1471-4159.2003.01883.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staufen is an RNA-binding protein, first identified for its role in oogenesis and CNS development in Drosophila. Two mammalian homologs of Staufen have been identified and shown to bind double-stranded RNA and tubulin, and to function in the somatodendritic transport of mRNA in neurons. Here, we examined whether Staufen proteins are expressed in skeletal muscle in relation to the neuromuscular junction. Immunofluorescence experiments revealed that Staufen1 (Stau1) and Staufen2 (Stau2) accumulate preferentially within the postsynaptic sarcoplasm of muscle fibers as well as at newly formed ectopic synapses. Western blot analyses showed that the levels of Stau1 and Stau2 are greater in slow muscles than in fast-twitch muscles. Muscle denervation induced a significant increase in the expression of Stau1 and Stau2 in the extrasynaptic compartment of both fast and slow muscles. Consistent with these observations, we also demonstrated that expression of Stau1 and Stau2 is increased during myogenic differentiation and that treatment of myotubes with agrin and neuregulin induces a further increase in the expression of both Staufen proteins. We propose that Stau1 and Stau2 are key components of the postsynaptic apparatus in muscle, and that they contribute to the maturation and plasticity of the neuromuscular junction.
Collapse
MESH Headings
- Agrin/pharmacology
- Animals
- Blotting, Western
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line
- Mice
- Mice, Inbred C57BL
- Muscle Denervation
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/biosynthesis
- Neuregulins/pharmacology
- Neuromuscular Junction/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/biosynthesis
Collapse
Affiliation(s)
- Guy Bélanger
- Department of Cellular and Molecular Medicine, and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|