1
|
van Westerhoven A, Fokkens L, Wissink K, Kema GJ, Rep M, Seidl M. Reference-free identification and pangenome analysis of accessory chromosomes in a major fungal plant pathogen. NAR Genom Bioinform 2025; 7:lqaf034. [PMID: 40176926 PMCID: PMC11963757 DOI: 10.1093/nargab/lqaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Accessory chromosomes, found in some but not all individuals of a species, play an important role in pathogenicity and host specificity in fungal plant pathogens. However, their variability complicates reference-based analysis, especially when these chromosomes are missing in the reference genome. Pangenome variation graphs offer a reference-free alternative for studying these chromosomes. Here, we constructed a pangenome variation graph for 73 diverse Fusarium oxysporum genomes, a major fungal plant pathogen with a compartmentalized genome that includes conserved core as well as variable accessory chromosomes. To obtain insights into accessory chromosome dynamics, we first constructed a chromosome similarity network using all-vs-all similarity mapping. We identified eleven core chromosomes conserved across all strains and a substantial number of highly variable accessory chromosomes. Some of these accessory chromosomes are host-specific and likely play a role in determining host range. Using a k-mer based approach, we further identified the presence of these accessory chromosomes in all available (581) F. oxysporum assemblies and corroborated the occurrence of host-specific accessory chromosomes. To further analyze the evolution of chromosomes in F. oxysporum, we constructed a pangenome variation graph per group of homologous chromosomes. This reveals that accessory chromosomes are composed of different stretches of accessory regions, and possibly rearrangements between accessory regions gave rise to these mosaic accessory chromosomes. Furthermore, we show that accessory chromosomes are likely horizontally transferred in natural populations. Our findings demonstrate that a pangenome variation graph is a powerful approach to elucidate the evolutionary dynamics of accessory chromosomes in F. oxysporum, which is not only a useful resource for Fusarium but also provides a framework for similar analyses in other species containing accessory chromosomes.
Collapse
Affiliation(s)
- Anouk C van Westerhoven
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3583CH, Utrecht, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Like Fokkens
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Kyran Wissink
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3583CH, Utrecht, the Netherlands
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute of Life Sciences, University of Amsterdam,1090GE, Amsterdam, the Netherlands
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3583CH, Utrecht, the Netherlands
| |
Collapse
|
2
|
Luo J, Bian J, Murillo M, Hau PT, Feng Y, Chau ECT, Yan Y, Ng LC, Parsha ASK, Siu GKH, Chow FWN, Xiong Q. High-quality genome assembly and comparative analysis reveal extensive genomic variation in Talaromyces marneffei. Microb Genom 2025; 11:001400. [PMID: 40294122 PMCID: PMC12037069 DOI: 10.1099/mgen.0.001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Talaromyces marneffei is a dimorphic fungus that transitions from a filamentous form at 25 °C to a pathogenic yeast form at 37 °C, demonstrating pathogenicity mostly in immunocompromised individuals, such as those with human immunodeficiency virus/AIDS. Though it is one of the most severe infectious fungi in Southeast Asia, the lack of comprehensive genomic analysis has hindered advancement in strain differentiation, diagnosis and treatment. In this study, we assembled a high-quality genome of T. marneffei ATCC 18224, resulting in a 28.9 Mb genome distributed across 11 contigs, using third-generation Oxford Nanopore Technologies sequencing reads. Notably, we identified a strain-specific 740-kb segmental duplication in strain ATCC 18224, potentially mediated by inserting a Ty1/Copia long terminal repeat (LTR) retrotransposon. This segmental duplication includes various functional genes, with 75 differentially expressed during its dimorphic transition. Comparative genomic analysis revealed large-scale rearrangements in strains PM1 and 11CN-20-091, which were inconsistent with the phylogenomic trees of six T. marneffei strains and required further investigation. Additionally, we observed substantial genetic structural variations in LTR retrotransposons, particularly within the Ty1/Copia family, including two significant recent expansions in strain ATCC 18224. In summary, the identification and characterization of these extensive genomic structural variations in T. marneffei contribute to a deep understanding of its genetic diversity and will facilitate improvements in genotyping, classification and genomic surveillance.
