1
|
Sozzi S, Manni I, Ercolani C, Diodoro MG, Bartolazzi A, Spallotta F, Piaggio G, Monteonofrio L, Soddu S, Rinaldo C, Valente D. Inactivation of HIPK2 attenuates KRAS G12D activity and prevents pancreatic tumorigenesis. J Exp Clin Cancer Res 2024; 43:265. [PMID: 39342278 PMCID: PMC11437985 DOI: 10.1186/s13046-024-03189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer. METHODS We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed. RESULTS In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice. CONCLUSION This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Silvia Sozzi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratories, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Huang M, Li Y, Li Y, Liu S. C-Terminal Binding Protein: Regulator between Viral Infection and Tumorigenesis. Viruses 2024; 16:988. [PMID: 38932279 PMCID: PMC11209466 DOI: 10.3390/v16060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
C-terminal binding protein (CtBP), a transcriptional co-repressor, significantly influences cellular signaling, impacting various biological processes including cell proliferation, differentiation, apoptosis, and immune responses. The CtBP family comprises two highly conserved proteins, CtBP1 and CtBP2, which have been shown to play critical roles in both tumorigenesis and the regulation of viral infections. Elevated CtBP expression is noted in various tumor tissues, promoting tumorigenesis, invasiveness, and metastasis through multiple pathways. Additionally, CtBP's role in viral infections varies, exhibiting differing or even opposing effects depending on the virus. This review synthesizes the advances in CtBP's function research in viral infections and virus-associated tumorigenesis, offering new insights into potential antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Meihui Huang
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yucong Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yuxiao Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Shuiping Liu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Zhou M, Boulos JC, Klauck SM, Efferth T. The cardiac glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via downregulation of MEK1/2 phosphorylation in leukemia cells. Cell Biol Toxicol 2023; 39:2971-2997. [PMID: 37322258 PMCID: PMC10693532 DOI: 10.1007/s10565-023-09813-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Overcoming multidrug resistance (MDR) represents a major obstacle in cancer chemotherapy. Cardiac glycosides (CGs) are efficient in the treatment of heart failure and recently emerged in a new role in the treatment of cancer. ZINC253504760, a synthetic cardenolide that is structurally similar to well-known GCs, digitoxin and digoxin, has not been investigated yet. This study aims to investigate the cytotoxicity of ZINC253504760 on MDR cell lines and its molecular mode of action for cancer treatment. Four drug-resistant cell lines (P-glycoprotein-, ABCB5-, and EGFR-overexpressing cells, and TP53-knockout cells) did not show cross-resistance to ZINC253504760 except BCRP-overexpressing cells. Transcriptomic profiling indicated that cell death and survival as well as cell cycle (G2/M damage) were the top cellular functions affected by ZINC253504760 in CCRF-CEM cells, while CDK1 was linked with the downregulation of MEK and ERK. With flow cytometry, ZINC253504760 induced G2/M phase arrest. Interestingly, ZINC253504760 induced a novel state-of-the-art mode of cell death (parthanatos) through PARP and PAR overexpression as shown by western blotting, apoptosis-inducing factor (AIF) translocation by immunofluorescence, DNA damage by comet assay, and mitochondrial membrane potential collapse by flow cytometry. These results were ROS-independent. Furthermore, ZINC253504760 is an ATP-competitive MEK inhibitor evidenced by its interaction with the MEK phosphorylation site as shown by molecular docking in silico and binding to recombinant MEK by microscale thermophoresis in vitro. To the best of our knowledge, this is the first time to describe a cardenolide that induces parthanatos in leukemia cells, which may help to improve efforts to overcome drug resistance in cancer. A cardiac glycoside compound ZINC253504760 displayed cytotoxicity against different multidrug-resistant cell lines. ZINC253504760 exhibited cytotoxicity in CCRF-CEM leukemia cells by predominantly inducing a new mode of cell death (parthanatos). ZINC253504760 downregulated MEK1/2 phosphorylation and further affected ERK activation, which induced G2/M phase arrest.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Joelle C Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Disease (NCT), 69120, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
4
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
5
|
Hassel JC, Zimmer L, Sickmann T, Eigentler TK, Meier F, Mohr P, Pukrop T, Roesch A, Vordermark D, Wendl C, Gutzmer R. Medical Needs and Therapeutic Options for Melanoma Patients Resistant to Anti-PD-1-Directed Immune Checkpoint Inhibition. Cancers (Basel) 2023; 15:3448. [PMID: 37444558 DOI: 10.3390/cancers15133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, 69120 Heidelberg, Germany
| | | | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Friedegund Meier
- Department of Dermatology, Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32429 Minden, Germany
| |
Collapse
|
6
|
Krishnaraj J, Yamamoto T, Ohki R. p53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers (Basel) 2023; 15:3399. [PMID: 37444509 DOI: 10.3390/cancers15133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
7
|
Zhang Q, Chen Y, Wang Q, Wang Y, Feng W, Chai L, Liu J, Li D, Chen H, Qiu Y, Shen N, Shi X, Xie X, Li M. HMGB1-induced activation of ER stress contributes to pulmonary artery hypertension in vitro and in vivo. Respir Res 2023; 24:149. [PMID: 37268944 DOI: 10.1186/s12931-023-02454-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and pulmonary artery remodeling through ER stress activation. METHODS Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell proliferation and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 (ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the development of PAH. The ultrastructure of ER was observed by transmission electron microscopy. RESULTS In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phenylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyrazine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis. CONCLUSIONS The present study provides a novel insight to understand the pathogenesis of PAH and suggests that targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Danyang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
8
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 PMCID: PMC10216817 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
9
|
Müller A, Weyerhäuser P, Berte N, Jonin F, Lyubarskyy B, Sprang B, Kantelhardt SR, Salinas G, Opitz L, Schulz-Schaeffer W, Giese A, Kim EL. Concurrent Activation of Both Survival-Promoting and Death-Inducing Signaling by Chloroquine in Glioblastoma Stem Cells: Implications for Potential Risks and Benefits of Using Chloroquine as Radiosensitizer. Cells 2023; 12:cells12091290. [PMID: 37174691 PMCID: PMC10177603 DOI: 10.3390/cells12091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.
Collapse
Affiliation(s)
- Andreas Müller
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Patrick Weyerhäuser
- Institute of Toxicology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Nancy Berte
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Fitriasari Jonin
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bogdan Lyubarskyy
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bettina Sprang
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Sven Rainer Kantelhardt
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), Institute for Human Genetics, University Medical Centre, 37075 Göttingen, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, 8092 Zurich, Switzerland
| | | | - Alf Giese
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Ella L Kim
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| |
Collapse
|
10
|
Conte A, Valente V, Paladino S, Pierantoni GM. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell Signal 2023; 101:110491. [PMID: 36241057 DOI: 10.1016/j.cellsig.2022.110491] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates and regulates a plethora of transcriptional regulators and chromatin modifiers. The heterogeneity of its interactome allows HIPK2 to modulate several cellular processes and signaling pathways, ultimately regulating cell fate and proliferation. Because of its p53-dependent pro-apoptotic activity and its downregulation in many tumor types, HIPK2 is traditionally considered a bone fide tumor suppressor gene. However, recent findings revealed that the role of HIPK2 in the pathogenesis of cancer is much more complex, ranging from tumor suppressive to oncogenic, strongly depending on the cellular context. Here, we review the very recent data emerged in the last years about the involvement of HIPK2 in cancer biology and therapy, highlighting the various alterations of this kinase (downregulation, upregulation, mutations and/or delocalization) in dependence on the cancer types. In addition, we discuss the recent advancement in the understanding the tumor suppressive and oncogenic functions of HIPK2, its role in establishing the response to cancer therapies, and its regulation by cancer-associated microRNAs. All these data strengthen the idea that HIPK2 is a key player in many types of cancer; therefore, it could represent an important prognostic marker, a factor to predict therapy response, and even a therapeutic target itself.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
11
|
NRF2 in Cancer: Cross-Talk with Oncogenic Pathways and Involvement in Gammaherpesvirus-Driven Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010595. [PMID: 36614036 PMCID: PMC9820659 DOI: 10.3390/ijms24010595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Expanding knowledge of the molecular mechanisms at the basis of tumor development, especially the cross-talk between oncogenic pathways, will possibly lead to better tailoring of anticancer therapies. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in cancer progression, not only because of its antioxidant activity but also because it establishes cross-talk with several oncogenic pathways, including Heat Shock Factor1 (HSF1), mammalian target of rapamycin (mTOR), and mutant (mut) p53. Moreover, the involvement of NRF2 in gammaherpesvirus-driven carcinogenesis is particularly interesting. These viruses indeed hijack the NRF2 pathway to sustain the survival of tumor cells in which they establish a latent infection and to avoid a too-high increase of reactive oxygen species (ROS) when these cancer cells undergo treatments that induce viral replication. Interestingly, NRF2 activation may prevent gammaherpesvirus-driven oncogenic transformation, highlighting how manipulating the NRF2 pathway in the different phases of gammaherpesvirus-mediated carcinogenesis may lead to different outcomes. This review will highlight the mechanistic interplay between NRF2 and some oncogenic pathways and its involvement in gammaherpesviruses biology to recapitulate published evidence useful for potential application in cancer therapy.
