1
|
Ma G, Ruan X, Yang B, Li N, Su D, Sun S, Chen S, Xu K, Ying Z, Wang H. Abnormal regulation of membrane-less organelles contributes to profilin1-associated ALS. J Biol Chem 2025:110259. [PMID: 40409555 DOI: 10.1016/j.jbc.2025.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
Profilin 1 (PFN1) is a key cytoskeletal protein that regulates actin dynamics by incorporating monomeric actin into linear filaments. PFN1 deletion or mutations have been linked to numerous neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the contribution of PFN1 to neurodegenerative pathologies is poorly understood. Recent studies have implicated the role of aberrant cellular membrane-less organelles (MLOs) in neurodegenerative pathogenesis. Here, we demonstrate that PFN1 is involved in the assembly of MLOs, including Cajal bodies and Stress granules. Specifically, depletion of PFN1 leads to abnormal Cajal body accumulation and accelerated maturation into a gel-like state, consequently dysregulating snRNP biogenesis and impairing pre-mRNA splicing efficiency in both neuronal and non-neuronal cells. Similarly, we show that PFN1 knockdown accelerates the assembly of Stress granules in stressed cells. Furthermore, we demonstrate that the ALS-linked PFN1-C71G mutant exhibits a loss of function in the context of MLO biogenesis. We further reveal that the PFN1 deficiency-induced Cajal body dysregulation, but not Stress granule assembly, is caused by cellular actin filament depolymerization. Importantly, the actin filament agonist CN04 rescues Cajal body properties in PFN1-depleted cells. Taken together, our findings shed light on the role of PFN1 in MLO biogenesis and suggest its involvement in neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Guoqiang Ma
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiye Ruan
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bojun Yang
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dan Su
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shan Sun
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Siqian Chen
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kangjia Xu
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zheng Ying
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Drug Discovery and Translational Research for Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Abdullah A, Kumar A, Beg AZ, Chawla A, Kar S, Ganguly S, Khan AU. Peripherally-restricted recurrent infection by engineered E. coli strain modulates hippocampal proteome promoting memory impairments in a rat model. Gene 2025; 933:148969. [PMID: 39341518 DOI: 10.1016/j.gene.2024.148969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Commensal bacteria that breach endothelial barrier has been reported to induce low grade chronic inflammation producing disease symptoms in major peripheral tissues. In this study, we investigated the role of genetically modified cellular invasive form of commensal E. coli K12 (SK3842) in cognitive impairment. Low-grade systemic infection model was developed using recurring peripheral inoculation of live bacteria in Wistar rats. To examine memory parameters, Novel object recognition test and Radial arm maze test were performed. Differential protein expression profiling of rat hippocampus was carried out using LC-MS/MS and subsequently quantified using SWATH. HBA1/2, NEFH, PFN1 and ATP5d were chosen for validation using quantitative RT-PCR. Results showed drastic decline in Recognition memory of the SK3842 infected rats. Reference and Working Memory of the infected group were also significantly reduced in comparison to control group. Proteome analysis using LC-MS/MS coupled with SWATH revealed differential expression of key proteins that are crucial for the maintenance of various neurological functions. Moreover, expression of NEFH and PFN1transcripts were found to be in line with the proteomics data. Protein interaction network of these validated proteins generated by STRING database converged to RhoA protein. Thus, the present study establishes an association between peripheral infection of a hippocampal protein network dysregulation and overall memory decline.
Collapse
Affiliation(s)
- Anam Abdullah
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Anuranjani Kumar
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Zainab Beg
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Anupam Chawla
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sudeshna Kar
- Oncology and Neuroscience Research Laboratory, Artemis Hospital, Sector 51, Gurgaon, Haryana 122001,India
| | - Surajit Ganguly
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Shi T, Zhou Z, Xiang T, Suo Y, Shi X, Li Y, Zhang P, Dai J, Sheng L. Cytoskeleton dysfunction of motor neuron in spinal muscular atrophy. J Neurol 2024; 272:19. [PMID: 39666039 PMCID: PMC11638312 DOI: 10.1007/s00415-024-12724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deletions or mutations of survival of motor neuron 1 (SMN1) gene. To date, the mechanism of selective cell death of motor neurons as a hallmark of SMA is still unclear. The severity of SMA is dependent on the amount of survival motor neuron (SMN) protein, which is an essential and ubiquitously expressed protein involved in various cellular processes including regulation of cytoskeletal dynamics. In this review, we discuss the effect of SMN ablation on cytoskeleton organization including actin dynamics, growth cone formation, axonal stability, neurite outgrowth, microtubule stability, synaptic vesicle dynamics and neurofilament protein release in SMA. We also summarized a list of critical proteins such as profilin-2 (PFN2), plastin-3 (PLS3), stathmin-1 (STMN1), microtubule-associated protein 1B (MAP1B) and neurofilament which play an important role in modulating cytoskeleton in SMA. Our aim is to highlight how cytoskeletal defects contribute to motor neuron degeneration in SMA disease progression and concentrating on cytoskeleton dynamics may be a promising approach to develop new therapy or biomarker.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zijie Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Taiyang Xiang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yinxuan Suo
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xiaoyan Shi
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Yaoyao Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Dai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Lei Sheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
4
|
Sumida K, Doi T, Obayashi K, Chiba Y, Nagasaka S, Ogino N, Miyagawa K, Baba R, Morimoto H, Hara H, Terabayashi T, Ishizaki T, Harada M, Endo M. Caspase-4 has a role in cell division in epithelial cells through actin depolymerization. Biochem Biophys Res Commun 2024; 695:149394. [PMID: 38157629 DOI: 10.1016/j.bbrc.2023.149394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.
