1
|
Elliot SL, Montoya QV, Caixeta MCS, Rodrigues A. The fungus Escovopsis ( Ascomycota: Hypocreales): a critical review of its biology and parasitism of attine ant colonies. FRONTIERS IN FUNGAL BIOLOGY 2025; 5:1486601. [PMID: 40170736 PMCID: PMC11959280 DOI: 10.3389/ffunb.2024.1486601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025]
Abstract
Two biological phenomena that contribute to increasing complexity in biological systems are mutualistic symbiotic interactions and the evolution of sociality. These two phenomena are also of fundamental importance to our understanding of the natural world. An organism that poses a threat to one or both of these is therefore also of great interest as it represents a challenge that mutualistic symbioses and social organisms have to overcome. This is the case with the fungus Escovopsis (Ascomycota: Hypocreales), which attacks the fungus garden of attine ants (Formicidae: Attina) such as the leaf cutters. This parasite has attracted much high-profile scientific interest for considerable time, and its study has been fruitful in understanding evolutionary, ecological and behavioural processes. Despite this, much of the biology and ecology of this organism remains unknown. Here we discuss this fungus and three sister genera (Escovopsioides, Luteomyces and Sympodiorosea) that until recently were considered as a single group. We first describe its position as the most highly specialised microbial symbiont in this system other than the mutualistic fungal cultivar itself and as that of greatest scientific interest. We then review the taxonomic history of the group and its macroevolution and biogeography. We examine what we know of its life cycle in the field - surprisingly little is known of how it is transmitted between colonies, but we explain what is known to date. We then review how it interacts with its host(s), first at the level of its direct interaction with the basidiomycete host fungi wherein we show the evidence for it being a mycoparasite; then at the colony level where empirical evidence points towards it being a parasite with a very low virulence or even merely a opportunist. Finally, we offer directions for future research.
Collapse
Affiliation(s)
- Simon Luke Elliot
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, United Kingdom
| | - Quimi Vidaurre Montoya
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
2
|
Du Y, Qian C, Li X, Zheng X, Huang S, Yin Z, Chen T, Pan L. Unveiling intraspecific diversity and evolutionary dynamics of the foodborne pathogen Bacillus paranthracis through high-quality pan-genome analysis. Curr Res Food Sci 2024; 9:100867. [PMID: 39376581 PMCID: PMC11456886 DOI: 10.1016/j.crfs.2024.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout host-associated habitats is of utmost importance. Bacterial pan-genomes, as dynamic entities, are strongly influenced by ecological lifestyles. As a phenotypically diverse species in the Bacillus cereus group, Bacillus paranthracis is recognized as an emerging foodborne pathogen and a probiotic simultaneously. This poorly understood species is a suitable study model for adaptive pan-genome evolution. In this study, we determined the biogeographic distribution, abundance, genetic diversity, and genotypic profiles of key genetic elements of B. paranthracis. Metagenomic read recruitment analyses demonstrated that B. paranthracis members are globally distributed and abundant in host-associated habitats. A high-quality pan-genome of B. paranthracis was subsequently constructed to analyze the evolutionary dynamics involved in ecological adaptation comprehensively. The open pan-genome indicated a flexible gene repertoire with extensive genetic diversity. Significant divergences in the phylogenetic relationships, functional enrichment, and degree of selective pressure between the different components demonstrated different evolutionary dynamics between the core and accessory genomes driven by ecological forces. Purifying selection and gene loss are the main signatures of evolutionary dynamics in B. paranthracis pan-genome. The plasticity of the accessory genome is characterized by horizontal gene transfer (HGT), massive gene losses, and weak purifying or positive selection, which might contribute to niche-specific adaptation. In contrast, although the core genome dominantly undergoes purifying selection, its association with HGT and positively selected mutations indicates its potential role in ecological diversification. Furthermore, host fitness-related dynamics are characterized by the loss of secondary metabolite biosynthesis gene clusters (BGCs) and CAZyme-encoding genes and the acquisition of antimicrobial resistance (AMR) and virulence genes via HGT. This study offers a case study of pan-genome evolution to investigate the ecological adaptations reflected by biogeographical characteristics, thereby advancing the understanding of intraspecific diversity and evolutionary dynamics of foodborne pathogens.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Chengqian Qian
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xianxin Li
- Foshan Branch of Tianyan (Tianjin) High-tech Co., Ltd, Foshan, 528000, Guangdong, PR China
| | - Xinqian Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Shoucong Huang
- Foshan Haitian (Gaoming) Flavouring Food Co., Ltd, Foshan, 52a8000, Guangdong, PR China
| | - Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, Guangdong, PR China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological slaEngineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
3
|
Moshe M, Gupta CL, Sela N, Minz D, Banin E, Frenkel O, Cytryn E. Comparative genomics of Bacillus cereus sensu lato spp. biocontrol strains in correlation to in-vitro phenotypes and plant pathogen antagonistic capacity. Front Microbiol 2023; 14:996287. [PMID: 36846749 PMCID: PMC9947482 DOI: 10.3389/fmicb.2023.996287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S-10, S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic effects against three soilborne plant pathogens models: Pythium aphanidermatum (oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum (ascomycete). To identify genetic mechanisms potentially responsible for the differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced and compared their genomes, and that of strain UW85 using a hybrid sequencing pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite and chitinase-encoding genes that could potentially explain observed differences in in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene cluster. The UW85 mega-plasmid contained more ABC transporters than the other two strains, whereas the S-25 mega-plasmid carried a unique cluster containing cellulose and chitin degrading genes. Collectively, comparative genomics revealed several mechanisms that can potentially explain differences in in-vitro antagonism of Bcsl strains toward fungal plant pathogens.