Collapse
|
12
|
Lee I, Kim CE, Cho H, Im H, Shin KS, Kang SJ. TRAF2 regulates the protein stability of HIPK2. Biochem Biophys Res Commun 2022; 627:97-102. [PMID: 36030658 DOI: 10.1016/j.bbrc.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
A nuclear serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) is a critical regulator of development and DNA damage response. HIPK2 can induce apoptosis under cellular stress conditions and thus its protein level is maintained low by constant proteasomal degradation. In the present study, we present evidence that TNF receptor-associated factor 2 (TRAF2) regulates the protein stability of HIPK2. Overexpression of TRAF2 decreased while its knockdown increased the HIPK2 protein level. The TRAF2-mediated decrease in HIPK2 protein expression was blocked by proteasomal inhibitor. In addition, TRAF2 decreased the protein half-life of HIPK2. We found that HIPK2 and TRAF2 co-immunoprecipitated. Interestingly, the co-immunoprecipitation was reduced while HIPK2 protein level increased following TNFα treatment, suggesting TNFα induced dissociation of TRAF2 from HIPK2 to accumulate HIPK2. Inhibition of HIPK2 partially suppressed TNFα-induced cell death, indicating that the accumulated HIPK2 may contribute to the TNFα-induced cell death. Our results suggest that TRAF2 can regulate proapoptotic function of HIPK2 by promoting proteasomal degradation.
Collapse
Affiliation(s)
- Impyo Lee
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Chae-Eun Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Harim Cho
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Ki Soon Shin
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Shin Jung Kang
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
13
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Prevention of anticancer therapy-induced neurotoxicity: putting DNA damage in perspective. Neurotoxicology 2022; 91:1-10. [PMID: 35487345 DOI: 10.1016/j.neuro.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe side effect of conventional cancer therapeutics (cAT) that significantly impacts the quality of life of tumor patients. The molecular mechanisms of CIPN are incompletely understood and there are no effective preventive or therapeutic measures available to date. Here, we present a brief overview of the current knowledge about mechanisms underlying CIPN and discuss DNA damage-related stress responses as feasible targets for the prevention of CIPN. In addition, we discuss that the nematode Caenorhabditis elegans is a useful 3R-conform model organism to further elucidate molecular mechanisms of CIPN and to identify novel lead compounds protecting from cAT-triggered neuropathy.
Collapse
|
15
|
Kaltheuner IH, Anand K, Moecking J, Düster R, Wang J, Gray NS, Geyer M. Abemaciclib is a potent inhibitor of DYRK1A and HIP kinases involved in transcriptional regulation. Nat Commun 2021; 12:6607. [PMID: 34785661 PMCID: PMC8595372 DOI: 10.1038/s41467-021-26935-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Homeodomain-interacting protein kinases (HIPKs) belong to the CMGC kinase family and are closely related to dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). HIPKs are regulators of various signaling pathways and involved in the pathology of cancer, chronic fibrosis, diabetes, and multiple neurodegenerative diseases. Here, we report the crystal structure of HIPK3 in its apo form at 2.5 Å resolution. Recombinant HIPKs and DYRK1A are auto-activated and phosphorylate the negative elongation factor SPT5, the transcription factor c-Myc, and the C-terminal domain of RNA polymerase II, suggesting a direct function in transcriptional regulation. Based on a database search, we identified abemaciclib, an FDA-approved Cdk4/Cdk6 inhibitor used for the treatment of metastatic breast cancer, as potent inhibitor of HIPK2, HIPK3, and DYRK1A. We determined the crystal structures of HIPK3 and DYRK1A bound to abemaciclib, showing a similar binding mode to the hinge region of the kinase as observed for Cdk6. Remarkably, DYRK1A is inhibited by abemaciclib to the same extent as Cdk4/Cdk6 in vitro, raising the question of whether targeting of DYRK1A contributes to the transcriptional inhibition and therapeutic activity of abemaciclib.
Collapse
Affiliation(s)
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Robert Düster
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and the Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
De Biase D, Valente V, Conte A, Cammarota F, Boccella N, D’Esposito L, d’Aquino I, Paciello O, Paladino S, Pierantoni GM. Phenotypic Effects of Homeodomain-Interacting Protein Kinase 2 Deletion in Mice. Int J Mol Sci 2021; 22:ijms22158294. [PMID: 34361060 PMCID: PMC8348407 DOI: 10.3390/ijms22158294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates various transcriptional and chromatin regulators, thus modulating numerous important cellular processes, such as proliferation, apoptosis, DNA damage response, and oxidative stress. The role of HIPK2 in the pathogenesis of cancer and fibrosis is well established, and evidence of its involvement in the homeostasis of multiple organs has been recently emerging. We have previously demonstrated that Hipk2-null (Hipk2-KO) mice present cerebellar alterations associated with psychomotor abnormalities and that the double ablation of HIPK2 and its interactor HMGA1 causes perinatal death due to respiratory failure. To identify other alterations caused by the loss of HIPK2, we performed a systematic morphological analysis of Hipk2-KO mice. Post-mortem examinations and histological analysis revealed that Hipk2 ablation causes neuronal loss, neuronal morphological alterations, and satellitosis throughout the whole central nervous system (CNS); a myopathic phenotype characterized by variable fiber size, mitochondrial proliferation, sarcoplasmic inclusions, morphological alterations at neuromuscular junctions; and a cardiac phenotype characterized by fibrosis and cardiomyocyte hypertrophy. These data demonstrate the importance of HIPK2 in the physiology of skeletal and cardiac muscles and of different parts of the CNS, thus suggesting its potential relevance for different new aspects of human pathology.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (I.d.); (O.P.)
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (V.V.); (A.C.); (F.C.)
| | - Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (V.V.); (A.C.); (F.C.)
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (V.V.); (A.C.); (F.C.)
| | - Nicola Boccella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Lucia D’Esposito
- Centro Servizi Veterinari, University of Naples Federico II, 80131 Naples, Italy;
| | - Ilaria d’Aquino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (I.d.); (O.P.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (D.D.B.); (I.d.); (O.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (V.V.); (A.C.); (F.C.)
- Correspondence: (S.P.); (G.M.P.); Tel.: +39-081-7464574 (S.P.); +39-081-7463156 (G.M.P.)
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (V.V.); (A.C.); (F.C.)