Collapse
Affiliation(s)
- Kazuhiro Sumida
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yosuke Chiba
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Hara
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
5
|
Ayoubi R, McDowell I, Fotouhi M, Southern K, McPherson PS, Laflamme C, NeuroSGC/YCharOS/EDDU collaborative group, ABIF Consortium. The identification of high-performing antibodies for Profilin-1 for use in Western blot, immunoprecipitation and immunofluorescence. F1000Res 2023; 12:348. [PMID: 37576538 PMCID: PMC10415725 DOI: 10.12688/f1000research.132249.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 08/15/2023] Open
Abstract
Profilin-1, a member of the Profilin family, is a ubiquitously expressed protein that controls actin polymerization in a concentration-dependent manner. As mutations in the Profilin-1 gene have potential implications in neurodegenerative disease progression, well-characterized anti-Profilin-1 antibodies would be beneficial to the scientific community. In this study, we characterized sixteen Profilin-1 commercial antibodies for Western blot, immunoprecipitation, and immunofluorescence applications, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | - ABIF Consortium
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
6
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
The role of mode switching in a population of actin polymers with constraints. J Math Biol 2021; 82:11. [PMID: 33527236 DOI: 10.1007/s00285-021-01551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 10/22/2022]
Abstract
In this paper, we introduce a stochastic model for the dynamics of actin polymers and their interactions with other proteins in the cellular envelop. Each polymer elongates and shortens, and can switch between several modes depending on whether it is bound to accessory proteins that modulate its behaviour as, for example, elongation-promoting factors. Our main aim is to understand the dynamics of a large population of polymers, assuming that the only limiting quantity is the total amount of monomers, set to be constant to some large N. We first focus on the evolution of a very long polymer, of size [Formula: see text], with a rapid switch between modes (compared to the timescale over which the macroscopic fluctuations in the polymer size appear). Letting N tend to infinity, we obtain a fluid limit in which the effect of the switching appears only through the fraction of time spent in each mode at equilibrium. We show in particular that, in our situation where the number of monomers is limiting, a rapid binding-unbinding dynamics may lead to an increased elongation rate compared to the case where the polymer is trapped in any of the modes. Next, we consider a large population of polymers and complexes, represented by a random measure on some appropriate type space. We show that as N tends to infinity, the stochastic system converges to a deterministic limit in which the switching appears as a flow between two categories of polymers. We exhibit some numerical examples in which the limiting behaviour of a single polymer differs from that of a population of competing (shorter) polymers for equivalent model parameters. Taken together, our results demonstrate that under conditions where the total number of monomers is limiting, the study of a single polymer is not sufficient to understand the behaviour of an ensemble of competing polymers.
Collapse
|
8
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
9
|
Mitochondrial Transport and Turnover in the Pathogenesis of Amyotrophic Lateral Sclerosis. BIOLOGY 2019; 8:biology8020036. [PMID: 31083575 PMCID: PMC6627920 DOI: 10.3390/biology8020036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/20/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
Neurons are high-energy consuming cells, heavily dependent on mitochondria for ATP generation and calcium buffering. These mitochondrial functions are particularly critical at specific cellular sites, where ionic currents impose a large energetic burden, such as at synapses. The highly polarized nature of neurons, with extremely large axoplasm relative to the cell body, requires mitochondria to be efficiently transported along microtubules to reach distant sites. Furthermore, neurons are post-mitotic cells that need to maintain pools of healthy mitochondria throughout their lifespan. Hence, mitochondrial transport and turnover are essential processes for neuronal survival and function. In neurodegenerative diseases, the maintenance of a healthy mitochondrial network is often compromised. Numerous lines of evidence indicate that mitochondrial impairment contributes to neuronal demise in a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), where degeneration of motor neurons causes a fatal muscle paralysis. Dysfunctional mitochondria accumulate in motor neurons affected by genetic or sporadic forms of ALS, strongly suggesting that the inability to maintain a healthy pool of mitochondria plays a pathophysiological role in the disease. This article critically reviews current hypotheses on mitochondrial involvement in the pathogenesis of ALS, focusing on the alterations of mitochondrial axonal transport and turnover in motor neurons.
Collapse
|
10
|
Romero JJ, Liebig BE, Broeckling CD, Prenni JE, Hansen TR. Pregnancy-induced changes in metabolome and proteome in ovine uterine flushings. Biol Reprod 2018; 97:273-287. [PMID: 29044433 DOI: 10.1093/biolre/iox078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Mass spectrometry (MS) approaches were used herein to identify metabolites and proteins in uterine flushings (UF) that may contribute to nourishing the conceptus. Ovine uteri collected on Day 12 of the estrous cycle (n = 5 ewes exposed to vasectomized ram) or Days 12 (n = 4), 14 (n = 5), or 16 (n = 5) of pregnancy (bred with fertile ram) were flushed using buffered saline. Metabolites were extracted using 80% methanol and profiled using ultraperformance liquid chromatography (LC) tandem mass spectrometry. The proteome was examined by digestion with trypsin, followed by the analysis of peptides with LC-MS/MS. Metabolite profiling detected 8510 molecular features of which 9 were detected only in UF from Day 14-16 pregnant ewes that function in fatty acid transport (carnitines), hormone synthesis (androstenedione like), and availability of nutrients (valine). Proteome analysis detected 783 proteins present by Days 14-16 of pregnancy in UF, 7 of which are as follows: annexin (ANX) A1, A2, and A5; calcium-binding protein (S100A11); profilin 1; trophoblast kunitz domain protein 1 (TKDP); and interferon tau (IFNT). These proteins function in endocytosis, exocytosis, calcium signaling, and inhibition of prostaglandins (annexins and S100A11); protecting against maternal proteases (TKDP); remodeling cytoskeleton (profilin 1); and altering uterine release of prostaglandin F2 alpha as well as inducing IFNT-stimulated genes in the endometrium and the corpus luteum (IFNT). Identifying metabolites and proteins produced by the uterus and conceptus advances our understanding of embryo/maternal signaling and provides insights into possible the causes of reproductive failure.