Collapse
Affiliation(s)
- Maya Moshe
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chhedi Lal Gupta
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Noa Sela
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Frenkel
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| |
Collapse
|
4
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
White H, Vos M, Sheppard SK, Pascoe B, Raymond B. Signatures of selection in core and accessory genomes indicate different ecological drivers of diversification among Bacillus cereus clades. Mol Ecol 2022; 31:3584-3597. [PMID: 35510788 PMCID: PMC9324797 DOI: 10.1111/mec.16490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/31/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Bacterial clades are often ecologically distinct, despite extensive horizontal gene transfer (HGT). How selection works on different parts of bacterial pan-genomes to drive and maintain the emergence of clades is unclear. Focusing on the three largest clades in the diverse and well-studied Bacillus cereus sensu lato group, we identified clade-specific core genes (present in all clade members) and then used clade-specific allelic diversity to identify genes under purifying and diversifying selection. Clade-specific accessory genes (present in a subset of strains within a clade) were characterized as being under selection using presence/absence in specific clades. Gene ontology analyses of genes under selection revealed that different gene functions were enriched in different clades. Furthermore, some gene functions were enriched only amongst clade-specific core or accessory genomes. Genes under purifying selection were often clade-specific, while genes under diversifying selection showed signs of frequent HGT. These patterns are consistent with different selection pressures acting on both the core and the accessory genomes of different clades and can lead to ecological divergence in both cases. Examining variation in allelic diversity allows us to uncover genes under clade-specific selection, allowing ready identification of strains and their ecological niche.
Collapse
Affiliation(s)
- Hugh White
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Michiel Vos
- European Centre for Environment and Human HealthUniversity of Exeter Medical SchoolEnvironment and Sustainability InstitutePenryn CampusUK
| | - Samuel K. Sheppard
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Pascoe
- Milner Centre for EvolutionDepartment of Biology & BiotechnologyUniversity of BathBathUK
| | - Ben Raymond
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
6
|
Lin Y, Alstrup M, Pang JKY, Maróti G, Er-Rafik M, Tourasse N, Økstad OA, Kovács ÁT. Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity. mSystems 2021; 6:e0086421. [PMID: 34636664 PMCID: PMC8510532 DOI: 10.1128/msystems.00864-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 01/11/2023] Open
Abstract
The Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that are vertebrate or invertebrate pathogens. Few isolates from the B. cereus group have however been demonstrated to benefit plant growth. Therefore, it is crucial to explore how bacterial development and pathogenesis evolve during plant colonization. Herein, we investigated Bacillus thuringiensis (Cry-) adaptation to the colonization of Arabidopsis thaliana roots and monitored changes in cellular differentiation in experimentally evolved isolates. Isolates from two populations displayed improved iterative ecesis on roots and increased virulence against insect larvae. Molecular dissection and recreation of a causative mutation revealed the importance of a nonsense mutation in the rho transcription terminator gene. Transcriptome analysis revealed how Rho impacts various B. thuringiensis genes involved in carbohydrate metabolism and virulence. Our work suggests that evolved multicellular aggregates have a fitness advantage over single cells when colonizing plants, creating a trade-off between swimming and multicellularity in evolved lineages, in addition to unrelated alterations in pathogenicity. IMPORTANCE Biologicals-based plant protection relies on the use of safe microbial strains. During application of biologicals to the rhizosphere, microbes adapt to the niche, including genetic mutations shaping the physiology of the cells. Here, the experimental evolution of Bacillus thuringiensis lacking the insecticide crystal toxins was examined on the plant root to reveal how adaptation shapes the differentiation of this bacterium. Interestingly, evolution of certain lineages led to increased hemolysis and insect larva pathogenesis in B. thuringiensis driven by transcriptional rewiring. Further, our detailed study reveals how inactivation of the transcription termination protein Rho promotes aggregation on the plant root in addition to altered differentiation and pathogenesis in B. thuringiensis.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Monica Alstrup
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Janet Ka Yan Pang
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Mériem Er-Rafik
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Lyngby, Denmark
| | - Nicolas Tourasse
- Université Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, Bordeaux, France
| | - Ole Andreas Økstad
- Centre for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ákos T. Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
8
|
Sitter TL, Vaughan AL, Schoof M, Jackson SA, Glare TR, Cox MP, Fineran PC, Gardner PP, Hurst MRH. Evolution of virulence in a novel family of transmissible mega-plasmids. Environ Microbiol 2021; 23:5289-5304. [PMID: 33989447 DOI: 10.1111/1462-2920.15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Some Serratia entomophila isolates have been successfully exploited in biopesticides due to their ability to cause amber disease in larvae of the Aotearoa (New Zealand) endemic pasture pest, Costelytra giveni. Anti-feeding prophage and ABC toxin complex virulence determinants are encoded by a 153-kb single-copy conjugative plasmid (pADAP; amber disease-associated plasmid). Despite growing understanding of the S. entomophila pADAP model plasmid, little is known about the wider plasmid family. Here, we sequence and analyse mega-plasmids from 50 Serratia isolates that induce variable disease phenotypes in the C. giveni insect host. Mega-plasmids are highly conserved within S. entomophila, but show considerable divergence in Serratia proteamaculans with other variants in S. liquefaciens and S. marcescens, likely reflecting niche adaption. In this study to reconstruct ancestral relationships for a complex mega-plasmid system, strong co-evolution between Serratia species and their plasmids were found. We identify 12 distinct mega-plasmid genotypes, all sharing a conserved gene backbone, but encoding highly variable accessory regions including virulence factors, secondary metabolite biosynthesis, Nitrogen fixation genes and toxin-antitoxin systems. We show that the variable pathogenicity of Serratia isolates is largely caused by presence/absence of virulence clusters on the mega-plasmids, but notably, is augmented by external chromosomally encoded factors.