Collapse
Affiliation(s)
- Jinxia Luo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Jingyuan Bian
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Michaela Murillo
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Pak-Ting Hau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yi Feng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Yuyao Yan
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Laam-Ching Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Ayesha S. K. Parsha
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Qing Xiong
- Department of Health Technology and Informatics, Faculty of Health and Social Science, The Hong Kong Polytechnic University, Hong Kong, PR China
| |
Collapse
|
3
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
4
|
Richter S, Kind S, Oberhänsli T, Schneider M, Nenasheva N, Hoff K, Keilwagen J, Yeon IK, Philion V, Moriya S, Flachowsky H, Patocchi A, Wöhner TW. Genome sequence of a European Diplocarpon coronariae strain and in silico structure of the mating-type locus. FRONTIERS IN PLANT SCIENCE 2024; 15:1437132. [PMID: 39494053 PMCID: PMC11527701 DOI: 10.3389/fpls.2024.1437132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Diplocarpon coronariae is a fungal pathogen that is prevalent in low-input apple production. Over the past 15 years, it has become increasingly distributed in Europe. However, comprehensive insights into its biology and pathogenicity remain limited. One particular aspect is the rarity of the sexual morph of this pathogen, a phenomenon hitherto unobserved in Europe. Diplocarpon coronariae reproduces through a heterothallic mating system requiring at least two different mating types for sexual reproduction. Genes determining the mating types are located on the mating-type locus. In this study, D. coronariae strain DC1_JKI from Dresden, Germany, was sequenced and used to unravel the structure of the mating type locus. Using short-read and long-read sequencing methods, the first gapless and near-complete telomere-to-telomere genome assembly of D. coronariae was achieved. The assembled genome spans 51.2 Mbp and comprises 21 chromosome-scale contigs of high completeness. The generated genome sequence was used to in silico elucidate the structure of the mating-type locus, identified as MAT1-2. Furthermore, an examination of MAT1-1 and MAT1-2 frequency across a diverse set of samples sourced from Europe and Asia revealed the exclusive presence of MAT1-2 in European samples, whereas both MAT loci were present in Asian counterparts. Our findings suggest an explanation for the absence of the sexual morph, potentially linked to the absence of the second mating idiomorph of D. coronariae in European apple orchards.
Collapse
Affiliation(s)
- Sophie Richter
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
- Institute for Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Sabine Kind
- Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn Institute (JKI) Federal Research Centre for Cultivated Plants, Dossenheim, Germany
| | - Thomas Oberhänsli
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Michael Schneider
- Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Natalia Nenasheva
- Institute of Mathematics and Computer Science and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Katharina Hoff
- Institute of Mathematics and Computer Science and Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Il-Kweon Yeon
- Gyeongsangbuk-do Agricultural Research and Extension Services (GBARES), Daegu, Republic of Korea
| | - Vincent Philion
- Research and Development Institute for the Agri-Environment (IRDA), Québec, QC, Canada
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Andrea Patocchi
- Research Division Plant Breeding, Agroscope, Waedenswil, Switzerland
| | - Thomas Wolfgang Wöhner
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Germany
| |
Collapse
|
5
|
Skiadas P, Riera Vidal S, Dommisse J, Mendel MN, Elberse J, Van den Ackerveken G, de Jonge R, Seidl MF. Pangenome graph analysis reveals extensive effector copy-number variation in spinach downy mildew. PLoS Genet 2024; 20:e1011452. [PMID: 39453979 PMCID: PMC11540230 DOI: 10.1371/journal.pgen.1011452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 10/07/2024] [Indexed: 10/27/2024] Open
Abstract
Plant pathogens adapt at speeds that challenge contemporary disease management strategies like the deployment of disease resistance genes. The strong evolutionary pressure to adapt, shapes pathogens' genomes, and comparative genomics has been instrumental in characterizing this process. With the aim to capture genomic variation at high resolution and study the processes contributing to adaptation, we here leverage an innovative, multi-genome method to construct and annotate the first pangenome graph of an oomycete plant pathogen. We expand on this approach by analysing the graph and creating synteny based single-copy orthogroups for all genes. We generated telomere-to-telomere genome assemblies of six genetically diverse isolates of the oomycete pathogen Peronospora effusa, the economically most important disease in cultivated spinach worldwide. The pangenome graph demonstrates that P. effusa genomes are highly conserved, both in chromosomal structure and gene content, and revealed the continued activity of transposable elements which are directly responsible for 80% of the observed variation between the isolates. While most genes are generally conserved, virulence related genes are highly variable between the isolates. Most of the variation is found in large gene clusters resulting from extensive copy-number expansion. Pangenome graph-based discovery can thus be effectively used to capture genomic variation at exceptional resolution, thereby providing a framework to study the biology and evolution of plant pathogens.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | - Sofía Riera Vidal
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Joris Dommisse
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Melanie N. Mendel
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Joyce Elberse
- Translational Plant Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Ronnie de Jonge
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
- AI Technology for Life, Department of Information and Computing Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
7
|
Zhang YD, Ji XB, Zong J, Dai XF, Klosterman SJ, Subbarao KV, Zhang DD, Chen JY. Functional analysis of the mating type genes in Verticillium dahliae. BMC Biol 2024; 22:108. [PMID: 38714997 PMCID: PMC11077750 DOI: 10.1186/s12915-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.