Collapse
Affiliation(s)
- Jared J Romero
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bethany E Liebig
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Horticulture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
12
|
Leelarasamee N, Zhang L, Gleason C. The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism. PLoS Pathog 2018; 14:e1006947. [PMID: 29543900 PMCID: PMC5871015 DOI: 10.1371/journal.ppat.1006947] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/27/2018] [Accepted: 02/21/2018] [Indexed: 12/03/2022] Open
Abstract
Root-knot nematodes secrete effectors that manipulate their host plant cells so that the nematode can successfully establish feeding sites and complete its lifecycle. The root-knot nematode feeding structures, their “giant cells,” undergo extensive cytoskeletal remodeling. Previous cytological studies have shown the cytoplasmic actin within the feeding sites looks diffuse. In an effort to study root-knot nematode effectors that are involved in giant cell organogenesis, we have identified a nematode effector called MiPFN3 (Meloidogyne incognita Profilin 3). MiPFN3 is transcriptionally up-regulated in the juvenile stage of the nematode. In situ hybridization experiments showed that MiPFN3 transcribed in the nematode subventral glands, where it can be secreted by the nematode stylet into the plant. Moreover, Arabidopsis plants that heterologously expressed MiPFN3 were more susceptible to root-knot nematodes, indicating that MiPFN3 promotes nematode parasitism. Since profilin proteins can bind and sequester actin monomers, we investigated the function of MiPFN3 in relation to actin. Our results show that MiPFN3 suppressed the aberrant plant growth phenotype caused by the misexpression of reproductive actin (AtACT1) in transgenic plants. In addition, it disrupted actin polymerization in an in vitro assay, and it reduced the filamentous actin network when expressed in Arabidopsis protoplasts. Over a decade ago, cytological studies showed that the cytoplasmic actin within nematode giant cells looked fragmented. Here we provide the first evidence that the nematode is secreting an effector that has significant, direct effects on the plant’s actin cytoskeleton. Root-knot nematodes are microscopic plant pests that infect plant roots and significantly reduce yields of many crop plants. The nematodes enter the plant roots and modify plant cells into complex, multinuclear feeding sites called giant cells. The formation and maintenance of giant cells is critical to nematode survival. During giant cell organogenesis, the progenitor plant cells undergo many morphological changes, including a re-organization of the cytoplasmic actin cytoskeleton. As a result, the giant cell cytoplasmic actin appears fragmented and disorganized. Plant cells can regulate their actin filament assembly, in part, through the expression of actin binding proteins such as profilins. Here we show that infectious nematode juveniles express a profilin called MiPFN3. Expression of MiPFN3 in Arabidopsis plants made the plants more susceptible to root-knot nematodes, indicating that MiPFN3 acts as an effector that aids parasitism. We show evidence that the expression MiPFN3 in plant cells causes the fragmentation of plant actin filaments. The work here demonstrates that nematode effector MiPFN3 can directly affect plant actin filaments, whose reorganization is necessary for giant cell formation.
Collapse
Affiliation(s)
- Natthanon Leelarasamee
- Department of Plant Molecular Biology and Physiology, Albrecht von Haller Institute, Georg August University, Göttingen, Germany
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Cynthia Gleason
- Department of Plant Molecular Biology and Physiology, Albrecht von Haller Institute, Georg August University, Göttingen, Germany
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yang S, Chen Y, Liu C, Zhao X, Zhuang Q, Sun J, Wei P, Zhao H, Chen X, Shen C. Association Study of Common Variants in PFN1 With Hypertension in a Han Chinese Population: A Case-Control Study and A Follow-up Study. Am J Hypertens 2017; 30:1024-1031. [PMID: 28541412 DOI: 10.1093/ajh/hpx089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Animal researches reported that the dysfunction of profilin1 (PFN1) was involved in the physiological arterial stiffness and vascular remodeling linking to the etiology of hypertension (HT). This study mainly aims at evaluating the association of PFN1 and HT in a Han Chinese population. METHODS A case-control study consisted of 2,012 HT cases and 2,210 controls was conducted and 2,116 participants from the healthy controls were further followed up for average 5.01 years. Logistic and Cox regression models were applied to evaluate the association of 4 tag single nucleotide polymorphisms (SNPs) of PFN1 and ENO3 with HT. RESULTS There was no significant association of the 4 SNPs between HT cases and controls even after adjustment for confounding factors (P > 0.05). Haplotype analysis did not identify any significant haplotype with HT. There were no statistical difference of systolic blood pressure (BP) and diastolic BP among different genotypes in antihypertensive-treated group and untreated group. In follow-up population, there was no significant association of candidate SNPs with HT even after adjustment for covariates (all P > 0.05). Of note, the plasma profilin1 level of HT cases was significantly higher than that of control subjects (P = 0.011). The profilin1 levels of controls significantly decreased with variation of rs238243 at PFN1 (P = 0.041), and the profilin1 levels of HT cases increased with variation of rs238238 at ENO3 (P = 0.004). CONCLUSIONS Our results suggest that HT cases displayed an elevated plasma profilin1. Variants of rs238243 and rs238238 might regulate profilin1 expression by epigenetic modification and indirectly affects the susceptible threshold of HT.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Qian Zhuang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Junxiang Sun
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Pengfei Wei
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Hailong Zhao
- Central Laboratory, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Hensel N, Claus P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2017; 24:54-72. [PMID: 28459188 DOI: 10.1177/1073858417705059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are neurodegenerative diseases with overlapping clinical phenotypes based on impaired motoneuron function. However, the pathomechanisms of both diseases are largely unknown, and it is still unclear whether they converge on the molecular level. SMA is a monogenic disease caused by low levels of functional Survival of Motoneuron (SMN) protein, whereas ALS involves multiple genes as well as environmental factors. Recent evidence argues for involvement of actin regulation as a causative and dysregulated process in both diseases. ALS-causing mutations in the actin-binding protein profilin-1 as well as the ability of the SMN protein to directly bind to profilins argue in favor of a common molecular mechanism involving the actin cytoskeleton. Profilins are major regulat ors of actin-dynamics being involved in multiple neuronal motility and transport processes as well as modulation of synaptic functions that are impaired in models of both motoneuron diseases. In this article, we review the current literature in SMA and ALS research with a focus on the actin cytoskeleton. We propose a common molecular mechanism that explains the degeneration of motoneurons for SMA and some cases of ALS.