Collapse
Affiliation(s)
- Thomas L Sitter
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Amy L Vaughan
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Marion Schoof
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Murray P Cox
- Bio-Protection Research Centre, Lincoln, New Zealand.,Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Peter C Fineran
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Paul P Gardner
- Bio-Protection Research Centre, Lincoln, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Mark R H Hurst
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
9
|
Manktelow CJ, White H, Crickmore N, Raymond B. Divergence in environmental adaptation between terrestrial clades of the Bacillus cereus group. FEMS Microbiol Ecol 2020; 97:5974271. [PMID: 33175127 DOI: 10.1093/femsec/fiaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
The Bacillus cereus group encompasses beneficial and harmful species in diverse niches and has a much debated taxonomy. Investigating whether selection has led to ecological divergence between phylogenetic clades can help understand the basis of speciation, and has implications for predicting biological safety across this group. Using three most terrestrial species in this group (B. cereus, Bacillus thuringiensis and Bacillus mycoides) we charactererized ecological specialization in terms of resource use, thermal adaptation and fitness in different environmental conditions and tested whether taxonomic species or phylogenetic clade best explained phenotypic variation. All isolates grew vigorously in protein rich media and insect cadavers, but exploitation of soil or plant derived nutrients was similarly weak for all. For B. thuringiensis and B. mycoides, clade and taxonomic species were important predictors of relative fitness in insect infections. Fully psychrotolerant isolates could outcompete B. thuringiensis in insects at low temperature, although psychrotolerance predicted growth in artificial media better than clade. In contrast to predictions, isolates in the Bacillus anthracis clade had sub-optimal growth at 37°C. The common ecological niche in these terrestrial B. cereus species is the ability to exploit protein rich resources such as cadavers. However, selection has led to different phylogenetic groups developing different strategies for accessing this resource. Thus, clades, as well as traditional taxonomic phenotypes, predict biologically important traits.
Collapse
Affiliation(s)
- C James Manktelow
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Hugh White
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| |
Collapse
|
10
|
Hu X, Huang D, Ogalo J, Geng P, Yuan Z, Xiong H, Wan X, Sun J. Application of Bacillus thuringiensis strains with conjugal and mobilizing capability drives gene transmissibility within Bacillus cereus group populations in confined habitats. BMC Microbiol 2020; 20:363. [PMID: 33243143 PMCID: PMC7690115 DOI: 10.1186/s12866-020-02047-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bacillus thuringiensis bacteria share similar genetic, physiological, and biochemical characteristics with other members of the Bacillus cereus group. Their diversity and entomopathogenic origin are related to their mobile genetic elements. However, the effects of wide-spread application of B. thuringiensis-based pesticides on genetically related B. cereus group populations present in the environment remain poorly understood. Results We first identified pBMB76 from B. thuringiensis tenebrionis as a new conjugative plasmid. Mixed mating experiments suggested that pBMB76 may compete with pHT73, another known conjugative plasmid. Applications of single (tenebrionis 4AA1 and kurstaki HD73 carrying pBMB76 and pHT73, respectively) and mixed (4AA1 + HD73) B. thuringiensis strains were performed in confined plot habitats (soil and leaf) over two planting seasons. In total, 684 B. cereus group isolates were randomly selected from different treatment sets, and the transmissibility and occurrence rate of potential conjugative plasmids were surveyed. Results showed that the percentage of isolates with plasmid mobility was markedly enhanced in the B. thuringiensis-sprayed groups. Furthermore, we performed multi-locus sequence typing (MLST) for a subset of 291 isolates, which indicated that the dominant sequence types in the treated habitats were identical or related to the corresponding sprayed formulations. Conclusions The application of B. thuringiensis strains with conjugal and mobilizing capability drove gene transmissibility within the B. cereus group populations in confined habitats and potentially modified the population structure. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02047-4.
Collapse
Affiliation(s)
- Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Doudou Huang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Joseph Ogalo
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Peiling Geng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hairong Xiong
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaofu Wan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiahui Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
11
|
Torres Manno MA, Repizo GD, Magni C, Dunlap CA, Espariz M. The assessment of leading traits in the taxonomy of the Bacillus cereus group. Antonie van Leeuwenhoek 2020; 113:2223-2242. [PMID: 33179199 DOI: 10.1007/s10482-020-01494-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Bacillus cereus sensu lato strains (B. cereus group) are widely distributed in nature and have received interest for decades due to their importance in insect pest management, food production and their positive and negative repercussions in human health. Consideration of practical uses such as virulence, physiology, morphology, or ill-defined features have been applied to describe and classify species of the group. However, current comparative studies have exposed inconsistencies between evolutionary relatedness and biological significance among genomospecies of the B. cereus group. Here, the combined analyses of core-based phylogeny and all versus all Average Nucleotide Identity values based on 2116 strains were conducted to update the genomospecies circumscriptions within B. cereus group. These analyses suggested the existence of 57 genomospecies, 37 of which are novel, thus indicating that the taxonomic identities of more than 39% of the analyzed strains should be revised or updated. In addition, we found that whole-genome in silico analyses were suitable to differentiate genomospecies such as B. anthracis, B. cereus and B. thuringiensis. The prevalence of toxin and virulence factors coding genes in each of the genomospecies of the B. cereus group was also examined, using phylogeny-aware methods at wide-genome scale. Remarkably, Cry and emetic toxins, commonly assumed to be associated with B. thuringiensis and emetic B. paranthracis, respectively, did not show a positive correlation with those genomospecies. On the other hand, anthrax-like toxin and capsule-biosynthesis coding genes were positively correlated with B. anthracis genomospecies, despite not being present in all strains, and with presumably non-pathogenic genomospecies. Hence, despite these features have been so far considered relevant for industrial or medical classification of related species of the B. cereus group, they were inappropriate for their circumscription. In this study, genomospecies of the group were accurately affiliated and representative strains defined, generating a rational framework that will allow comparative analysis in epidemiological or ecological studies. Based on this classification the role of specific markers such as Type VII secretion system, cytolysin, bacillolysin, and siderophores such as petrobactin were pointed out for further analysis.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo D Repizo
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Laboratorio de Resistencia bacteriana a antimicrobianos, Instituto de Biología Molecular y Celular de Rosario (IBR), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina
| | - Christopher A Dunlap
- United States Department of Agriculture, Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, 1815 North University Street, Peoria, IL, 61604, USA
| | - Martín Espariz
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Santa Fe, Argentina.
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), sede FCByF - UNR, Rosario, Santa Fe, Argentina.