Collapse
Affiliation(s)
- Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Bin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Juan Zong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
8
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA.
| |
Collapse
|
9
|
Hill R, McMullan M. Recombination triggers fungal crop disease. Nat Ecol Evol 2023; 7:1961-1962. [PMID: 37945943 DOI: 10.1038/s41559-023-02132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
|
10
|
Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y, Liu S, Long L, Gu J, Zhang X, Lindsey K, Gao W, Wu H, Zhu L. Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat Commun 2023; 14:7392. [PMID: 37968319 PMCID: PMC10651998 DOI: 10.1038/s41467-023-43192-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiayue Li
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianmin Shao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Qi
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Yue
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jiangjiang Gu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- School of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Depotter JRL, Ökmen B, Ebert MK, Beckers J, Kruse J, Thines M, Doehlemann G. High Nucleotide Substitution Rates Associated with Retrotransposon Proliferation Drive Dynamic Secretome Evolution in Smut Pathogens. Microbiol Spectr 2022; 10:e0034922. [PMID: 35972267 PMCID: PMC9603552 DOI: 10.1128/spectrum.00349-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Transposable elements (TEs) play a pivotal role in shaping diversity in eukaryotic genomes. The covered smut pathogen on barley, Ustilago hordei, encountered a recent genome expansion. Using long reads, we assembled genomes of 6 U. hordei strains and 3 sister species, to study this genome expansion. We found that larger genome sizes can mainly be attributed to a higher genome fraction of long terminal repeat retrotransposons (LTR-RTs). In the studied smut genomes, LTR-RTs fractions are the largest in U. hordei and are positively correlated with the mating-type locus sizes, which is up to ~560 kb in U. hordei. Furthermore, LTR-RTs were found to be associated with higher nucleotide substitution levels, as these occur in specific genome regions of smut species with a recent LTR-RT proliferation. Moreover, genes in genome regions with higher nucleotide substitution levels generally reside closer to LTR-RTs than other genome regions. Genome regions with many nucleotide substitutions encountered an especially high fraction of CG substitutions, which is not observed for LTR-RT sequences. The high nucleotide substitution levels particularly accelerate the evolution of secretome genes, as their more accessory nature results in substitutions that often lead to amino acid alterations. IMPORTANCE Genomic alteration can be generated through various means, in which transposable elements (TEs) can play a pivotal role. Their mobility causes mutagenesis in itself and can disrupt the function of the sequences they insert into. They also impact genome evolution as their repetitive nature facilitates nonhomologous recombination. Furthermore, TEs have been linked to specific epigenetic genome organizations. We report a recent TE proliferation in the genome of the barley covered smut fungus, Ustilago hordei. This proliferation is associated with a distinct nucleotide substitution regime that has a higher rate and a higher fraction of CG substitutions. This different regime shapes the evolution of genes in subjected genome regions. We hypothesize that TEs may influence the error-rate of DNA polymerase in a hitherto unknown fashion.