Collapse
Affiliation(s)
- Niko Hensel
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Peter Claus
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany.,3 Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
15
|
Profilin1 biology and its mutation, actin(g) in disease. Cell Mol Life Sci 2016; 74:967-981. [PMID: 27669692 DOI: 10.1007/s00018-016-2372-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.
Collapse
|
16
|
Cui XB, Zhang SM, Xu YX, Dang HW, Liu CX, Wang LH, Yang L, Hu JM, Liang WH, Jiang JF, Li N, Li Y, Chen YZ, Li F. PFN2, a novel marker of unfavorable prognosis, is a potential therapeutic target involved in esophageal squamous cell carcinoma. J Transl Med 2016; 14:137. [PMID: 27188458 PMCID: PMC4870769 DOI: 10.1186/s12967-016-0884-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most aggressively malignant tumors with dismal prognosis. Profilin 2 (PFN2) is an actin-binding protein that regulates the dynamics of actin polymerization and plays a key role in cell motility. Recently, PFN2 have emerged as significant regulators of cancer processes. However, the clinical significance and biological function of PFN2 in ESCC remain unclear. Methods PFN2 protein expression was validated by immunohistochemistry (IHC) on tissue microarray from Chinese Han and Kazakh populations with ESCC. The associations among PFN2 expression, clinicopathological features, and prognosis of ESCC were analyzed. The effects on cell proliferation, invasion and migration were examined using MTT and Transwell assays. Markers of epithelial–mesenchymal transition (EMT) were detected by Western blot analysis. Results Compared with normal esophageal epithelium (NEE), PFN2 protein expression was markedly increased in low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and ESCC, increased gradually from LGIN to ESCC, and finally reached high grade in HGIN in the Han population. Similarly, PFN2 protein was more overexpressed in ESCC than in NEE in the Kazakh population. The results of Western blot analysis also showed that PFN2 expression was significantly higher in the ESCC tissue than in a matched adjacent non-cancerous tissue. PFN2 expression was positively correlated with invasion depth and lymph node metastasis. High PFN2 expression was significantly correlated with short overall survival (OS) (P = 0.023). Cox regression analysis revealed that PFN2 expression was an independent prognostic factor for poor OS in ESCC. Downregulation of PFN2 inhibited, rather than proliferated, cell invasion and migration, as well as induced an EMT phenotype, including increased expression of epithelial marker E-cadherin, decreased mesenchymal marker Vimentin, Snail, Slug and ZEB1, and morphological changes in ESCC cells in vitro. Conclusions Our findings demonstrate that PFN2 has a novel role in promoting ESCC progression and metastasis and portending a poor prognosis, indicating that PFN2 could act as an early biomarker of high-risk population. Targeting PFN2 may offer a promising therapeutic strategy for ESCC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0884-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China.,Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shu-Mao Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yue-Xun Xu
- Department of Gynecology, Zhengzhou First People's Hospital, Zhengzhou, 450000, China
| | - Hong-Wei Dang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Chun-Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Liang-Hai Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jian-Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Wei-Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jin-Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Na Li
- Department of Oncology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yong Li
- Department of CT and MRI, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China.
| | - Yun-Zhao Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China.
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
17
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2) Regulation by Ca(2+) Is Effected and Diversified by Actin-Binding Proteins. Biophys J 2016; 108:2191-200. [PMID: 25954877 DOI: 10.1016/j.bpj.2015.03.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/14/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
Calcium regulation of Ca(2+)-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca(2+) permeability. The molecular mechanisms associated with PC2 regulation by Ca(2+) remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2(iv)), functionally responds to changes in intracellular (cis) Ca(2+). In this study we determined the regulatory effect(s) of Ca(2+)-sensitive and -insensitive actin-binding proteins (ABPs) on PC2(iv) channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2(iv) channel function in the presence of cis Ca(2+), although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2(iv) channel function in the presence, but no effect in the absence of cis Ca(2+). Gelsolin stimulated PC2(iv) channel function in the presence, but not the absence of cis Ca(2+). In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2(iv) channel function both in the presence and absence of Ca(2+). The distinct effect(s) of the ABPs on PC2(iv) channel function demonstrate that Ca(2+) regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca(2+)-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation.
Collapse
Affiliation(s)
- María del Rocío Cantero
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Horacio F Cantiello
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
18
|
Lin W, Ezura Y, Izu Y, Aryal A.C S, Kawasaki M, Na Mahasarakham Chantida P, Moriyama K, Noda M. Profilin Expression Is Regulated by Bone Morphogenetic Protein (BMP) in Osteoblastic Cells. J Cell Biochem 2015; 117:621-8. [DOI: 10.1002/jcb.25310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Wanting Lin
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
- Department of Maxillofacial Orthognathics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Smriti Aryal A.C
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | | | - Keiji Moriyama
- Department of Maxillofacial Orthognathics; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; Tokyo Japan
| | - Masaki Noda
- Department of Molecular Pharmacology; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
19
|
Tang YN, Ding WQ, Guo XJ, Yuan XW, Wang DM, Song JG. Epigenetic regulation of Smad2 and Smad3 by profilin-2 promotes lung cancer growth and metastasis. Nat Commun 2015; 6:8230. [DOI: 10.1038/ncomms9230] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
|
20
|
Müssar KJ, Kandasamy MK, McKinney EC, Meagher RB. Arabidopsis plants deficient in constitutive class profilins reveal independent and quantitative genetic effects. BMC PLANT BIOLOGY 2015; 15:177. [PMID: 26160044 PMCID: PMC4702419 DOI: 10.1186/s12870-015-0551-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/13/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The actin cytoskeleton is involved in an array of integral structural and developmental processes throughout the cell. One of actin's best-studied binding partners is the small ubiquitously expressed protein, profilin. Arabidopsis thaliana is known to encode a family of five profilin sequence variants: three vegetative (also constitutive) profilins that are predominantly expressed in all vegetative tissues and ovules, and two reproductive profilins that are specifically expressed in pollen. This paper analyzes the roles of the three vegetative profilin members, PRF1, PRF2, and PRF3, in plant cell and organ development. RESULTS Using a collection of knockout or severe knockdown T-DNA single mutants, we found that defects in each of the three variants gave rise to specific developmental deficiencies. Plants lacking PRF1 or PRF2 had defects in rosette leaf morphology and inflorescence stature, while those lacking PRF3 led to plants with slightly elongated petioles. To further examine these effects, double mutants and double and triple gene-silenced RNAi epialleles were created. These plants displayed significantly compounded developmental defects, as well as distinct lateral root growth morphological phenotypes. CONCLUSION These results suggest that having at least one vegetative profilin gene is essential to viability. Evidence is presented that combinations of independent function, quantitative genetic effects, and functional redundancy have preserved the three vegetative profilin genes in the Arabidopsis lineage.