- Correspondence: (S.P.); (G.M.P.); Tel.: +39-081-7464574 (S.P.); +39-081-7463156 (G.M.P.)
| |
Collapse
|
17
|
Jin X, Qing S, Li Q, Zhuang H, Shen L, Li J, Qi H, Lin T, Lin Z, Wang J, Cao X, Yang J, Ma Q, Cong L, Xi Y, Fang S, Meng X, Gong Z, Ye M, Wang S, Wang C, Gao K. Prostate cancer-associated SPOP mutations lead to genomic instability through disruption of the SPOP-HIPK2 axis. Nucleic Acids Res 2021; 49:6788-6803. [PMID: 34133717 PMCID: PMC8266658 DOI: 10.1093/nar/gkab489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Speckle-type Poz protein (SPOP), an E3 ubiquitin ligase adaptor, is the most frequently mutated gene in prostate cancer. The SPOP-mutated subtype of prostate cancer shows high genomic instability, but the underlying mechanisms causing this phenotype are still largely unknown. Here, we report that upon DNA damage, SPOP is phosphorylated at Ser119 by the ATM serine/threonine kinase, which potentiates the binding of SPOP to homeodomain-interacting protein kinase 2 (HIPK2), resulting in a nondegradative ubiquitination of HIPK2. This modification subsequently increases the phosphorylation activity of HIPK2 toward HP1γ, and then promotes the dissociation of HP1γ from trimethylated (Lys9) histone H3 (H3K9me3) to initiate DNA damage repair. Moreover, the effect of SPOP on the HIPK2-HP1γ axis is abrogated by prostate cancer-associated SPOP mutations. Our findings provide new insights into the molecular mechanism of SPOP mutations-driven genomic instability in prostate cancer.
Collapse
Affiliation(s)
- Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shi Qing
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Hui Zhuang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Liliang Shen
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Jinhui Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Honggang Qi
- Department of Urology, the Affiliated Yinzhou Second Hospital of Medical School of Ningbo University, Ningbo 315100, China
| | - Ting Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zihan Lin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jian Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xinyi Cao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jianye Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City. Ningbo First Hospital, The affiliated hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Linghua Cong
- Department of Urology, Department of Hematology, the Affiliated Yinzhou Renmin Hospital of Medical School of Ningbo University, Ningbo 315040, China
| | - Yang Xi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuai Fang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Zhaohui Gong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chenji Wang
- State Key Lab of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
18
|
Müller JP, Klempnauer KH. The CDC37-HSP90 chaperone complex co-translationally degrades the nascent kinase-dead mutant of HIPK2. FEBS Lett 2021; 595:1559-1568. [PMID: 33786814 DOI: 10.1002/1873-3468.14080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a highly conserved, constitutively active Ser/Thr protein kinase that is involved in various important biological processes. HIPK2 activates itself by auto-phosphorylation during its synthesis, and its activity is mainly controlled through modulation of its expression by ubiquitin-dependent degradation. By comparing the expression of wild-type and kinase-defective HIPK2, we have recently described a novel mechanism of HIPK2 regulation that is based on preferential co-translational degradation of kinase-defective versus wild-type HIPK2. Here, we have addressed this novel regulatory mechanism in more detail by focusing on the possible involvement of chaperones. Our work shows that HIPK2 is a client of the CDC37-HSP90 chaperone complex and points to a novel role of CDC37 in the co-translational degradation of a client protein.
Collapse
Affiliation(s)
- Jan Paul Müller
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | |
Collapse
|
19
|
Shi YY, Meng XT, Xu YN, Tian XJ. Role of FOXO protein's abnormal activation through PI3K/AKT pathway in platinum resistance of ovarian cancer. J Obstet Gynaecol Res 2021; 47:1946-1957. [PMID: 33827148 DOI: 10.1111/jog.14753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 01/12/2023]
Abstract
AIM Platinum-based chemotherapy is the standard treatment for ovarian cancer. However, tumor cells' resistance to platinum drugs often occurs. This paper provides a review of Forkhead box O (FOXO) protein's role in platinum resistance of ovarian cancer which hopefully may provide some further guidance for the treatment of platinum-resistant ovarian cancer. METHODS We reviewed a 128 published papers from authoritative and professional journals on FOXO and platinum-resistant ovarian cancer, and adopts qualitative analyses and interpretation based on the literature. RESULTS Ovarian cancer often has abnormal activation of cellular pathways, the most important of which is the PI3K/AKT pathway. FOXOs act as crucial downstream factor of the PI3K/Akt pathway and are negatively regulated by it. DNA damage response and apoptosis including the relationship between FOXOs and ATM-Chk2-p53 are essential for platinum resistance of ovarian cancer. Through gene expression analysis in platinum-resistant ovarian cancer cell model, it was found that FoxO-1 is decreased in platinum-resistant ovarian cancer, so studying the role of FOXO in the pathway on platinum-induced apoptosis may further guide the treatment of platinum-resistant ovarian cancer. CONCLUSIONS There are many drug resistance mechanisms in ovarian cancer, wherein the decrease in cancer cells apoptosis is one of the important causes. Constituted by a series of transcription factors evolving conservatively and mainly working in inhibiting cancer, FOXO proteins play various roles in cells' antitumor response. More and more evidence suggests that we need to re-understand the role that FOXOs have played in cancer development and treatment.
Collapse
Affiliation(s)
- Yun-Yue Shi
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang-Tian Meng
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ya-Nan Xu
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiu-Juan Tian
- Department of Obstetrics and gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
20
|
Liebl MC, Moehlenbrink J, Becker H, Raddatz G, Abdeen SK, Aqeilan RI, Lyko F, Hofmann TG. DAZAP2 acts as specifier of the p53 response to DNA damage. Nucleic Acids Res 2021; 49:2759-2776. [PMID: 33591310 PMCID: PMC7969023 DOI: 10.1093/nar/gkab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Jutta Moehlenbrink
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Günter Raddatz
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Suhaib K Abdeen
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Frank Lyko
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Ray A, Kunhiraman H, Perera RJ. The Paradoxical Behavior of microRNA-211 in Melanomas and Other Human Cancers. Front Oncol 2021; 10:628367. [PMID: 33628737 PMCID: PMC7897698 DOI: 10.3389/fonc.2020.628367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer initiation, progression, and metastasis leverage many regulatory agents, such as signaling molecules, transcription factors, and regulatory RNA molecules. Among these, regulatory non-coding RNAs have emerged as molecules that control multiple cancer types and their pathologic properties. The human microRNA-211 (MIR211) is one such molecule, which affects several cancer types, including melanoma, glioblastoma, lung adenocarcinomas, breast, ovarian, prostate, and colorectal carcinoma. Previous studies suggested that in certain tumors MIR211 acts as a tumor suppressor while in others it behaves as an oncogenic regulator. Here we summarize the known molecular genetic mechanisms that regulate MIR211 gene expression and molecular pathways that are in turn controlled by MIR211 itself. We discuss how cellular and epigenetic contexts modulate the biological effects of MIR211, which exhibit pleiotropic effects. For example, up-regulation of MIR211 expression down-regulates Warburg effect in melanoma tumor cells associated with an inhibition of the growth of human melanoma cells in vitro, and yet these conditions robustly increase tumor growth in xenografted mice. Signaling through the DUSP6-ERK5 pathway is modulated by MIR211 in BRAFV600E driven melanoma tumors, and this function is involved in the resistance of tumor cells to the BRAF inhibitor, Vemurafenib. We discuss several alternate but testable models, involving stochastic cell-to-cell expression heterogeneity due to multiple equilibria involving feedback circuits, intracellular communication, and genetic variation at miRNA target sties, to reconcile the paradoxical effects of MIR211 on tumorigenesis. Understanding the precise role of this miRNA is crucial to understanding the genetic basis of melanoma as well as the other cancer types where this regulatory molecule has important influences. We hope this review will inspire novel directions in this field.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Haritha Kunhiraman
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
| | - Ranjan J. Perera
- Cancer & Blood Disorder Institute, Johns Hopkins All Children’s Hospital, South, St. Petersburg, FL, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Zheng X, Pan Y, Chen X, Xia S, Hu Y, Zhou Y, Zhang J. Inactivation of homeodomain-interacting protein kinase 2 promotes oral squamous cell carcinoma metastasis through inhibition of P53-dependent E-cadherin expression. Cancer Sci 2020; 112:117-132. [PMID: 33063904 PMCID: PMC7780018 DOI: 10.1111/cas.14691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2), a well-known tumor suppressor, shows contradictory expression patterns in different cancers. This study was undertaken to clarify HIPK2 expression in oral squamous cell carcinoma (OSCC) and to reveal the potential mechanism of HIPK2 involvement in OSCC metastasis. Two hundred and four OSCC tissues, together with paired adjacent normal epithelia, dysplastic epithelia, and lymph node metastasis specimens, were collected to profile HIPK2 expression by immunohistochemical staining. High throughput RNA-sequencing was used to detect the dysregulated signaling pathways in HIPK2-deficient OSCC cells. Transwell assay and lymphatic metastatic orthotopic mouse model assay were undertaken to identify the effect of HIPK2 on tumor invasion. Western blotting and luciferase reporter assay were used to examine the HIPK2/P53/E-cadherin axis in OSCC. Nuclear delocalization of HIPK2 was observed during oral epithelial cancerization progression and was associated with cervical lymph node metastasis and poor outcome. Depletion of HIPK2 promoted tumor cell invasion in vitro and facilitated cervical lymph node metastasis in vivo. According to mRNA-sequencing, pathways closely related to tumor invasion were notably activated. Homeodomain-interacting protein kinase 2 was found to trigger E-cadherin expression by mediating P53, which directly targets the CDH1 (coding E-cadherin) promoter. Restoring P53 expression rescued the E-cadherin suppression induced by HIPK2 deficiency, whereas rescued cytoplasmic HIPK2 expression had no influence on the expression of E-cadherin and cell mobility. Together, nuclear delocalization of HIPK2 might serve as a valuable negative biomarker for poor prognosis of OSCC and lymph node metastasis. The depletion of HIPK2 expression promoted OSCC metastasis by suppressing the P53/E-cadherin axis, which might be a promising target for anticancer therapies.