- Área Estadística y Procesamiento de Datos, Departamento de Matemática y Estadística, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
12
|
Completed Genomic Sequence of Bacillus thuringiensis HER1410 Reveals a Cry-Containing Chromosome, Two Megaplasmids, and an Integrative Plasmidial Prophage. G3-GENES GENOMES GENETICS 2020; 10:2927-2939. [PMID: 32690586 PMCID: PMC7466992 DOI: 10.1534/g3.120.401361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus thuringiensis is the most used biopesticide in agriculture. Its entomopathogenic capacity stems from the possession of plasmid-borne insecticidal crystal genes (cry), traditionally used as discriminant taxonomic feature for that species. As such, crystal and plasmid identification are key to the characterization of this species. To date, about 600 B. thuringiensis genomes have been reported, but less than 5% have been completed, while the other draft genomes are incomplete, hindering full plasmid delineation. Here we present the complete genome of Bacillus thuringiensis HER1410, a strain closely related to B. thuringiensis entomocidus and a known host for a variety of Bacillus phages. The combination of short and long-read techniques allowed fully resolving the genome and delineation of three plasmids. This enabled the accurate detection of an unusual location of a unique cry gene, cry1Ba4, located in a genomic island near the chromosome replication origin. Two megaplasmids, pLUSID1 and pLUSID2 could be delineated: pLUSID1 (368 kb), a likely conjugative plasmid involved in virulence, and pLUSID2 (156 kb) potentially related to the sporulation process. A smaller plasmidial prophage pLUSID3, with a dual lifestyle whose integration within the chromosome causes the disruption of a flagellar key component. Finally, phylogenetic analysis placed this strain within a clade comprising members from the B. thuringiensis serovar thuringiensis and other serovars and with B. cereus s. s. in agreement with the intermingled taxonomy of B. cereus sensu lato group.
Collapse
|
13
|
Optimal Response to Quorum-Sensing Signals Varies in Different Host Environments with Different Pathogen Group Size. mBio 2020; 11:mBio.00535-20. [PMID: 32487754 PMCID: PMC7267880 DOI: 10.1128/mbio.00535-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing describes the ability of microbes to alter gene regulation according to their local population size. Some successful theory suggests that this is a form of cooperation, namely, investment in shared products is only worthwhile if there are sufficient bacteria making the same product. This theory can explain the genetic diversity in these signaling systems in Gram-positive bacteria, such as Bacillus and Staphylococcus sp. The possible advantages gained by rare genotypes (which can exploit the products of their more common neighbors) could explain why different genotypes can coexist. We show that while these social interactions can occur in simple laboratory experiments, they do not occur in naturalistic infections using an invertebrate pathogen, Bacillus thuringiensis. Instead, our results suggest that different genotypes are adapted to differently sized hosts. Overall, social models are not easily applied to this system, implying that a different explanation for this form of quorum sensing is required. The persistence of genetic variation in master regulators of gene expression, such as quorum-sensing systems, is hard to explain. Here, we investigated two alternative hypotheses for the prevalence of polymorphic quorum sensing in Gram-positive bacteria, i.e., the use of different signal/receptor pairs (‘pherotypes’) to regulate the same functions. First, social interactions between pherotypes or ‘facultative cheating’ may favor rare variants that exploit the signals of others. Second, different pherotypes may increase fitness in different environments. We evaluated these hypotheses in the invertebrate pathogen Bacillus thuringiensis, using three pherotypes expressed in a common genetic background. Facultative cheating could occur in well-mixed host homogenates provided there was minimal cross talk between competing pherotypes. However, facultative cheating did not occur when spatial structure was increased in static cultures or in naturalistic oral infections, where common pherotypes had higher fitness. There was clear support for environment-dependent fitness; pherotypes varied in responsiveness to signals and in mean competitive fitness. Notably, competitive fitness varied with group size. In contrast to typical social evolution models of quorum sensing which predict higher response to signal at larger group size, the pherotype with highest responsiveness to signals performed best in smaller hosts where infections have a lower pathogen group size. In this system, low signal abundance appears to limit fitness in hosts, while the optimal level of response to signals varies in different host environments.
Collapse
|
14
|
Zheng Z, Zhang Y, Liu Z, Dong Z, Xie C, Bravo A, Soberón M, Mahillon J, Sun M, Peng D. The CRISPR-Cas systems were selectively inactivated during evolution of Bacillus cereus group for adaptation to diverse environments. THE ISME JOURNAL 2020; 14:1479-1493. [PMID: 32132663 PMCID: PMC7242445 DOI: 10.1038/s41396-020-0623-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/27/2022]
Abstract
CRISPR-Cas systems are considered as barriers to horizontal gene transfer (HGT). However, the influence of such systems on HGT within species is unclear. Also, little is known about the impact of CRISPR-Cas systems on bacterial evolution at the population level. Here, using Bacillus cereus sensu lato as model, we investigate the interplay between CRISPR-Cas systems and HGT at the population scale. We found that only a small fraction of the strains have CRISPR-Cas systems (13.9% of 1871), and most of such systems are defective based on their gene content analysis. Comparative genomic analysis revealed that the CRISPR-Cas systems are barriers to HGT within this group, since strains harboring active systems contain less mobile genetic elements (MGEs), have lower fraction of unique genes and also display limited environmental distributions than strains without active CRISPR-Cas systems. The introduction of a functional CRISPR-Cas system into a strain lacking the system resulted in reduced adaptability to various stresses and decreased pathogenicity of the transformant strain, indicating that B. cereus group strains could benefit from inactivating such systems. Our work provides a large-scale case to support that the CRISPR-Cas systems are barriers to HGT within species, and that in the B. cereus group the inactivation of CRISPR-Cas systems correlated with acquisition of MGEs that could result in better adaptation to diverse environments.