Collapse
Affiliation(s)
- Kristofer J Müssar
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Muthugapatti K Kandasamy
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Elizabeth C McKinney
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| | - Richard B Meagher
- Genetics Department, Davison Life Sciences Building, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Hong L, Chavez S, Smagley Y, Chigaev A, Sklar LA. Relationship of light scatter change and Cdc42-regulated actin status. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:499-505. [PMID: 25641607 DOI: 10.1002/cyto.b.21223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/09/2014] [Accepted: 12/31/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cdc42 GTPase has important roles in regulating intracellular actin reorganization. The current methods to monitor actin changes are typically complex and point by point. METHODS The effects of Cdc42 inhibitors on the side scatter changes were tested in a newly developed continuous assay using the flow cytometer. Staining with fluorescently labeled phalloidin was used for comparison. RESULTS Cdc42-specific inhibitors caused dose-dependent changes of both the right-angle side scatter and the phalloidin-stained actin. CONCLUSIONS The right-angle light scatter change can be used as a method to circumvent phalloidin staining and be an early convenient step in screening Cdc42 inhibitors. © 2015 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Lin Hong
- Department of Pathology, The University of New Mexico, Albuquerque, New Mexico, 87131.,Department of Pathology, Center for Molecular Discovery, The University of New Mexico, Albuquerque, New Mexico, 87131
| | - Stephanie Chavez
- Department of Pathology, The University of New Mexico, Albuquerque, New Mexico, 87131
| | - Yelena Smagley
- Department of Pathology, The University of New Mexico, Albuquerque, New Mexico, 87131
| | - Alexandre Chigaev
- Department of Pathology, The University of New Mexico, Albuquerque, New Mexico, 87131
| | - Larry A Sklar
- Department of Pathology, The University of New Mexico, Albuquerque, New Mexico, 87131.,Department of Pathology, Center for Molecular Discovery, The University of New Mexico, Albuquerque, New Mexico, 87131.,Cancer Research and Treatment Center, The University of New Mexico, Albuquerque, New Mexico, 87131
| |
Collapse
|
22
|
Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization. Proc Natl Acad Sci U S A 2014; 111:E4596-605. [PMID: 25313062 PMCID: PMC4217450 DOI: 10.1073/pnas.1412271111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.
Collapse
|
23
|
Ramaiola I, Padró T, Peña E, Juan-Babot O, Cubedo J, Martin-Yuste V, Sabate M, Badimon L. Changes in thrombus composition and profilin-1 release in acute myocardial infarction. Eur Heart J 2014; 36:965-75. [PMID: 25217443 DOI: 10.1093/eurheartj/ehu356] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
AIM Thrombus formation is a dynamic process regulated by flow, blood cells, and plasma proteins. The present study was performed to investigate the characteristics of human coronary thrombus in ST-segment elevation myocardial infarction (STEMI). METHODS AND RESULTS Patients admitted with ST-elevation myocardial infarction, in which thrombectomy was performed, were included (n = 86). Intracoronary thrombi and blood from the culprit coronary site and the systemic circulation were obtained during percutaneous coronary intervention (PCI). Thrombi were categorized by onset-of-pain-to-PCI elapsed time in thrombus of <3 (T3) and more than 6 h of evolution (T6). Clinical, morphological, and proteomic variables were investigated. While T3 were mainly composed by platelets and fibrin(ogen), T6 were characterized by a reduced platelet content, increased leucocytes infiltration (including monocytes, neutrophils, T-cells, and B-cells), and appearance of undifferentiated progenitor cells. Significant differences between T3 and T6 were found in the cell cytoskeleton-associated proteome (beta-actin and tropomyosin 3 and 4). By discovery proteomics, we have identified profilin-1 (Pfn-1) in the coronary thrombi and detected higher levels in T3 than in T6. While plasma Pfn-1 levels were low in T3 patients, levels significantly increased in both coronary and peripheral circulation in T6 patients indicating release. In vitro platelet aggregation studies showed that platelets secrete Pfn-1 upon complete activation. CONCLUSION Coronary thrombi show rapid dynamic changes both in structure and cell composition as a function of elapsed onset-of-pain-to-PCI time. Aged ischaemic thrombi were more likely to have reduced Pfn-1 content releasing Pfn-1 to the circulation. Onset-of-pain-to-PCI elapsed time in STEMI patients and hence age of occlusive thrombus can be profiled by Pfn-1 levels found in the peripheral circulation.
Collapse
Affiliation(s)
- Ilaria Ramaiola
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Oriol Juan-Babot
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | - Judit Cubedo
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain
| | | | | | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), IIB SantPau, c/Sant Antoni Mª Claret 167, 08025 Barcelona, Spain Cardiovascular Research Chair UAB, Barcelona, Spain
| |
Collapse
|
24
|
Abstract
WIP plays an important role in the remodeling of the actin cytoskeleton, which controls cellular activation, proliferation, and function. WIP regulates actin polymerization by linking the actin machinery to signaling cascades. WIP binding to WASp and to its homolog, N-WASp, which are central activators of the actin-nucleating complex Arp2/3, regulates their cellular distribution, function, and stability. By binding to WASp, WIP protects it from degradation and thus, is crucial for WASp retention. Indeed, most mutations that result in WAS, an X-linked immunodeficiency caused by defective/absent WASp activity, are located in the WIP-binding region of WASp. In addition, by binding directly to actin, WIP promotes the formation and stabilization of actin filaments. WASp-independent activities of WIP constitute a new research frontier and are discussed extensively in this article. Here, we review the current information on WIP in human and mouse systems, focusing on its associated proteins, its molecular-regulatory mechanisms, and its role as a key regulator of actin-based processes in the immune system.