Collapse
Affiliation(s)
- Xueqing Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuemei Pan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xinming Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Oral Histopathology Department, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Zhai S, Xu Z, Xie J, Zhang J, Wang X, Peng C, Li H, Chen H, Shen B, Deng X. Epigenetic silencing of LncRNA LINC00261 promotes c-myc-mediated aerobic glycolysis by regulating miR-222-3p/HIPK2/ERK axis and sequestering IGF2BP1. Oncogene 2020; 40:277-291. [PMID: 33122827 PMCID: PMC7808938 DOI: 10.1038/s41388-020-01525-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNAs have been identified as key regulators in the progression of various cancers. LINC00261 has been reported as a tumor suppressor in multiple cancers. However, its function and underlying mechanisms in pancreatic cancer remain largely unclear. Quantitative real-time PCR was performed to detect RNA expression. In situ hybridization was used to discover the subcellular location. The direct binding of LINC00261 to miR-222-3p was verified using a dual-luciferase reporter assay and RNA immunoprecipitation. LINC00261-binding proteins were detected using an RNA pulldown assay. LINC00261 was downregulated in pancreatic cancer tissues and cell lines. Its reduced expression was correlated with advanced pathological stage and poor prognosis. Forced expression of LINC00261 suppressed pancreatic cancer glycolysis and proliferation and induced cell cycle arrest and apoptosis. Mechanistically, downregulation of LINC00261 was caused by hypermethylation of the CpG island in the promoter region and EZH2-mediated histone H3 lysine 27 trimethylation. Moreover, LINC00261 exerted its biological function by binding to miR-222-3p to activate the HIPK2/ERK/c-myc pathway. In addition, LINC00261 could also reduce c-myc expression by sequestering IGF2BP1. Our study suggests that LINC00261 functions as a tumor suppressor in pancreatic cancer and identifies novel epigenetic and posttranscriptional regulatory mechanisms of LINC00261, which contribute to the targeted therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junjie Xie
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Zhang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinjing Wang
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chenghong Peng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongwei Li
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
24
|
Müller JP, Scholl S, Kunick C, Klempnauer KH. Expression of protein kinase HIPK2 is subject to a quality control mechanism that acts during translation and requires its kinase activity to prevent degradation of nascent HIPK2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118894. [PMID: 33091504 DOI: 10.1016/j.bbamcr.2020.118894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
HIPK2 is a highly conserved, constitutively active Ser/Thr protein kinase that is involved in a broad spectrum of biological processes. We have previously reported that the expression of HIPK2 is auto-regulated by a mechanism that depends on the activity of its kinase domain, leading to decreased expression of kinase-dead versus wild-type HIPK2. We have now explored this mechanism in more detail. Differential expression of wild-type and kinase-dead HIPK2 is dependent on sequences located in the C-terminal part of HIPK2, but is only observed when this part of HIPK2 is translated together with the defective kinase domain. On their own, both the defective kinase domain and the C-terminal amino acid sequences are expressed at normal levels and independently of kinase activity. Insertion of a 2A-ribosomal skipping sequence into the HIPK2 coding sequence revealed that the differential expression of wild-type and kinase-dead HIPK2 is caused by degradation of nascent kinase-dead HIPK2. Because HIPK2 is constitutively active and auto-activates its kinase domain already during its translation we speculate that the regulatory mechanism discovered here serves as a quality control mechanism that leads to degradation of nascent kinase molecules with defective kinase domains. Overall our work provides insight into a novel auto-regulatory mechanism of HIPK2 expression, thereby adding a new layer of control to the regulation of HIPK2.
Collapse
Affiliation(s)
- Jan Paul Müller
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Stephan Scholl
- Institut für Chemische und Thermische Verfahrenstechnik, Technische Universität Braunschweig, Langer Kamp 7, D-38106 Braunschweig, Germany; Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Franz-Liszt-Straße 35a, D-38106 Braunschweig, Germany
| | - Conrad Kunick
- Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Franz-Liszt-Straße 35a, D-38106 Braunschweig, Germany; Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, D-38106 Braunschweig, Germany
| | - Karl-Heinz Klempnauer
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany.
| |
Collapse
|
25
|
Li Y, Lv Y, Cheng C, Huang Y, Yang L, He J, Tao X, Hu Y, Ma Y, Su Y, Wu L, Yu G, Jiang Q, Liu S, Liu X, Liu Z. SPEN induces miR-4652-3p to target HIPK2 in nasopharyngeal carcinoma. Cell Death Dis 2020; 11:509. [PMID: 32641685 PMCID: PMC7343777 DOI: 10.1038/s41419-020-2699-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
SPEN family transcriptional repressor (SPEN), also known as the SMART/HDAC1-associated repressor protein (SHARP), has been reported to modulate the malignant phenotypes of breast cancer, colon cancer, and ovarian cancer. However, its role and the detail molecular basis in nasopharyngeal carcinoma (NPC) remain elusive. In this study, the SPEN mRNA and protein expression was found to be increased in NPC cells and tissues compared with nonmalignant nasopharyngeal epithelial cells and tissues. Elevated SPEN protein expression was found to promote the pathogenesis of NPC and lead to poor prognosis. Knockdown of SPEN expression resulted in inactivation ofPI3K/AKT and c-JUN signaling, thereby suppressing NPC migration and invasion. In addition, miR-4652-3p was found to be a downstream inducer of SPEN by targeting the homeodomain interacting protein kinase 2 (HIPK2) gene, a potential tumor suppressor that reduces the activation of epithelial-mesenchymal transition (EMT) signaling, thereby reducing its expression and leading to increased NPC migration, invasion, and metastasis. In addition, SPEN was found to induce miR-4652-3p expression by activating PI3K/AKT/c-JUN signaling to target HIPK2. Our data provided a new molecular mechanism for SPEN as a metastasis promoter through activation of PI3K/AKT signaling, thereby stimulating the c-JUN/miR-4652-3p axis to target HIPK2 in NPC.
Collapse
Affiliation(s)
- Yang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yumin Lv
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Chao Cheng
- Department of Pediatric Otorhinolaryngology, Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liu Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Jingjing He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Xingyu Tao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yingying Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yuting Ma
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Yun Su
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Liyang Wu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qingping Jiang
- Department of Pathology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu Liu
- Department of Breast Surgery, Guiyang Maternal and Child Healthcare Hospital, Guiyang, 550003, Guizhou, China
| | - Xiong Liu
- E.N.T. Department of Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhen Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
26
|
Gatti V, Ferrara M, Virdia I, Matteoni S, Monteonofrio L, di Martino S, Diodoro MG, Di Rocco G, Rinaldo C, Soddu S. An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis. Cells 2020; 9:484. [PMID: 32093146 PMCID: PMC7072727 DOI: 10.3390/cells9020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.