Collapse
Affiliation(s)
- Ziqiang Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yulan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiyu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhaoxia Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanshuai Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud, 2 - L7.05.12, B-1348, Louvain-la-Neuve, Belgium
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Rossi GAM, Silva HO, Aguilar CEG, Rochetti AL, Pascoe B, Méric G, Mourkas E, Hitchings MD, Mathias LA, de Azevedo Ruiz VL, Fukumasu H, Sheppard SK, Vidal AMC. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol Lett 2019; 365:4780294. [PMID: 29390131 DOI: 10.1093/femsle/fnx283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022] Open
Abstract
The genomes of 262 Bacillus cereus isolates were analyzed including 69 isolates sampled from equipment, raw milk and dairy products from Brazil. The population structure of isolates showed strains belonging to known phylogenetic groups II, III, IV, V and VI. Almost all the isolates obtained from dairy products belonged to group III. Investigation of specific alleles revealed high numbers of isolates carrying toxin-associated genes including cytK (53.62%), hblA (59.42%), hblC (44.93%), hblD (53.62%), nheA (84.06%), nheB (89.86%) and nheC (84.06%) with isolates belonging to groups IV and V having significant higher prevalence of hblACD and group IV of CytK genes. Strains from dairy products had significantly lower prevalence of CytK and hblACD genes compared to isolates from equipment and raw milk/bulk tanks. Genes related to sucrose metabolism were detected at higher frequency in isolates obtained from raw milk compared to strains from equipment and utensils. The population genomic analysis demonstrated the diversity of strains and variability of putative function among B. cereus group isolates in Brazilian dairy production, with large numbers of strains potentially able to cause foodborne illness. This detailed information will contribute to targeted interventions to reduce milk contamination and spoilage associated with B. cereus in Brazil.
Collapse
Affiliation(s)
- Gabriel Augusto Marques Rossi
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Higor Oliveira Silva
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Carlos Eduardo Gamero Aguilar
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Arina Lázaro Rochetti
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | | | - Luis Antonio Mathias
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, UNESP - Univ. Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Via de acesso Paulo Castellane, s/n, CEP 14884-900 Jaboticabal, São Paulo, Brazil
| | - Vera Letticie de Azevedo Ruiz
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Heidge Fukumasu
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, 4 South, Lab 0.39, Claverton Down, BA2 7AY Bath, UK
| | - Ana Maria Centola Vidal
- Departamento de Medicina Veterinária, Avenida Duque de Caxias Norte 225, Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), CEP 13635-900 Pirassununga, São Paulo, Brazil
| |
Collapse
|
16
|
Patel M, Raymond B, Bonsall MB, West SA. Crystal toxins and the volunteer's dilemma in bacteria. J Evol Biol 2019; 32:310-319. [PMID: 30672052 PMCID: PMC6487926 DOI: 10.1111/jeb.13415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/28/2022]
Abstract
The growth and virulence of the bacteria Bacillus thuringiensis depend on the production of Cry toxins, which are used to perforate the gut of its host. Successful invasion of the host relies on producing a threshold amount of toxin, after which there is no benefit from producing more toxin. Consequently, the production of Cry toxin appears to be a different type of social problem compared with the public goods scenarios that bacteria usually encounter. We show that selection for toxin production is a volunteer's dilemma. We make specific predictions that (a) selection for toxin production depends upon an interplay between the number of bacterial cells that each host ingests and the genetic relatedness between those cells; (b) cheats that do not produce toxin gain an advantage when at low frequencies, and at high bacterial density, allowing them to be maintained in a population alongside toxin‐producing cells. More generally, our results emphasize the diversity of the social games that bacteria play.
Collapse
Affiliation(s)
| | - Ben Raymond
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, UK
| | | | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Interaction between Insects, Toxins, and Bacteria: Have We Been Wrong So Far? Toxins (Basel) 2018; 10:toxins10070281. [PMID: 29986377 PMCID: PMC6070883 DOI: 10.3390/toxins10070281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Toxins are a major virulence factor produced by many pathogenic bacteria. In vertebrates, the response of hosts to the bacteria is inseparable from the response to the toxins, allowing a comprehensive understanding of this tripartite host-pathogen-toxin interaction. However, in invertebrates, this interaction has been investigated by two complementary but historically distinct fields of research: toxinology and immunology. In this article, I highlight how such dichotomy between these two fields led to a biased, or even erroneous view of the ecology and evolution of the interaction between insects, toxins, and bacteria. I focus on the reason behind such a dichotomy, on how to bridge the fields together, and on confounding effects that could bias the outcome of the experiments. Finally, I raise four questions at the border of the two fields on the cross-effects between toxins, bacteria, and spores that have been largely underexplored to promote a more comprehensive view of this interaction.
Collapse
|
18
|
Méric G, Mageiros L, Pascoe B, Woodcock DJ, Mourkas E, Lamble S, Bowden R, Jolley KA, Raymond B, Sheppard SK. Lineage-specific plasmid acquisition and the evolution of specialized pathogens in Bacillus thuringiensis and the Bacillus cereus group. Mol Ecol 2018; 27:1524-1540. [PMID: 29509989 PMCID: PMC5947300 DOI: 10.1111/mec.14546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Bacterial plasmids can vary from small selfish genetic elements to large autonomous replicons that constitute a significant proportion of total cellular DNA. By conferring novel function to the cell, plasmids may facilitate evolution but their mobility may be opposed by co-evolutionary relationships with chromosomes or encouraged via the infectious sharing of genes encoding public goods. Here, we explore these hypotheses through large-scale examination of the association between plasmids and chromosomal DNA in the phenotypically diverse Bacillus cereus group. This complex group is rich in plasmids, many of which encode essential virulence factors (Cry toxins) that are known public goods. We characterized population genomic structure, gene content and plasmid distribution to investigate the role of mobile elements in diversification. We analysed coding sequence within the core and accessory genome of 190 B. cereus group isolates, including 23 novel sequences and genes from 410 reference plasmid genomes. While cry genes were widely distributed, those with invertebrate toxicity were predominantly associated with one sequence cluster (clade 2) and phenotypically defined Bacillus thuringiensis. Cry toxin plasmids in clade 2 showed evidence of recent horizontal transfer and variable gene content, a pattern of plasmid segregation consistent with transfer during infectious cooperation. Nevertheless, comparison between clades suggests that co-evolutionary interactions may drive association between plasmids and chromosomes and limit wider transfer of key virulence traits. Proliferation of successful plasmid and chromosome combinations is a feature of specialized pathogens with characteristic niches (Bacillus anthracis, B. thuringiensis) and has occurred multiple times in the B. cereus group.