Collapse
Affiliation(s)
- Sophia Fried
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Noy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
25
|
Derlig K, Ehrhardt T, Gießl A, Brandstätter JH, Enz R, Dahlhaus R. Simiate is an Actin binding protein involved in filopodia dynamics and arborization of neurons. Front Cell Neurosci 2014; 8:99. [PMID: 24782708 PMCID: PMC3986562 DOI: 10.3389/fncel.2014.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/16/2014] [Indexed: 01/13/2023] Open
Abstract
The Actin cytoskeleton constitutes the functional base for a multitude of cellular processes extending from motility and migration to cell mechanics and morphogenesis. The latter is particularly important to neuronal cells since the accurate functioning of the brain crucially depends on the correct arborization of neurons, a process that requires the formation of several dozens to hundreds of dendritic branches. Recently, a model was proposed where different transcription factors are detailed to distinct facets and phases of dendritogenesis and exert their function by acting on the Actin cytoskeleton, however, the proteins involved as well as the underlying molecular mechanisms are largely unknown. Here, we demonstrate that Simiate, a protein previously indicated to activate transcription, directly associates with both, G- and F-Actin and in doing so, affects Actin polymerization and Actin turnover in living cells. Imaging studies illustrate that Simiate particularly influences filopodia dynamics and specifically increases the branching of proximal, but not distal dendrites of developing neurons. The data suggests that Simiate functions as a direct molecular link between transcription regulation on one side, and dendritogenesis on the other, wherein Simiate serves to coordinate the development of proximal and distal dendrites by acting on the Actin cytoskeleton of filopodia and on transcription regulation, hence supporting the novel model.
Collapse
Affiliation(s)
- Kristin Derlig
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Toni Ehrhardt
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Johann H Brandstätter
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg Erlangen, Germany
| | - Ralf Enz
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| | - Regina Dahlhaus
- Department of Medicine, Emil-Fischer Centre, Institute for Biochemistry, University of Erlangen-Nuremberg Erlangen, Germany
| |
Collapse
|
26
|
Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect 2013; 16:225-36. [PMID: 24286927 DOI: 10.1016/j.micinf.2013.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14 (Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-l-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. Together with earlier studies, these results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton.
Collapse
Affiliation(s)
- Zhenhua Guo
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiazhang Qiu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shijun Zheng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem 2013; 129:221-34. [PMID: 24164353 DOI: 10.1111/jnc.12506] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
28
|
De Franceschi N, Wild K, Schlacht A, Dacks JB, Sinning I, Filippini F. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic 2013; 15:104-21. [PMID: 24107188 DOI: 10.1111/tra.12124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Endomembrane trafficking is one of the most prominent cytological features of eukaryotes. Given their widespread distribution and specialization, coiled-coil domains, coatomer domains, small GTPases and Longin domains are considered primordial 'building blocks' of the membrane trafficking machineries. Longin domains are conserved across eukaryotes and were likely to be present in the Last Eukaryotic Common Ancestor. The Longin fold is based on the α-β-α sandwich architecture and a unique topology, possibly accounting for the special adaptation to the eukaryotic trafficking machinery. The ancient Per ARNT Sim (PAS) and cGMP-specific phosphodiesterases, Adenylyl cyclases and FhlA (GAF) family domains show a similar architecture, and the identification of prokaryotic counterparts of GAF domains involved in trafficking provides an additional connection for the endomembrane system back into the pre-eukaryotic world. Proteome-wide, comparative bioinformatic analyses of the domains reveal three binding regions (A, B and C) mediating either specific or conserved protein-protein interactions. While the A region mediates intra- and inter-molecular interactions, the B region is involved in binding small GTPases, thus providing an evolutionary connection among major building blocks in the endomembrane system. Finally, we propose that the peculiar interaction surface of the C region of the Longin domain allowed it to extensively integrate into the endomembrane trafficking machinery in the earliest stages of building the eukaryotic cell.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Padova, Italy; Current address: Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
29
|
Profilin-1 promotes the development of hypertension-induced cardiac hypertrophy. J Hypertens 2013; 31:576-86; discussion 586. [PMID: 23615214 DOI: 10.1097/hjh.0b013e32835d6a56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cardiac hypertrophy is a major cause of heart failure and sudden cardiac death among hypertensive individuals. The present study examined the effects of profilin-1 on hypertension-induced cardiac hypertrophy. METHODS We used adenovirus injection to knockdown or overexpress profilin-1 in spontaneous hypertensive rats (SHRs). As a control, blank adenovirus was injected into age-matched SHRs and Wistar-Kyoto rats (WKYs). SBP and cardiac mass index were measured. Cardiac tissues were stained with hematoxylin-eosin and sirius red, and cardiac ultrastructure was imaged using transmission electron microscopy. Actin filament was quantified by staining with TRIC-tagged phalloidin. Caveolin-3 abundance and endothelial nitric oxide synthase (eNOS) activity were measured using real-time quantitative PCR, Western blot or immunofluorescence staining. RESULTS Endogenous profilin-1 was highly expressed in hypertrophic myocardium of SHRs compared with WKYs. Lowering profilin-1 expression in SHRs significantly attenuated hypertension-induced cardiac hypertrophy and fibrosis and displayed a significant preservation of myofibrils, sarcolemmal caveolae, abundance of caveolin-3 protein, activity of eNOS and production of nitric oxide (NO). In contrast, transgenic overexpression of profilin-1 in SHRs induced more serious cardiac hypertrophy and fibrosis with significant reduction of sarcolemmal caveolae, caveolin-3 protein, eNOS activity, and production of NO when compared with SHR controls. CONCLUSION Profilin-1 promotes cardiac hypertrophy partly through interfering with the formation of sarcolemmal caveolae and attenuating the eNOS/NO pathway. These results demonstrate a crucial role for profilin-1 in hypertensive cardiac hypertrophy.