Collapse
Affiliation(s)
- J. R. L. Depotter
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - B. Ökmen
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - M. K. Ebert
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Beckers
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - J. Kruse
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M., Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt a. M., Germany
| | - G. Doehlemann
- CEPLAS, Institute for Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Ogaji YO, Lee RC, Sawbridge TI, Cocks BG, Daetwyler HD, Kaur S. De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea. J Fungi (Basel) 2022; 8:884. [PMID: 36012871 PMCID: PMC9410150 DOI: 10.3390/jof8080884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga's genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Yvonne O. Ogaji
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Robert C. Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Tim I. Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Benjamin G. Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hans D. Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
13
|
Skiadas P, Klein J, Quiroz‐Monnens T, Elberse J, de Jonge R, Van den Ackerveken G, Seidl MF. Sexual reproduction contributes to the evolution of resistance-breaking isolates of the spinach pathogen Peronospora effusa. Environ Microbiol 2022; 24:1622-1637. [PMID: 35191594 PMCID: PMC9304176 DOI: 10.1111/1462-2920.15944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
Peronospora effusa causes downy mildew, the economically most important disease of cultivated spinach worldwide. To date, 19 P. effusa races have been denominated based on their capacity to break spinach resistances, but their genetic diversity and the evolutionary processes that contribute to race emergence are unknown. Here, we performed the first systematic analysis of P. effusa races showing that those emerge by both asexual and sexual reproduction. Specifically, we studied the diversity of 26 P. effusa isolates from 16 denominated races based on mitochondrial and nuclear comparative genomics. Mitochondrial genomes based on long-read sequencing coupled with diversity assessment based on short-read sequencing uncovered two mitochondrial haplogroups, each with distinct genome organization. Nuclear genome-wide comparisons of the 26 isolates revealed that 10 isolates from six races could clearly be divided into three asexually evolving groups, in concordance with their mitochondrial phylogeny. The remaining isolates showed signals of reticulated evolution and discordance between nuclear and mitochondrial phylogenies, suggesting that these evolved through sexual reproduction. Increased understanding of this pathogen's reproductive modes will provide the framework for future studies into the molecular mechanisms underlying race emergence and into the P. effusa-spinach interaction, thus assisting in sustainable production of spinach through knowledge-driven resistance breeding.
Collapse
Affiliation(s)
- Petros Skiadas
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joël Klein
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Thomas Quiroz‐Monnens
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Joyce Elberse
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | - Ronnie de Jonge
- Plant‐Microbe Interactions, Utrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| | | | - Michael F. Seidl
- Theoretical Biology and BioinformaticsUtrecht University, Padualaan 8 3584 CHUtrechtThe Netherlands
| |
Collapse
|
14
|
Lubna, Asaf S, Jan R, Khan AL, Bilal S, Asif S, Al-Harrasi A, Kim KM. Unraveling the Genome Sequence of Plant Growth Promoting Aspergillus niger (CSR3) Provides Insight into the Synthesis of Secondary Metabolites and Its Comparative Genomics. J Fungi (Basel) 2022; 8:107. [PMID: 35205861 PMCID: PMC8877640 DOI: 10.3390/jof8020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Aspergillus niger strain CSR3 is an endophytic fungus that regulates plant endogenous hormones, secondary metabolites, and promotes plant growth during abiotic stress conditions. In this study, we sequenced the genome of A. niger (CSR3) and compared it with previously available A. niger strains. The final genome assembly was 35.8 Mb in size, consisting of 23 scaffolds with N50 scaffold length of 2.4 Mb. A total of 12,442 protein coding genes, 270 tRNA, and 57 rRNA were predicted in the CSR3 genome. We used comparative genomic analysis to provide insights into the genome's evolution and to elucidate the adaptive genomic signatures for bioactive secondary metabolite biosynthesis, hormones biosynthesis, and plant growth promoting activities. We also analyzed the transposable elements (TEs), simple sequence repeats (SSRs), CAZymes families, genes involved in gibberellin biosynthesis, and secondary metabolite clusters in the CSR3 genome. A total of 21 secondary metabolite biosynthesis gene clusters were detected, with 18 essential enzymes involved in the mevalonate pathway (MVA). The repeat analysis revealed about 3431 SSR, 274 TEs, and 205 inverted repeats (IR). Further gene family analysis revealed that 124 gene families were gained, whereas 125 gene families were lost in CSR3 genome, compared to A. niger ASM151534V and A. niger ASM285V2 genomes. The results improve our understanding of the CSR3 genome and will assist in future investigations on the genetic basis of A. niger CSR3, including the identification of CSR3 phytostimulant properties.
Collapse
Affiliation(s)
- Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Saleem Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (S.B.)