Collapse
Affiliation(s)
- Veronica Gatti
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Manuela Ferrara
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy;
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
- Department of Sciences, University Roma Tre, 00154 Rome, Italy
| | - Silvia Matteoni
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Simona di Martino
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.d.M.); (M.G.D.)
| | - Maria Grazia Diodoro
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.d.M.); (M.G.D.)
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy;
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| |
Collapse
|
27
|
Zhang J, Shang Y, Kamiya S, Kotowski SJ, Nakamura K, Huang EJ. Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover. J Neurosci 2020; 40:557-568. [PMID: 31776210 PMCID: PMC6961984 DOI: 10.1523/jneurosci.2017-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/23/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are important sources of energy, but they are also the target of cellular stress, toxin exposure, and aging-related injury. Persistent accumulation of damaged mitochondria has been implicated in many neurodegenerative diseases. One highly conserved mechanism to clear damaged mitochondria involves the E3 ubiquitin ligase Parkin and PTEN-induced kinase 1 (PINK1), which cooperatively initiate the process called mitophagy that identifies and eliminates damaged mitochondria through the autophagosome and lysosome pathways. Parkin is a mostly cytosolic protein, but is rapidly recruited to damaged mitochondria and target them for mitophagy. Moreover, Parkin interactomes also involve signaling pathways and transcriptional machinery critical for survival and cell death. However, the mechanism that regulates Parkin protein level remains poorly understood. Here, we show that the loss of homeodomain interacting protein kinase 2 (HIPK2) in neurons and mouse embryonic fibroblasts (MEFs) has a broad protective effect from cell death induced by mitochondrial toxins. The mechanism by which Hipk2-/- neurons and MEFs are more resistant to mitochondrial toxins is in part due to the role of HIPK2 and its kinase activity in promoting Parkin degradation via the proteasome-mediated mechanism. The loss of HIPK2 leads to higher cytosolic Parkin protein levels at basal conditions and upon exposure to mitochondrial toxins, which protects mitochondria from toxin-induced damage. In addition, Hipk2-/- neurons and MEFs show increased expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator 1), a Parkin downstream target that can provide additional benefits via transcriptional activation of mitochondrial genes. Together, these results reveal a previously unrecognized avenue to target HIPK2 in neuroprotection via the Parkin-mediated pathway.SIGNIFICANCE STATEMENT In this study, we provide evidence that homeodomain interacting protein kinase 2 (HIPK2) and its kinase activity promote Parkin degradation via the proteasome-mediated pathway. The loss of HIPK2 increases cytosolic and mitochondrial Parkin protein levels under basal conditions and upon exposure to mitochondrial toxins, which protect mitochondria from toxin-induced damage. In addition, Hipk2-/- neurons and mouse embryonic fibroblasts also show increased expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator 1), a Parkin downstream target that can provide additional benefits via transcriptional activation of mitochondrial genes. These results indicate that targeting HIPK2 and its kinase activity can have neuroprotective effects by elevating Parkin protein levels.
Collapse
Affiliation(s)
- Jiasheng Zhang
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
- Pathology Service 113B, VA Medical Center, San Francisco, California 94121
| | - Yulei Shang
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Sherry Kamiya
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Sarah J Kotowski
- Department of Neurology, University of California, San Francisco, San Francisco, California 94122, and
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Ken Nakamura
- Department of Neurology, University of California, San Francisco, San Francisco, California 94122, and
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143,
- Pathology Service 113B, VA Medical Center, San Francisco, California 94121
| |
Collapse
|
28
|
Tessari A, Soliman SHA, Orlacchio A, Capece M, Amann JM, Visone R, Carbone DP, Palmieri D, Coppola V. RANBP9 as potential therapeutic target in non-small cell lung cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2020; 6. [PMID: 34778565 PMCID: PMC8589326 DOI: 10.20517/2394-4722.2020.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths in the Western world. Despite progress made with targeted therapies and immune checkpoint inhibitors, the vast majority of patients have to undergo chemotherapy with platinum-based drugs. To increase efficacy and reduce potential side effects, a more comprehensive understanding of the mechanisms of the DNA damage response (DDR) is required. We have shown that overexpressby live cell imaging (Incuyion of the scaffold protein RAN binding protein 9 (RANBP9) is pervasive in NSCLC. More importantly, patients with higher levels of RANBP9 exhibit a worse outcome from treatment with platinum-based drugs. Mechanistically, RANBP9 exists as a target and an enabler of the ataxia telangiectasia mutated (ATM) kinase signaling. Indeed, the depletion of RANBP9 in NSCLC cells abates ATM activation and its downstream targets such as pby live cell imaging (Incuy53 signaling. RANBP9 knockout cells are more sensitive than controls to the inhibition of the ataxia and telangiectasia-related (ATR) kinase but not to ATM inhibition. The absence of RANBP9 renders cells more sensitive to drugs inhibiting the Poly(ADP-ribose)-Polymerase (PARP) resulting in a "BRCAness-like" phenotype. In summary, as a result of increased sensitivity to DNA damaging drugs conferred by its ablation in vitro and in vivo, RANBP9 may be considered as a potential target for the treatment of NSCLC. This article aims to report the results from past and ongoing investigations focused on the role of RANBP9 in the response to DNA damage, particularly in the context of NSCLC. This review concludes with future directions and speculative remarks which will need to be addressed in the coming years.
Collapse
Affiliation(s)
- Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Shimaa H A Soliman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy.,Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Joseph M Amann
- Current address: Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosa Visone
- Department of Medicine, Dentistry and Biotechnology, G. d'Annunzio University of Chieti, Chieti 66100, Italy
| | - David P Carbone
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Liebl MC, Hofmann TG. Cell Fate Regulation upon DNA Damage: p53 Serine 46 Kinases Pave the Cell Death Road. Bioessays 2019; 41:e1900127. [PMID: 31621101 DOI: 10.1002/bies.201900127] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Mild and massive DNA damage are differentially integrated into the cellular signaling networks and, in consequence, provoke different cell fate decisions. After mild damage, the tumor suppressor p53 directs the cellular response to cell cycle arrest, DNA repair, and cell survival, whereas upon severe damage, p53 drives the cell death response. One posttranslational modification of p53, phosphorylation at Serine 46, selectively occurs after severe DNA damage and is envisioned as a marker of the cell death response. However, the molecular mechanism of action of the p53 Ser46 phospho-isomer, the molecular timing of this phosphorylation event, and its activating effects on apoptosis and ferroptosis still await exploration. In this essay, the current body of evidence on the molecular function of this deadly p53 mark, its evolutionary conservation, and the regulation of the key players of this response, the p53 Serine 46 kinases, are reviewed and dissected.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg, University Mainz, Obere Zahlbacher Str. 67, 55131, Mainz, Germany
| |
Collapse
|
30
|
Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019; 294:13545-13559. [PMID: 31341017 PMCID: PMC6746438 DOI: 10.1074/jbc.ra119.009725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-β4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Lijun Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wei Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, Supported by the Kazan McClain Partners' Foundation and the H. N. and Frances C. Berger Foundation. To whom correspondence may be addressed:
1600 Divisadero St., A745, San Francisco, CA 94115. Tel.:
415-353-7502; E-mail:
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, To whom correspondence may be addressed:
555 Mission Bay Blvd. S., Rm. 452W, San Francisco, CA 94158. Tel.:
415-514-1133; E-mail:
| |
Collapse
|
31
|
Qin Y, Hu Q, Ji S, Xu J, Dai W, Liu W, Xu W, Sun Q, Zhang Z, Ni Q, Yu X, Zhang B, Xu X. Homeodomain-interacting protein kinase 2 suppresses proliferation and aerobic glycolysis via ERK/cMyc axis in pancreatic cancer. Cell Prolif 2019; 52:e12603. [PMID: 30932257 PMCID: PMC6536454 DOI: 10.1111/cpr.12603] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the roles of the homeodomain-interacting protein kinase (HIPK) family of proteins in pancreatic cancer prognosis and the possible molecular mechanism. MATERIALS AND METHODS The expression of HIPK family genes and their roles in pancreatic cancer prognosis were analysed by using The Cancer Genome Atlas (TCGA). The roles of HIPK2 in pancreatic cancer proliferation and glycolysis were tested by overexpression of HIPK2 in pancreatic cancer cells, followed by cell proliferation assay, glucose uptake analysis and Seahorse extracellular flux analysis. The mechanism of action of HIPK2 in pancreatic cancer proliferation and glycolysis was explored by examining its effect on the ERK/cMyc axis. RESULTS Decreased HIPK2 expression indicated worse prognosis of pancreatic cancer. Overexpression of HIPK2 in pancreatic cancer cells decreased cell proliferation and attenuated aerobic glycolysis, which sustained proliferation of cancer cells. HIPK2 decreased cMyc protein levels and expression of cMyc-targeted glycolytic genes. cMyc was a mediator that regulated HIPK2-induced decrease in aerobic glycolysis. HIPK2 regulated cMyc protein stability via ERK activation, which phosphorylated and controlled cMyc protein stability. CONCLUSIONS HIPK2 suppressed proliferation of pancreatic cancer in part through inhibiting the ERK/cMyc axis and related aerobic glycolysis.