Collapse
|
30
|
van Blitterswijk M, Baker MC, Bieniek KF, Knopman DS, Josephs KA, Boeve B, Caselli R, Wszolek ZK, Petersen R, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R. Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:463-9. [PMID: 23634771 PMCID: PMC3923463 DOI: 10.3109/21678421.2013.787630] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations in profilin-1 (PFN1) have recently been identified in patients with amyotrophic lateral sclerosis (ALS). Because of the considerable overlap between ALS and the common subtype of frontotemporal dementia, which is characterized by transactive response DNA-binding protein 43 pathology (FTLD-TDP), we tested cohorts of ALS and FTLD-TDP patients for PFN1 mutations. DNA was obtained from 342 ALS patients and 141 FTLD-TDP patients at our outpatient clinic and brain bank for neurodegenerative diseases at the Mayo Clinic Florida, Jacksonville, USA. We screened these patients for mutations in coding regions of PFN1 by Sanger sequencing. Subsequently, we used TaqMan genotyping assays to investigate the identified variant in 1167 control subjects. From the results, one variant, p.E117G, was detected in one ALS patient, one FTLD-TDP patient, and two control subjects. The mutation frequency of patients versus control subjects was not significantly different (p-value = 0.36). Moreover, PFN1 and TDP-43 staining of autopsy material did not differ between patients with or without this variant. In conclusion, the p.E117G variant appears to represent a benign polymorphism. PFN1 mutations, in general, are rare in ALS and FTLD-TDP patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
31
|
Courtemanche N, Pollard TD. Interaction of profilin with the barbed end of actin filaments. Biochemistry 2013; 52:6456-66. [PMID: 23947767 DOI: 10.1021/bi400682n] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Profilin binds not only to actin monomers but also to the barbed end of the actin filament, where it inhibits association of subunits. To address open questions about the interactions of profilin with barbed ends, we measured the effects of a wide range of concentrations of Homo sapiens profilin 1 on the rate of elongation of individual skeletal muscle actin filaments by total internal reflection fluorescence microscopy. Much higher concentrations of profilin were required to stop elongation by AMP-PNP-actin monomers than ADP-actin monomers. High concentrations of profilin depolymerized barbed ends at a rate much faster than the spontaneous dissociation rates of Mg-ATP-, Mg-AMP-PNP-, Mg-ADP-Pi-, and Mg-ADP-actin subunits. Fitting a thermodynamic model to these data allowed us to determine the affinities of profilin and profilin-actin for barbed ends and the influence of the nucleotide bound to actin on these interactions. Profilin has a much higher affinity for ADP-actin filament barbed ends (Kd = 1 μM) than AMP-PNP-actin filament barbed ends (Kd = 226 μM). ADP-actin monomers associated with profilin bind to ADP-actin filament barbed ends 10% as fast as free ADP-actin monomers, but bound profilin does not affect the rate of association of AMP-PNP-actin monomers with barbed ends. The differences in the affinities of AMP-PNP- and ADP-bound barbed ends for profilin and profilin-actin suggest that conformations of barbed end subunits differ from those of monomers and change upon nucleotide hydrolysis and phosphate release. A structural model revealed minor steric clashes between profilin and actin subunits at the barbed end that explain the biochemical results.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Molecular Cellular and Developmental Biology, ‡Department of Molecular Biophysics and Biochemistry, and §Department of Cell Biology, Yale University , P.O. Box 208103, New Haven, Connecticut 06520-8103, United States
| | | |
Collapse
|
32
|
Molotkov D, Zobova S, Arcas JM, Khiroug L. Calcium-induced outgrowth of astrocytic peripheral processes requires actin binding by Profilin-1. Cell Calcium 2013; 53:338-48. [PMID: 23578580 DOI: 10.1016/j.ceca.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Peripheral astrocytic processes (PAPs) are highly motile structures that are strategically positioned in close proximity to synapses. Long-lasting PAP retraction in hypothalamus is known to alter synaptic transmission. The PAP motility is likely to be actin-based because they are known to contain actin-related proteins such as Ezrin. However, the link between dynamic activity-dependent changes in astrocytic morphology and the synaptic function has not been established experimentally, presumably due to lack of appropriate tools. To selectively suppress activity-dependent morphological plasticity of astrocytes, we developed a bicistronic construct that allows simultaneous tracing and manipulating the morphology of PAPs. The construct is designed for co-expression of (i) the mutant actin binding protein Profilin-1 (abdProf-1) with a single amino acid substitution (H119E) that prevents its binding to actin monomers with (ii) the membrane-targeted morphological tracer LckGFP. Cultured cortical astrocytes transfected with this construct showed abdProf-1 overexpression at a 5-fold level compared to the endogenous Profilin-1. The cells also expressed LckGFP at a level sufficient for precise morphological tracing. We found that photolysis of caged Ca²⁺ induced a pronounced outgrowth of PAPs, which was suppressed by abdProf-1 overexpression in terms of PAP number, growth rate and maximal length. In contrast, the morphological complexity of astrocytes, basal motility of their PAPs and major cytoskeletal structures were not affected by abdProf-1 overexpression. In summary, we identified the actin binding by Profilin-1 as a pivotal mechanism in activity-dependent morphological plasticity of PAPs in cultured astrocytes.
Collapse
Affiliation(s)
- Dmitry Molotkov
- Neuroscience Center University of Helsinki, Viikinkaari 4, 00790 Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Ding Z, Bae YH, Roy P. Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adh Migr 2012; 6:442-9. [PMID: 23076048 DOI: 10.4161/cam.21832] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Profilin-1 (Pfn1) is a ubiquitously expressed actin-monomer binding protein that has been linked to many cellular activities ranging from control of actin polymerization to gene transcription. Traditionally, Pfn1 has been considered to be an essential control element for actin polymerization and cell migration. Seemingly contrasting this view, a few recent studies have shown evidence of an inhibitory action of Pfn1 on motility of certain types of carcinoma cells. In this review, we summarize biochemistry and functional aspects of Pfn1 in normal cells and bring in newly emerged action of Pfn1 in cancer cells that may explain its context-specific role in cell migration.