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea; (R.J.); (S.A.)
| |
Collapse
|
15
|
Colabardini AC, Wang F, Miao Z, Pardeshi L, Valero C, de Castro PA, Akiyama DY, Tan K, Nora LC, Silva-Rocha R, Marcet-Houben M, Gabaldón T, Fill T, Wong KH, Goldman GH. Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genet 2022; 18:e1010001. [PMID: 35007279 PMCID: PMC8782537 DOI: 10.1371/journal.pgen.1010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Yuri Akiyama
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Luisa Czamanski Nora
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR of China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR of China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
16
|
Romsdahl J, Schultzhaus Z, Cuomo CA, Dong H, Abeyratne-Perera H, Hervey WJ, Wang Z. Phenotypic Characterization and Comparative Genomics of the Melanin-Producing Yeast Exophiala lecanii-corni Reveals a Distinct Stress Tolerance Profile and Reduced Ribosomal Genetic Content. J Fungi (Basel) 2021; 7:1078. [PMID: 34947060 PMCID: PMC8709033 DOI: 10.3390/jof7121078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
The black yeast Exophiala lecanii-corni of the order Chaetothyriales is notable for its ability to produce abundant quantities of DHN-melanin. While many other Exophiala species are frequent causal agents of human infection, E. lecanii-corni CBS 102400 lacks the thermotolerance requirements that enable pathogenicity, making it appealing for use in targeted functional studies and biotechnological applications. Here, we report the stress tolerance characteristics of E. lecanii-corni, with an emphasis on the influence of melanin on its resistance to various forms of stress. We find that E. lecanii-corni has a distinct stress tolerance profile that includes variation in resistance to temperature, osmotic, and oxidative stress relative to the extremophilic and pathogenic black yeast Exophiala dermatitidis. Notably, the presence of melanin substantially impacts stress resistance in E. lecanii-corni, while this was not found to be the case in E. dermatitidis. The cellular context, therefore, influences the role of melanin in stress protection. In addition, we present a detailed analysis of the E. lecanii-corni genome, revealing key differences in functional genetic content relative to other ascomycetous species, including a significant decrease in abundance of genes encoding ribosomal proteins. In all, this study provides insight into how genetics and physiology may underlie stress tolerance and enhances understanding of the genetic diversity of black yeasts.
Collapse
Affiliation(s)
- Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Zachary Schultzhaus
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Christina A. Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
| | - Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Hashanthi Abeyratne-Perera
- American Society for Engineering Education Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - W. Judson Hervey
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| | - Zheng Wang
- Center for Biomolecular Sciences and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (Z.S.); (W.J.H.IV)
| |
Collapse
|
17
|
Zhang YD, Zhang YY, Chen JY, Huang JQ, Zhang J, Liu L, Wang D, Zhao J, Song J, Li R, Yang L, Kong ZQ, Klosterman SJ, Subbarao KV, Dai XF, Zhang DD. Genome Sequence Data of MAT1-1 and MAT1-2 Idiomorphs from Verticillium dahliae. PHYTOPATHOLOGY 2021; 111:1686-1691. [PMID: 33673752 DOI: 10.1094/phyto-01-21-0012-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Though Verticillium dahliae is an asexually reproducing fungus, it is considered heterothallic owing to the presence of only one of the two mating-type idiomorphs (MAT1-1 or MAT1-2) in individual isolates. But sexual reproduction has never been observed either in nature or in the laboratory. All of the genomic information in the literature thus far has therefore come from studies on isolates carrying only the MAT1-2 idiomorph. Herein, we sequenced and compared high-quality reference genomes of MAT1-1 strain S011 and MAT1-2 strain S023 obtained from the same sunflower field. The two genomic sequences displayed high synteny, and encoded similar number genes, a similarity especially notable among pathogenicity-related genes. Homolog analysis between these two genomes revealed that 80% of encoded genes are highly conserved (95% identity and coverage), but only 20% of the single copy genes were identical. These novel genome resources will support the analysis of the structure and function of the two idiomorphs and provide valuable tools to elucidate the evolution and potential mechanisms of sexual reproduction in V. dahliae.