Collapse
Affiliation(s)
- Guillaume Méric
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | | | - Ben Pascoe
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
| | - Dan J. Woodcock
- Mathematics Institute and Zeeman Institute for Systems Biology and Infectious Epidemiology ResearchUniversity of WarwickCoventryUK
| | - Evangelos Mourkas
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
| | - Sarah Lamble
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rory Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | | - Ben Raymond
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonAscotUK
- Department of BiosciencesUniversity of ExeterExeterUK
| | - Samuel K. Sheppard
- The Milner Centre for EvolutionDepartment of Biology and BiochemistryUniversity of BathBathUK
- MRC CLIMB ConsortiumUniversity of BathBathUK
- Department of ZoologyUniversity of OxfordOxfordUK
| |
Collapse
|
19
|
Fu Y, Yu Z, Liu S, Chen B, Zhu L, Li Z, Chou SH, He J. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis. Front Microbiol 2018; 9:45. [PMID: 29487570 PMCID: PMC5816809 DOI: 10.3389/fmicb.2018.00045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs) and c-di-GMP-degrading enzyme phosphodiesterases (PDEs) in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.
Collapse
Affiliation(s)
- Yang Fu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqing Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhou Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- NCHU Agricultural Biotechnology Center, Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Raymond B, Federici BA. An appeal for a more evidence based approach to biopesticide safety in the EU. FEMS Microbiol Ecol 2018; 94:4733269. [PMID: 29240920 DOI: 10.1093/femsec/fix169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 11/12/2022] Open
Abstract
EFSA responded to our perspective article on the safe use of the insect pathogen Bacillus thrurigiensis (Bt). In doing so they admitted that there is no direct evidence to suggest that B. thuringiensis can cause diarrhoea. They nevertheless continue to repeat the assertion that Bt cannot be distinguished from Bacillus cereus, even though nearly all Bt strains, and certainly all biopesticide strains, can be distinguished from B. cereus using multi-locus sequencing typing. EFSA also continue to repeat the unsupported and speculative hypothesis that Bt strains could be capable of causing cryptic infections in humans. This hypothesis is very much against the weight of all available safety and epidemiological data. Moreover, genotyping schemes of B. cereus group clinical infections also show that biopesticide strains have never been associated with human infections. Our position that Bt biopesticides and Bt isolates from the clade dominated by invertebrate pathogens are incapable of causing infections in humans is well supported by the international community of scientists familiar with the data on the safety of Bt after more than four decades of extensive use in agriculture and forestry.
Collapse
Affiliation(s)
- Ben Raymond
- University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Brian A Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Bartoszewicz M, Marjańska PS. Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis- like plasmids are genetically and phenotypically diverse. Food Microbiol 2017. [DOI: 10.1016/j.fm.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Bartoszewicz M, Czyżewska U. Spores and vegetative cells of phenotypically and genetically diverse Bacillus cereus sensu lato are common bacteria in fresh water of northeastern Poland. Can J Microbiol 2017; 63:939-950. [PMID: 28930645 DOI: 10.1139/cjm-2017-0337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gram-positive rods Bacillus cereus sensu lato (sl) are common in natural habitats and food products. It is believed that they are restricted to spores; however, their ecology in aquatic habitats is still poorly investigated. Thus, the aim of the study was to assess the rain-dependent fluctuations in the concentration of B. cereus sl vegetative cells and spores, with evaluation of their phylogenetic and population structure in relation to the toxicity and psychrotolerance. We proved that vegetative cells of B. cereus sl are widely distributed in fresh water of rivers and lakes, being as common as spores. Moreover, heavy rain has a huge impact on their concentration in undisturbed environments. The diversity of B. cereus sl reflects the multiple sources of bacteria and the differences between their distinct environments. Next, their diverse genetic structure and phenotypes better fit their ecological properties than their taxonomic affiliation.
Collapse
Affiliation(s)
- Marek Bartoszewicz
- a Department of Microbiology, Institute of Biology, Faculty of Biology and Chemistry, University of Bialystok, 1J Ciolkowski Street, Bialystok 15-245, Poland
| | - Urszula Czyżewska
- b Department of Cytobiochemistry, Institute of Biology, Faculty of Biology and Chemistry, University of Bialystok, 1J Ciolkowski Street, Bialystok 15-245, Poland
| |
Collapse
|
23
|
Comparative Genomics of Bacillus thuringiensis Reveals a Path to Specialized Exploitation of Multiple Invertebrate Hosts. mBio 2017; 8:mBio.00822-17. [PMID: 28790205 PMCID: PMC5550751 DOI: 10.1128/mbio.00822-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of host shifts is a key genomic question for pathogen and parasite biology. The Bacillus cereus group, which encompasses Bacillus thuringiensis and Bacillus anthracis, contains pathogens that can infect insects, nematodes, and vertebrates. Since the target range of the essential virulence factors (Cry toxins) and many isolates is well known, this group presents a powerful system for investigating how pathogens can diversify and adapt to phylogenetically distant hosts. Specialization to exploit insects occurs at the level of the major clade and is associated with substantial changes in the core genome, and host switching between insect orders has occurred repeatedly within subclades. The transfer of plasmids with linked cry genes may account for much of the adaptation to particular insect orders, and network analysis implies that host specialization has produced strong associations between key toxin genes with similar targets. Analysis of the distribution of plasmid minireplicons shows that plasmids with orf156 and orf157, which carry genes encoding toxins against Lepidoptera or Diptera, were contained only by B. thuringiensis in the specialized insect clade (clade 2), indicating that tight genome/plasmid associations have been important in adaptation to invertebrate hosts. Moreover, the accumulation of multiple virulence factors on transposable elements suggests that cotransfer of diverse virulence factors is advantageous in terms of expanding the insecticidal spectrum, overcoming insect resistance, or through gains in pathogenicity via synergistic interactions between toxins.IMPORTANCE Population genomics have provided many new insights into the formation, evolution, and dynamics of bacterial pathogens of humans and other higher animals, but these pathogens usually have very narrow host ranges. As a pathogen of insects and nematodes, Bacillus thuringiensis, which produces toxins showing toxicity to many orders of insects and other invertebrates, can be used as a model to study the evolution of pathogens with wide host ranges. Phylogenomic analysis revealed that host specialization and switching occur at the level of the major clade and subclade, respectively. A toxin gene co-occurrence network indicates that multiple toxins with similar targets were accumulated by the same cell in the whole species. This accumulation may be one of the strategies that B. thuringiensis has used to fight against host resistance. This kind of formation and evolution of pathogens represents a different path used against multiple invertebrate hosts from that used against higher animals.