Collapse
Affiliation(s)
- Zhijie Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
34
|
Eyckmans M, Benoot D, Van Raemdonck GA, Zegels G, Van Ostade XW, Witters E, Blust R, De Boeck G. Comparative proteomics of copper exposure and toxicity in rainbow trout, common carp and gibel carp. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:220-32. [DOI: 10.1016/j.cbd.2012.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 01/30/2023]
|
35
|
Menkhorst EM, Lane N, Winship AL, Li P, Yap J, Meehan K, Rainczuk A, Stephens A, Dimitriadis E. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS One 2012; 7:e31418. [PMID: 22359590 PMCID: PMC3281063 DOI: 10.1371/journal.pone.0031418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/07/2012] [Indexed: 11/25/2022] Open
Abstract
Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states.
Collapse
Affiliation(s)
| | - Natalie Lane
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | - Priscilla Li
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Joanne Yap
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Katie Meehan
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Adam Rainczuk
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | | |
Collapse
|
36
|
Guljamow A, Delissen F, Baumann O, Thünemann AF, Dittmann E. Unique properties of eukaryote-type actin and profilin horizontally transferred to cyanobacteria. PLoS One 2012; 7:e29926. [PMID: 22253827 PMCID: PMC3254629 DOI: 10.1371/journal.pone.0029926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/07/2011] [Indexed: 11/23/2022] Open
Abstract
A eukaryote-type actin and its binding protein profilin encoded on a genomic island in the cyanobacterium Microcystis aeruginosa PCC 7806 co-localize to form a hollow, spherical enclosure occupying a considerable intracellular space as shown by in vivo fluorescence microscopy. Biochemical and biophysical characterization reveals key differences between these proteins and their eukaryotic homologs. Small-angle X-ray scattering shows that the actin assembles into elongated, filamentous polymers which can be visualized microscopically with fluorescent phalloidin. Whereas rabbit actin forms thin cylindrical filaments about 100 µm in length, cyanobacterial actin polymers resemble a ribbon, arrest polymerization at 5-10 µm and tend to form irregular multi-strand assemblies. While eukaryotic profilin is a specific actin monomer binding protein, cyanobacterial profilin shows the unprecedented property of decorating actin filaments. Electron micrographs show that cyanobacterial profilin stimulates actin filament bundling and stabilizes their lateral alignment into heteropolymeric sheets from which the observed hollow enclosure may be formed. We hypothesize that adaptation to the confined space of a bacterial cell devoid of binding proteins usually regulating actin polymerization in eukaryotes has driven the co-evolution of cyanobacterial actin and profilin, giving rise to an intracellular entity.
Collapse
Affiliation(s)
- Arthur Guljamow
- University Potsdam, Institute for Biochemistry and Biology, Department of Microbiology, Golm, Germany.
| | | | | | | | | |
Collapse
|
37
|
Expression analysis of Entamoeba invadens profilins in encystation and excystation. Parasitol Res 2011; 110:2095-104. [DOI: 10.1007/s00436-011-2735-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
38
|
Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 2011; 435:553-62. [PMID: 21486226 DOI: 10.1042/bj20102121] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spermiogenesis in the mammalian testis is the most critical post-meiotic developmental event occurring during spermatogenesis in which haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa. Spermatozoa are then released from the seminiferous epithelium at spermiation. At the same time, the BTB (blood-testis barrier) undergoes restructuring to facilitate the transit of preleptotene spermatocytes from the basal to the apical compartment. Thus meiotic divisions take place behind the BTB in the apical compartment to form spermatids. These germ cells enter spermiogenesis to transform into elongating spermatids and then into spermatozoa to replace those that were released in the previous cycle. However, the mole-cular regulators that control spermiogenesis, in particular the dynamic changes that occur at the Sertoli cell-spermatid interface and at the BTB, are not entirely known. This is largely due to the lack of suitable animal models which can be used to study these events. During the course of our investigation to develop adjudin [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] as a potential male contraceptive, this drug was shown to 'accelerate' spermiation by inducing the release of premature spermatids from the epithelium. Using this model, we have identified several molecules that are crucial in regulating the actin filament network and the unique adhesion protein complex at the Sertoli cell-spermatid interface known as the apical ES (ectoplasmic specialization). In the present review, we critically evaluate these and other findings in the literature as they relate to the restricted temporal and spatial expression of two actin regulatory proteins, namely Eps8 (epidermal growth factor receptor pathway substrate 8) and Arp3 (actin-related protein 3), which regulate these events.
Collapse
|
39
|
Jung S, Silvius D, Nolan KA, Borchert GL, Millet YH, Phang JM, Gunn TM. Developmental cardiac hypertrophy in a mouse model of prolidase deficiency. ACTA ACUST UNITED AC 2011; 91:204-17. [DOI: 10.1002/bdra.20789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 11/09/2022]
|
40
|
Abstract
Recent advances in structural, biochemical, biophysical, and live cell imaging approaches have furthered our understanding of the molecular mechanisms by which regulated assembly dynamics of actin filaments drive motile processes. Attention is focused on lamellipodium protrusion, powered by the turnover of a branched filament array. ATP hydrolysis on actin is the key reaction that allows filament treadmilling. It regulates barbed-end dynamics and length fluctuations at steady state and specifies the functional interaction of actin with essential regulatory proteins such as profilin and ADF/cofilin. ATP hydrolysis on actin and Arp2/3 acts as a timer, regulating the assembly and disassembly of the branched array to generate tropomyosin-mediated heterogeneity in the structure and dynamics of the lamellipodial network. The detailed molecular mechanisms of ATP hydrolysis/Pi release on F-actin remain elusive, as well as the mechanism of filament branching with Arp2/3 complex or that of the formin-driven processive actin assembly. Novel biophysical methods involving single-molecule measurements should foster progress in these crucial issues.
Collapse
Affiliation(s)
- Beáta Bugyi
- Cytoskeleton Dynamics and Cell Motility Group, CNRS, UPR 3082, Laboratoire d'Enzymologie et Biochimie Structurales, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|