Collapse
Affiliation(s)
- Ya-Duo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan-Yuan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lin Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Yang
- BGI-Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
18
|
Chen JY, Klosterman SJ, Hu XP, Dai XF, Subbarao KV. Key Insights and Research Prospects at the Dawn of the Population Genomics Era for Verticillium dahliae. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:31-51. [PMID: 33891830 DOI: 10.1146/annurev-phyto-020620-121925] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The genomics era has ushered in exciting possibilities to examine the genetic bases that undergird the characteristic features of Verticillium dahliae and other plant pathogens. In this review, we provide historical perspectives on some of the salient biological characteristics of V. dahliae, including its morphology, microsclerotia formation, host range, disease symptoms, vascular niche, reproduction, and population structure. The kaleidoscopic population structure of this pathogen is summarized, including different races of the pathogen, defoliating and nondefoliating phenotypes, vegetative compatibility groupings, and clonal populations. Where possible, we place the characteristic differences in the context of comparative and functional genomics analyses that have offered insights into population divergence within V. dahliae and the related species.Current challenges are highlighted along with some suggested future population genomics studies that will contribute to advancing our understanding of the population divergence in V. dahliae.
Collapse
Affiliation(s)
- Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, California 93905, USA;
| | - Xiao-Ping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; ,
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, California 93905, USA;
| |
Collapse
|
19
|
Harting R, Starke J, Kusch H, Pöggeler S, Maurus I, Schlüter R, Landesfeind M, Bulla I, Nowrousian M, de Jonge R, Stahlhut G, Hoff KJ, Aßhauer KP, Thürmer A, Stanke M, Daniel R, Morgenstern B, Thomma BPHJ, Kronstad JW, Braus‐Stromeyer SA, Braus GH. A 20-kb lineage-specific genomic region tames virulence in pathogenic amphidiploid Verticillium longisporum. MOLECULAR PLANT PATHOLOGY 2021; 22:939-953. [PMID: 33955130 PMCID: PMC8295516 DOI: 10.1111/mpp.13071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/30/2021] [Indexed: 05/04/2023]
Abstract
Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same-sex mating-type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage-specific (LS) region apparently originating from the Verticillium dahliae-related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence-reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.
Collapse
Affiliation(s)
- Rebekka Harting
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Jessica Starke
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Harald Kusch
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic MicroorganismsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Isabel Maurus
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Rabea Schlüter
- Imaging Center of the Department of BiologyUniversity of GreifswaldGreifswaldGermany
| | - Manuel Landesfeind
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Ingo Bulla
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
| | - Minou Nowrousian
- Department of Molecular and Cellular BotanyRuhr‐Universität BochumBochumGermany
| | - Ronnie de Jonge
- Plant–Microbe Interactions, Department of Biology, Science4LifeUtrecht UniversityUtrechtNetherlands
- Laboratory of PhytopathologyWageningen UniversityWageningenNetherlands
| | - Gertrud Stahlhut
- Department of Genetics of Eukaryotic MicroorganismsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Katharina J. Hoff
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
- Center for Functional Genomics of MicrobesUniversity of GreifswaldGreifswaldGermany
| | - Kathrin P. Aßhauer
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Andrea Thürmer
- Department of Genomic and Applied MicrobiologyInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Mario Stanke
- Institute for Mathematics and Computer ScienceUniversity of GreifswaldGreifswaldGermany
- Center for Functional Genomics of MicrobesUniversity of GreifswaldGreifswaldGermany
| | - Rolf Daniel
- Department of Genomic and Applied MicrobiologyInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Burkhard Morgenstern
- Department of BioinformaticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | | | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Susanna A. Braus‐Stromeyer
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and GeneticsInstitute of Microbiology and Genetics and Göttingen Center for Molecular BiosciencesUniversity of GöttingenGöttingenGermany
| |
Collapse
|
20
|
Abstract
Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum, the causal agent of verticillium stem striping in rapeseed, originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages “A1/D1” and “A1/D3.” We show that V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and more relaxed gene evolution. The expression patterns of the two subgenomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that the expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro, we conclude that subgenome-specific responses occur in both lineages. Overall, our study uncovers genomic and transcriptomic plasticity during the evolution of the filamentous fungal hybrid V. longisporum and illustrates its adaptive potential.