Collapse
|
24
|
Chelliah R, Wei S, Park BJ, Kim SH, Park DS, Kim SH, Hwan KS, Oh DH. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Microb Pathog 2017; 111:22-27. [PMID: 28778821 DOI: 10.1016/j.micpath.2017.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Quantitative triplex real-time PCR (qPCR) offers an alternative method for detection of bacterial contamination. It provides quantitation of the number of gene copies. In our study, we established a qPCR assay to detect and quantify the specificity towards Bacillus cereus and B. thuringiensis. The assay was designed to detect a 280 bp fragment of motB gene encoding the flagellar motor protein, specific for detection of B. cereus and B. thuringiensis, excluding other group species B. pseudomycoides, B. mycoides and B. weihenstephanensis. Specificity of the assay was confirmed with 111 strains belonging to Bacillus cereus group and performed against 58 B. cereus, 50 B. thuringiensis, 3 other Bacillus bacteria and 9 non-Bacillus bacteria. Detection limit was determined for each assay. Direct analysis of samples revealed the specificity towards identification and characterization of B. cereus group cultured in nutrient media. Based on results, it was observed that motB showed 97% specificity towards B. cereus strains, 98% for B. thuringiensis but other B. cereus group showed less sensitivity (0%), thus, provides an efficient tool to identify B. cereus and B. thuringiensis. Further, environmental and food samples do not require band isolation, re-amplification or sequence identification. Thus, reducing the time and cost of analysis.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Shuai Wei
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Byung-Jae Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dong-Suk Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Kim Seok Hwan
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
25
|
Raymond B, Federici BA. In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity - a response to EFSA. FEMS Microbiol Ecol 2017. [PMID: 28645183 PMCID: PMC5812528 DOI: 10.1093/femsec/fix084] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bacillus cereus group contains vertebrate pathogens such as B. anthracis and B. cereus and the invertebrate pathogen B. thuringiensis (Bt). Microbial biopesticides based on Bt are widely recognised as being among the safest and least environmentally damaging insecticidal products available. Nevertheless, a recent food-poisoning incident prompted a European Food Safety Authority review which argued that Bt poses a health risk equivalent to B. cereus, a causative agent of diarrhoea. However, a critical examination of available data, and this latest incident, provides no solid evidence that Bt causes diarrhoea. Although relatively high levels of B. cereus-like spores can occur in foods, genotyping demonstrates that these are predominantly naturally occurring strains rather than biopesticides. Moreover, MLST genotyping of >2000 isolates show that biopesticide genotypes have never been isolated from any clinical infection. MLST data demonstrate that B. cereus group is heterogeneous and formed of distinct clades with substantial differences in biology, ecology and host association. The group posing the greatest risk (the anthracis clade) is distantly related to the clade containing all biopesticides. These recent data support the long-held view that Bt and especially the strains used in Bt biopesticides are very safe for humans.
Collapse
Affiliation(s)
- Ben Raymond
- University of Exeter, Penryn campus, Penryn, TR10 9FE, UK
| | - Brian A Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
26
|
Abstract
Outer Membrane Vesicles (OMVs) of Gram-negative bacteria are spherical membrane-enclosed entities of endocytic origin. Reported in the consortia of different bacterial species, production of OMVs into extracellular milieu seems essential for their survival. Enriched with bioactive proteins, toxins, and virulence factors, OMVs play a critical role in the bacteria-bacteria and bacteria-host interactions. Emergence of OMVs as distinct cellular entities helps bacteria in adaptating to diverse niches, in competing with other bacteria to protect members of producer species and more importantly play a crucial role in host-pathogen interaction. Composition of OMV, their ability to modulate host immune response, along with coordinated secretion of bacterial effector proteins, endows them with the armory, which can withstand hostile environments. Study of the OMV production under natural and diverse stress conditions has broadened the horizons, and also opened new frontiers in delineating the molecular machinery involved in disease pathogenesis. Playing diverse biological and pathophysiological functions, OMVs hold a great promise in enabling resurgence of bacterial diseases, in concomitance with the steep decline in the efficiency of antibiotics. Having multifaceted role, their emergence as a causative agent for a series of infectious diseases increases the probability for their exploitation in the development of effective diagnostic tools and as vaccines against diverse pathogenic species of Gram-negative origin.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
27
|
Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev 2017; 41:679-697. [DOI: 10.1093/femsre/fux023] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
|
28
|
Kovács ÁT. The global regulator CodY is required for the fitness of Bacillus cereus in various laboratory media and certain beverages. FEMS Microbiol Lett 2016; 363:fnw126. [PMID: 27190142 DOI: 10.1093/femsle/fnw126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
The impact of gene mutations on the growth of the cells can be studied using pure cultures. However, the importance of certain proteins and pathways can be also examined via co-culturing wild type and its mutant derivative. Here, the relative fitness of a mutant strain that lacks the global nitrogen regulator, CodY, was examined in Bacillus cereus, a food poisoning Gram-positive bacterium. Fitness measurements revealed that the ΔcodY strain was outcompeted when cocultured with the wild-type ATCC 14579 under various rich laboratory medium, and also when inoculated in certain beverages. In nutrient-poor minimal medium, the ΔcodY mutant had comparable fitness to the wild-type strain. Interestingly, the relative fitness of the ΔcodY strain was antagonistic when it was cultivated in apple or orange juices due to unknown properties of these beverages, highlighting the importance of chemical composition of the test medium during the bacterial fitness measurements.