Collapse
Affiliation(s)
- Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qiangsheng Hu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Shunrong Ji
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Weixing Dai
- Cancer Research InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Wensheng Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wenyan Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Qiqing Sun
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Zheng Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Quanxing Ni
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
32
|
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Homeodomain Proteins Homeobrain, Empty Spiracles, and Muscle Segment Homeobox. Int J Mol Sci 2019; 20:ijms20081931. [PMID: 31010135 PMCID: PMC6515119 DOI: 10.3390/ijms20081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
The Drosophila homeodomain-interacting protein kinase (Hipk) is the fly representative of the well-conserved group of HIPKs in vertebrates. It was initially found through its characteristic interactions with homeodomain proteins. Hipk is involved in a variety of important developmental processes, such as the development of the eye or the nervous system. In the present study, we set Hipk and the Drosophila homeodomain proteins Homeobrain (Hbn), Empty spiracles (Ems), and Muscle segment homeobox (Msh) in an enzyme-substrate relationship. These homeoproteins are transcription factors that function during Drosophila neurogenesis and are, at least in part, conserved in vertebrates. We reveal a physical interaction between Hipk and the three homeodomain proteins in vivo using bimolecular fluorescence complementation (BiFC). In the course of in vitro phosphorylation analysis and subsequent mutational analysis we mapped several Hipk phosphorylation sites of Hbn, Ems, and Msh. The phosphorylation of Hbn, Ems, and Msh may provide further insight into the function of Hipk during development of the Drosophila nervous system.
Collapse
|
33
|
Liu Y, Qian L, Yang J, Huang H, Feng J, Li X, Bian T, Ke H, Liu J, Zhang J. The expression level and prognostic value of HIPK3 among non-small-cell lung cancer patients in China. Onco Targets Ther 2018; 11:7459-7469. [PMID: 30498360 PMCID: PMC6207246 DOI: 10.2147/ott.s166878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Lung cancer is one of the most common malignancies in the world and is at the forefront of causes of all cancer deaths. Identification of new prognostic predictors or therapeutic targets might improve a patient's survival rate. Purpose The Homeodomain interacting protein kinases (HIPKs) function as modulators of cellular stress responses and regulate cell differentiation, proliferation and apoptosis, but the function of HIPK3 is remain unknown. Patients and methods We used quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods to detective the expression of HIPK3. A total of 206 samples were obtained from patients and Immunochemical evaluation to determine HIPK3 protein expression. HIPK3 protein levels in in non-small cell lung cancer (NSCLC) were correlated with the clinical characteristics of patients and their 5-year survival rate. In addition, HIPK3 knockdown by specific RNAi promoted cell proliferation, migration, and invasion in A549 and HCC827 cancer cell lines. Results The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting methods to demonstrate that HIPK3 expression was significantly down-regulated in non-small cell lung cancer (NSCLC) tissues compared with that in normal lung tissues. At the same time, the results of immunohistochemistry assays showed that low expression of HIPK3 was significantly associated with pathology grade; tumor, node, and metastases (TNM) stage; lymph node metastasis; Ki-67 expression; and the 5-year survival rate in NSCLC patients. Univariate analysis revealed that HIPK3 expression, Ki-67 expression, tumor diameter, TNM stage, and age were significantly associated with a poor prognosis. The multivariable analysis illustrated that HIPK3, tumor diameter, TNM, Ki-67 expression, and age had effects on the overall survival of NSCLC patients independently. Kaplan-Meier survival curves revealed that NSCLC patients with a lower HIPK3 expression had a poorer prognosis. In addition, in vivo results also confirmed that HIPK3 over-expression could inhibit tumor growth. Conclusion Our findings confirmed that low expression of HIPK3 in NSCLC tissues was significantly correlated with poor survival rates after curative resection. HIPK3 could potentially be used as a valuable biomarker in the prognosis of the survival of NSCLC patients.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Juanjuan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Honggang Ke
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China,
| |
Collapse
|
34
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Li R, Shang J, Zhou W, Jiang L, Xie D, Tu G. Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation. Biomed Pharmacother 2018; 103:127-134. [PMID: 29649627 DOI: 10.1016/j.biopha.2018.03.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
HIPK2 is considered to be a tumor suppressor. It also has been implicated in several functions such as apoptosis and inflammation that are linked to spinal cord injury (SCI). However, whether HIPK2 ameliorates the neurological pain of SCI remains unclear. Here, we investigated the effects of HIPK2 on neurological function, oxidative stress, levels of inflammatory cytokines and expression of Bcl-2/Bax in an SCI model. Firstly, we evaluated the therapeutic effects of HIPK2 on neurological pain in the SCI rat using the Basso, Beattie and Bresnahan scores and H & E staining. Overexpression of HIPK2 significantly elevated the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), and reduced the mRNA expression of Nogo-A and RhoA in SCI rats. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays showed that overexpression of HIPK2 significantly reduced the number of apoptotic cells. Overexpression of HIPK2 also decreased expression of Bax and Caspase-3 and elevated expression of Bcl-2 in the SCI model, indicating that HIPK2 exhibited its protective activity by inhibiting SCI-induced apoptosis. Then, we measured the serum concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). We also determined the mRNA and protein levels of nuclear factor-κB p65 unit, tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β. HIPK2 overexpression reduced oxidative stress and the levels of inflammatory cytokines compared with SCI control animals. Additionally, acetylation of HIPK2 was reduced in SCI rats. Overexpression of HIPK2 could enhance autophagy by elevating the expression of Beclin-1 and LC3-II while autophagy is regarded as a beneficial regulator to improve spinal cord injury. Together, overexpression of HIPK2 improved contusive SCI induced pain by modulating oxidative stress, Bcl‑2 and Bax signaling, and inflammation, and also regulating autophagy.
Collapse
Affiliation(s)
- Renbo Li
- Department of Orthopedics, The First Hospical of China Medical University, Shenyang, Liaoning Province, 110001, China; Third People's Hospital of Dalian, Dalian, Liaoning Province, 116091, China
| | - Jingbo Shang
- Third People's Hospital of Dalian, Dalian, Liaoning Province, 116091, China
| | - Wei Zhou
- Third People's Hospital of Dalian, Dalian, Liaoning Province, 116091, China
| | - Li Jiang
- Third People's Hospital of Dalian, Dalian, Liaoning Province, 116091, China
| | - Donghui Xie
- Third People's Hospital of Dalian, Dalian, Liaoning Province, 116091, China
| | - Guanjun Tu
- Department of Orthopedics, The First Hospical of China Medical University, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
36
|
HIPK2-Mediated Transcriptional Control of NMDA Receptor Subunit Expression Regulates Neuronal Survival and Cell Death. J Neurosci 2018; 38:4006-4019. [PMID: 29581378 DOI: 10.1523/jneurosci.3577-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/01/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors are critical for neuronal communication. Dysfunction in NMDA receptors has been implicated in neuropsychiatric diseases. While it is well recognized that the composition of NMDA receptors undergoes a GluN2B-to-GluN2A switch in early postnatal life, the mechanism regulating this switch remains unclear. Using transcriptomic and functional analyses in brain tissues from male and female Hipk2+/+ and Hipk2-/- mice, we showed that the HIPK2-JNK-c-Jun pathway is important in suppressing the transcription of Grin2a and Grin2c, which encodes the GluN2A and GluN2C subunits of the NMDA receptors, respectively. Loss of HIPK2 leads to a significant decrease in JNK-c-Jun signaling, which in turn derepresses the transcription of Grin2a and Grin2c mRNA and upregulates GluN2A and GluN2C protein levels. These changes result in a significant increase of GluN2A/GluN2B ratio in synapse and mitochondria, a persistent activation of the ERK-CREB pathway and the upregulation of synaptic activity-regulated genes, which collectively contribute to the resistance of Hipk2-/- neurons to cell death induced by mitochondrial toxins.SIGNIFICANCE STATEMENT We identify HIPK2-JNK-c-Jun signaling as a key mechanism that regulates the transcription of NMDA receptor subunits GluN2A and GluN2C in vivo Our results provide insights into a previously unrecognized molecular mechanism that control the switch of NMDA receptor subunits in early postnatal brain development. Furthermore, we provide evidence that changes in the ratio of NMDA subunits GluN2A/GluN2B can also be detected in the synapse and mitochondria, which contributes to a persistent activation of the prosurvival ERK-CREB pathway and its downstream target genes. Collectively, these changes protect HIPK2 deficient neurons from mitochondrial toxins.
Collapse
|
37
|
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis. Oncogene 2018; 37:3562-3574. [PMID: 29563611 PMCID: PMC6021368 DOI: 10.1038/s41388-018-0191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 11/09/2022]
Abstract
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis.
Collapse
|
38
|
Baldari S, Garufi A, Granato M, Cuomo L, Pistritto G, Cirone M, D'Orazi G. Hyperglycemia triggers HIPK2 protein degradation. Oncotarget 2018; 8:1190-1203. [PMID: 27901482 PMCID: PMC5352047 DOI: 10.18632/oncotarget.13595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022] Open
Abstract
Homeodomain interacting protein kinase-2 (HIPK2) is an evolutionary conserved kinase that modulates several key molecular pathways to restrain tumor growth and induce p53-depending apoptotic cell-death in response to anticancer therapies. HIPK2 silencing in cancer cells leads to chemoresistance and cancer progression, in part due to p53 inhibition. Recently, hyperglycemia has been shown to reduce p53 phosphorylation at serine 46 (Ser46), the target residue of HIPK2, thus impairing p53 apoptotic function. Here we asked whether hyperglycemia could, upstream of p53, target HIPK2. We focused on the effect of high glucose (HG) on HIPK2 protein stability and the underlying mechanisms. We found that HG reduced HIPK2 protein levels, therefore impairing HIPK2-induced p53 apoptotic activity. HG-triggered HIPK2 protein downregulation was rescued by both proteasome inhibitor MG132 and by protein phosphatase inhibitors Calyculin A (CL-A) and Okadaic Acid (OA). Looking for the phosphatase involved, we found that protein phosphatase 2A (PP2A) induced HIPK2 degradation, as evidenced by directly activating PP2A with FTY720 or by silencing PP2A with siRNA in HG condition. The effect of PP2A on HIPK2 protein degradation could be in part due to hypoxia-inducible factor-1 (HIF-1) activity which has been previously shown to induce HIPK2 proteasomal degradation through several ubiquitin ligases. Validation analysed performed with HIF-1α dominant negative or with silencing of Siah2 ubiquitin ligase clearly showed rescue of HG-induced HIPK2 degradation. These findings demonstrate how hyperglycemia, through a complex protein cascade, induced HIPK2 downregulation and consequently impaired p53 apoptotic activity, revealing a novel link between diabetes/obesity and tumor resistance to therapies.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Medical Sciences, Tumor Biology Unit, University 'G. d'Annunzio', 66013 Chieti, Italy
| | - Marisa Granato
- Department of Experimental Medicine, Pasteur-Fondazione Cenci Bolognetti Institute, Sapienza University, 00100 Rome, Italy
| | - Laura Cuomo
- U.O.C. Clinical Pathology, A.C.O., San Filippo Neri Hospital, 00100 Rome, Italy
| | - Giuseppa Pistritto
- Department of Systems Medicine, University Tor Vergata, 00133 Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Pasteur-Fondazione Cenci Bolognetti Institute, Sapienza University, 00100 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Medical Sciences, Tumor Biology Unit, University 'G. d'Annunzio', 66013 Chieti, Italy
| |
Collapse
|
39
|
Liu OG, Xiong XY, Li CM, Zhou XS, Li SS. Role of Xeroderma Pigmentosum Group D in Cell Cycle and Apoptosis in Cutaneous Squamous Cell Carcinoma A431 Cells. Med Sci Monit 2018; 24:453-460. [PMID: 29362353 PMCID: PMC5791386 DOI: 10.12659/msm.905319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most widespread cancer in humans and its incidence is rising. Novel therapy with better efficacy is needed for clinical treatment of cSCC. Many studies have shown the importance of DNA repair pathways during the development of cancer. A key nucleotide excision repair (NER) protein, xeroderma pigmentosum group D (XPD), is responsible for the excision of a large variety of bulky DNA lesions. MATERIAL AND METHODS To explore the role of XPD in A431 cells, we overexpressed XPD in A431 cells and performed MTT assay, flow cytometry, and Western blot analysis to examine cell proliferation, cell apoptosis, and genes expression. RESULTS We found that the overexpression of XPD suppressed cell viability, induced cell cycle arrest at G1 phase, and promoted cell apoptosis. Additionally, XPD blocked the expression of c-myc, cdc25A, and cdk2, and improved the levels of HIPK2 and p53. CONCLUSIONS These results provide new evidence to reveal the role of XPD in cSCC A431 cells and suggest that XPD may serve as an anti-oncogene during cSCC development.
Collapse
Affiliation(s)
- Ou-Gen Liu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Yan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xian-Sheng Zhou
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Si-Si Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
40
|
Blaquiere JA, Wong KKL, Kinsey SD, Wu J, Verheyen EM. Homeodomain-interacting protein kinase promotes tumorigenesis and metastatic cell behavior. Dis Model Mech 2018; 11:dmm.031146. [PMID: 29208636 PMCID: PMC5818076 DOI: 10.1242/dmm.031146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT. Summary: The protein kinase Hipk can promote proliferation and invasive behaviors, and can synergize with known cancer pathways, in a new Drosophila model for tumorigenesis.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jin Wu
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
41
|
p300-mediated acetylation increased the protein stability of HIPK2 and enhanced its tumor suppressor function. Sci Rep 2017; 7:16136. [PMID: 29170424 PMCID: PMC5701035 DOI: 10.1038/s41598-017-16489-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a nuclear serine/threonine kinase that functions in development and tumor suppression. One of the prominent features of this kinase is that it is tightly regulated by proteasomal degradation. In the present study, we present evidence suggesting that the protein stability of HIPK2 can be regulated by p300-mediated acetylation. p300 increased the protein level of HIPK2 via its acetyltransferase activity. p300 increased the acetylation of HIPK2 while decreased polyubiquitination and its proteasomal degradation. We also observed that DNA damage induced acetylation of HIPK2 along with an increase in the protein amount, which was inhibited by p300 RNAi. Importantly, p300 promoted p53 activation and the HIPK2-mediated suppression of cell proliferation, suggesting acetylation-induced HIPK2 stabilization contributed to the enhanced activation of HIPK2. Overexpression of p300 promoted the HIPK2-mediated suppression of tumor growth in mouse xenograft model as well. Taken together, our data suggest that p300-mediated acetylation of HIPK2 increases the protein stability of HIPK2 and enhances its tumor suppressor function.