Collapse
Affiliation(s)
- Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| |
Collapse
|
29
|
Shapiro‐Ilan D, Raymond B. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes. Evol Appl 2016; 9:462-70. [PMID: 26989437 PMCID: PMC4778107 DOI: 10.1111/eva.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
Cooperative secretion of virulence factors by pathogens can lead to social conflict when cheating mutants exploit collective secretion, but do not contribute to it. If cheats outcompete cooperators within hosts, this can cause loss of virulence. Insect parasitic nematodes are important biocontrol tools that secrete a range of significant virulence factors. Critically, effective nematodes are hard to maintain without live passage, which can lead to virulence attenuation. Using experimental evolution, we tested whether social cheating might explain unstable virulence in the nematode Heterorhabditis floridensis by manipulating relatedness via multiplicity of infection (MOI), and the scale of competition. Passage at high MOI, which should reduce relatedness, led to loss of fitness: virulence and reproductive rate declined together and all eight independent lines suffered premature extinction. As theory predicts, relatedness treatments had more impact under stronger global competition. In contrast, low MOI passage led to more stable virulence and increased reproduction. Moreover, low MOI lineages showed a trade-off between virulence and reproduction, particularly for lines under stronger between-host competition. Overall, this study indicates that evolution of virulence theory is valuable for the culture of biocontrol agents: effective nematodes can be improved and maintained if passage methods mitigate possible social conflicts.
Collapse
Affiliation(s)
| | - Ben Raymond
- Royal Holloway University of LondonEghamSurreyUK
- Imperial College LondonSilwood Park CampusAscotBerksUK
| |
Collapse
|
30
|
Sheppard AE, Nakad R, Saebelfeld M, Masche AC, Dierking K, Schulenburg H. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis. J Invertebr Pathol 2015; 133:34-40. [PMID: 26592941 DOI: 10.1016/j.jip.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods.
Collapse
Affiliation(s)
- Anna E Sheppard
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany.
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Manja Saebelfeld
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
31
|
Live to cheat another day: bacterial dormancy facilitates the social exploitation of β-lactamases. ISME JOURNAL 2015; 10:778-87. [PMID: 26505830 PMCID: PMC4817691 DOI: 10.1038/ismej.2015.154] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 01/27/2023]
Abstract
The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours.
Collapse
|
32
|
Cornforth DM, Matthews A, Brown SP, Raymond B. Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis. PLoS Pathog 2015; 11:e1004775. [PMID: 25909384 PMCID: PMC4409216 DOI: 10.1371/journal.ppat.1004775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
The Independent Action Hypothesis (IAH) states that pathogenic individuals (cells, spores, virus particles etc.) behave independently of each other, so that each has an independent probability of causing systemic infection or death. The IAH is not just of basic scientific interest; it forms the basis of our current estimates of infectious disease risk in humans. Despite the important role of the IAH in managing disease interventions for food and water-borne pathogens, experimental support for the IAH in bacterial pathogens is indirect at best. Moreover since the IAH was first proposed, cooperative behaviors have been discovered in a wide range of microorganisms, including many pathogens. A fundamental principle of cooperation is that the fitness of individuals is affected by the presence and behaviors of others, which is contrary to the assumption of independent action. In this paper, we test the IAH in Bacillus thuringiensis (B.t), a widely occurring insect pathogen that releases toxins that benefit others in the inoculum, infecting the diamondback moth, Plutella xylostella. By experimentally separating B.t. spores from their toxins, we demonstrate that the IAH fails because there is an interaction between toxin and spore effects on mortality, where the toxin effect is synergistic and cannot be accommodated by independence assumptions. Finally, we show that applying recommended IAH dose-response models to high dose data leads to systematic overestimation of mortality risks at low doses, due to the presence of synergistic pathogen interactions. Our results show that cooperative secretions can easily invalidate the IAH, and that such mechanistic details should be incorporated into pathogen risk analysis.
Collapse
Affiliation(s)
- Daniel M. Cornforth
- Department of Molecular Biosciences, The University of Texas, Austin, Austin, Texas, United States of America
- * E-mail: (DMC); (BR)
| | - Andrew Matthews
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Sam P. Brown
- Centre for Immunity, Infection and Immunity, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Raymond
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
- * E-mail: (DMC); (BR)
| |
Collapse
|
33
|
Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology (Reading) 2014; 160:2109-2121. [DOI: 10.1099/mic.0.079400-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.
Collapse
Affiliation(s)
- Heramb M. Kulkarni
- CSIR – Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad-500007, India
| | | |
Collapse
|
34
|
The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors. J Virol 2014; 88:11846-60. [PMID: 25100842 DOI: 10.1128/jvi.01364-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. Importance: The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.
Collapse
|
35
|
Division of labour and terminal differentiation in a novel Bacillus thuringiensis strain. ISME JOURNAL 2014; 9:286-96. [PMID: 25083932 DOI: 10.1038/ismej.2014.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/12/2014] [Accepted: 06/11/2014] [Indexed: 11/08/2022]
Abstract
A major challenge in bacterial developmental biology has been to understand the mechanisms underlying cell fate decisions. Some differentiated cell types display cooperative behaviour. Cooperation is one of the greatest mysteries of evolutionary biology and microbes have been considered as an excellent system for experimentally testing evolution theories. Bacillus thuringiensis (Bt) is a spore-forming bacterium, which is genetically closely related to B. anthracis, the agent of anthrax, and to B. cereus, an opportunistic human pathogen. The defining feature that distinguishes Bt from its relatives is its ability to produce crystal inclusions in the sporulating cells. These toxins are solubilized after ingestion and are cooperative public goods in insect hosts. In this study, we describe a Bt strain LM1212 that presents the unique ability to terminally differentiate into crystal producers and spore formers. Transcriptional analysis based on lacZ and gfp reporter genes suggested that this phenotype is the consequence of a new type of cell differentiation associated with a novel regulation mode of cry gene expression. The differentiating crystal-producer phenotype has higher spore productivity than a typical Bt strain and is better able to compete with Cry toxin null 'cheaters'. Potentially, this division of labour provides additional fitness benefits in terms of spore viability or durability of Cry toxin.
Collapse
|
36
|
Deng C, Peng Q, Song F, Lereclus D. Regulation of cry gene expression in Bacillus thuringiensis. Toxins (Basel) 2014; 6:2194-209. [PMID: 25055802 PMCID: PMC4113751 DOI: 10.3390/toxins6072194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/02/2023] Open
Abstract
Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.
Collapse
Affiliation(s)
- Chao Deng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Didier Lereclus
- INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France.
| |
Collapse
|