Collapse
|
42
|
Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget 2017; 8:20452-20461. [PMID: 28107201 PMCID: PMC5386776 DOI: 10.18632/oncotarget.14723] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023] Open
Abstract
The HIPK2 (serine/threonine homeodomain-interacting protein kinase 2) is a "caretaker" gene, its inactivation increases tumorigenicity while its activation inhibits tumor growth. This report reviews the anti-tumorigenic mechanisms of HIPK2, which include promotion of apoptosis, inhibition of angiogenesis in hypoxia, prevention of tumor invasion/metastasis and attenuation of multidrug resistance in cancer. Additionally, we summarize conditions or factors that may increase HIPK2 activity.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
43
|
Torres-Odio S, Key J, Hoepken HH, Canet-Pons J, Valek L, Roller B, Walter M, Morales-Gordo B, Meierhofer D, Harter PN, Mittelbronn M, Tegeder I, Gispert S, Auburger G. Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation. J Neuroinflammation 2017; 14:154. [PMID: 28768533 PMCID: PMC5541666 DOI: 10.1186/s12974-017-0928-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson’s disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. Methods Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. Results In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting “intracellular membrane-bounded organelles”. Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes—while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1−/− primary neurons in the first weeks after brain dissociation, (2) aged Pink1−/− midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1−/− embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. Conclusions Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0928-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Hans-Hermann Hoepken
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Lucie Valek
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Bastian Roller
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Blas Morales-Gordo
- Department of Neurology, University Hospital San Cecilio, 18012, Granada, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Patrick N Harter
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Edinger-Institute (Institute of Neurology), Goethe University Medical School, 60590, Frankfurt am Main, Germany.,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg.,Department of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, NORLUX Neuro-Oncology Laboratory, Luxembourg, Luxembourg
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Bengtsen M, Sørensen L, Aabel L, Ledsaak M, Matre V, Gabrielsen OS. The adaptor protein ARA55 and the nuclear kinase HIPK1 assist c-Myb in recruiting p300 to chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:751-760. [DOI: 10.1016/j.bbagrm.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
|
45
|
Verdina A, Di Rocco G, Virdia I, Monteonofrio L, Gatti V, Policicchio E, Bruselles A, Tartaglia M, Soddu S. HIPK2-T566 autophosphorylation diversely contributes to UV- and doxorubicin-induced HIPK2 activation. Oncotarget 2017; 8:16744-16754. [PMID: 28060750 PMCID: PMC5369998 DOI: 10.18632/oncotarget.14421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
HIPK2 is a Y-regulated S/T kinase involved in various cellular processes, including cell-fate decision during development and DNA damage response. Cis-autophosphorylation in the activation-loop and trans-autophosphorylation at several S/T sites along the protein are required for HIPK2 activation, subcellular localization, and subsequent posttranslational modifications. The specific function of a few of these autophosphorylations has been recently clarified; however, most of the sites found phosphorylated by mass spectrometry in human and/or mouse HIPK2 are still uncharacterized. In the process of studying HIPK2 in human colorectal cancers, we identified a mutation (T566P) in a site we previously found autophosphorylated in mouse Hipk2. Biochemical and functional characterization of this site showed that compared to wild type (wt) HIPK2, HIPK2-T566P maintains nuclear-speckle localization and has only a mild reduction in kinase and growth arresting activities upon overexpression. Next, we assessed cell response following UV-irradiation or treatment with doxorubicin, two well-known HIPK2 activators, by evaluating cell number and viability, p53-Ser46 phosphorylation, p21 induction, and caspase cleavage. Interestingly, cells expressing HIPK2-T566P mutant did not respond to UV-irradiation, while behaved similarly to wt HIPK2 upon doxorubicin-treatment. Evaluation of HIPK2-T566 phosphorylation status by a T566-phospho-specific antibody showed constitutive phosphorylation in unstressed cells, which was maintained after doxorubicin-treatment but inhibited by UV-irradiation. Taken together, these data show that HIPK2-T566 phosphorylation contributes to UV-induced HIPK2 activity but it is dispensable for doxorubicin response.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Veronica Gatti
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
- Present address: Istituto di Biologia Cellulare e Neurobiologia, CNR, Monterotondo Scalo, Rome, Italy
| | - Eleonora Policicchio
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Bruselles
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù – IRCCS, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| |
Collapse
|
46
|
Hashimoto K, Tsuji Y. Arsenic-Induced Activation of the Homeodomain-Interacting Protein Kinase 2 (HIPK2) to cAMP-Response Element Binding Protein (CREB) Axis. J Mol Biol 2016; 429:64-78. [PMID: 27884605 DOI: 10.1016/j.jmb.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Cyclic AMP-response element-binding protein (CREB) plays key transcriptional roles in cell metabolism, proliferation, and survival. Ser133 phosphorylation by protein kinase A (PKA) is a well-characterized CREB activation mechanism. Homeodomain-interacting protein kinase (HIPK) 2, a nuclear serine/threonine kinase, activates CREB through Ser271 phosphorylation; however, the regulatory mechanism remains uncharacterized. Transfection of CREB in HEK293 cells together with the kinase demonstrated that HIPK2 phosphorylated CREB at Ser271 but not Ser133; likewise, PKA phosphorylated CREB at Ser133 but not Ser271, suggesting two distinct CREB regulatory mechanisms by HIPK2 and PKA. In vitro kinase assay revealed that HIPK2, and HIPK1 and HIPK3, directly phosphorylated CREB. Cells exposed to 10μM sodium arsenite increased the stability of HIPK1 and HIPK2 proteins, leading to CREB activation via Ser271 phosphorylation. Phospho-Ser271 CREB showed facilitated interaction with the TFIID subunit coactivator TAF4 assessed by immunoprecipitation. Furthermore, a focused gene array between cells transfected with CREB alone and CREB plus HIPK2 over empty vector-transfected control displayed 14- and 32-fold upregulation of cyclin A1, respectively, while no upregulation was displayed by HIPK2 alone. These results suggest that the HIPK2-phospho-Ser271 CREB axis is a new arsenic-responsive CREB activation mechanism in parallel with the PKA-phospho-Ser133 CREB axis.
Collapse
Affiliation(s)
- Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
47
|
Kuwano Y, Nishida K, Akaike Y, Kurokawa K, Nishikawa T, Masuda K, Rokutan K. Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome. Int J Mol Sci 2016; 17:ijms17101638. [PMID: 27689990 PMCID: PMC5085671 DOI: 10.3390/ijms17101638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/29/2022] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator.
Collapse
Affiliation(s)
- Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Yoko Akaike
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Ken Kurokawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kiyoshi Masuda
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
48
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Fukushi S, Yoshino H, Yoshizawa A, Kashiwakura I. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines. BMC Cancer 2016; 16:521. [PMID: 27456853 PMCID: PMC4960859 DOI: 10.1186/s12885-016-2585-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/20/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. METHODS The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. RESULTS The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. CONCLUSIONS We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.
Collapse
Affiliation(s)
- Saori Fukushi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 Japan
| | - Atsushi Yoshizawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, Aomori 036-8564 Japan
| |
Collapse
|
50
|
Lee H, Lee S, Bae H, Kang HS, Kim SJ. Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep 2016; 6:25287. [PMID: 27121770 PMCID: PMC4848534 DOI: 10.1038/srep25287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
MiR-204 and miR-211 (miR-204/211) share the same seed site sequence, targeting many of the same genes. Their role in cancer development remains controversial, as both cell proliferative and suppressive effects have been identified. This study aimed to address the relationship between the two structurally similar microRNAs (miRs) by examining their target genes in depth as well as to reveal their contribution in breast cancer cells. Genome-wide pathway analysis with the dysregulated genes after overexpression of either of the two miRs in MCF-7 breast cancer cell identified the “Cancer”- and “Cell signaling”-related pathway as the top pathway for miR-204 and miR-211, respectively. The majority of the target genes for both miRs notably comprised ones that have been characterized to drive cells anti-tumorigenic. Accordingly, the miRs induced the proliferation of MCF-7 and MDA-MB-231 cells, judged by cell proliferation as well as colony forming assay. Tumor suppressors, MX1 and TXNIP, were proven to be direct targets of the miRs. In addition, a high association was observed between miR-204 and miR-211 expression in breast cancer tissue. Our results indicate that miR-204/211 serve to increase cell proliferation at least in MCF-7 and MDA-MB-231 breast cancer cells by downregulating tumor suppressor genes.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|