Collapse
|
21
|
Torres DE, Thomma BPHJ, Seidl MF. Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae. Genome Biol Evol 2021; 13:evab135. [PMID: 34100895 PMCID: PMC8290119 DOI: 10.1093/gbe/evab135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a major source of genetic and regulatory variation in their host genome and are consequently thought to play important roles in evolution. Many fungal and oomycete plant pathogens have evolved dynamic and TE-rich genomic regions containing genes that are implicated in host colonization and adaptation. TEs embedded in these regions have typically been thought to accelerate the evolution of these genomic compartments, but little is known about their dynamics in strains that harbor them. Here, we used whole-genome sequencing data of 42 strains of the fungal plant pathogen Verticillium dahliae to systematically identify polymorphic TEs that may be implicated in genomic as well as in gene expression variation. We identified 2,523 TE polymorphisms and characterize a subset of 8% of the TEs as polymorphic elements that are evolutionary younger, less methylated, and more highly expressed when compared with the remaining 92% of the total TE complement. As expected, the polyrmorphic TEs are enriched in the adaptive genomic regions. Besides, we observed an association of polymorphic TEs with pathogenicity-related genes that localize nearby and that display high expression levels. Collectively, our analyses demonstrate that TE dynamics in V. dahliae contributes to genomic variation, correlates with expression of pathogenicity-related genes, and potentially impacts the evolution of adaptive genomic regions.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, Germany
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
22
|
Zhu Q, Chen L, Chen T, Xu Q, He T, Wang Y, Deng X, Zhang S, Pan Y, Jin A. Integrated transcriptome and metabolome analyses of biochar-induced pathways in response to Fusarium wilt infestation in pepper. Genomics 2021; 113:2085-2095. [PMID: 33895283 DOI: 10.1016/j.ygeno.2021.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/13/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The present study used soils contaminated with Fusarium oxysporum f. sp. capsici (CCS) and CCS amended with bamboo biochar (CCS + BC) to grow the pepper variety Qujiao No.1. The physiological performance, and transcriptome and metabolome profiling in leaf (L) and fruit (F) of Qujiao No.1 were conducted. Application of biochar improved soil properties, pepper plant nutrition and increased activities of enzymes related to pest/disease resistance, leading to superior physiological performance and lesser F. wilt disease incidence than plants from CCS. Most of the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were involved in protein processing in endoplasmic reticulum (fruit), plant pathogen interaction (fruit), photosynthesis (leaf), phenylpropanoid biosynthesis (both tissues) and metabolic pathways (both tissues). Biochar improved plant photosynthesis, enhanced the immune system, energy production and increased stress signaling pathways. Overall, our results provide evidence of a number of pathways induced by biochar in pepper regulating its response to F. wilt disease.
Collapse
Affiliation(s)
- Qianggen Zhu
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Limin Chen
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Tingting Chen
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Qian Xu
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Tianjun He
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Yikun Wang
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Xianjun Deng
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Sihai Zhang
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Yiming Pan
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China; Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China.
| |
Collapse
|
23
|
Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun Biol 2021; 4:201. [PMID: 33589695 PMCID: PMC7884421 DOI: 10.1038/s42003-021-01724-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The basidiomycetous fungal genus, Rhizoctonia, can cause severe damage to many plants and is composed of multinucleate, binucleate, and uninucleate species differing in pathogenicity. Here we generated chromosome-scale genome assemblies of the three nuclear types of Rhizoctonia isolates. The genomic comparisons revealed that the uninucleate JN strain likely arose by somatic hybridization of two binucleate isolates, and maintained a diploid nucleus. Homeolog gene pairs in the JN genome have experienced both decelerated or accelerated evolution. Homeolog expression dominance occurred between JN subgenomes, in which differentially expressed genes show potentially less evolutionary constraint than the genes without. Analysis of mating-type genes suggested that Rhizoctonia maintains the ancestral tetrapolarity of the Basidiomycota. Long terminal repeat-retrotransposons displayed a reciprocal correlation with the chromosomal GC content in the three chromosome-scale genomes. The more aggressive multinucleate XN strain had more genes encoding enzymes for host cell wall decomposition. These findings demonstrate some evolutionary changes of a recently derived hybrid and in multiple nuclear types of Rhizoctonia.
Collapse
|
24
|
Reinhardt D, Roux C, Corradi N, Di Pietro A. Lineage-Specific Genes and Cryptic Sex: Parallels and Differences between Arbuscular Mycorrhizal Fungi and Fungal Pathogens. TRENDS IN PLANT SCIENCE 2021; 26:111-123. [PMID: 33011084 DOI: 10.1016/j.tplants.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live as obligate root symbionts on almost all land plants. They have long been regarded as ancient asexuals that have propagated clonally for millions of years. However, genomic studies in Rhizophagus irregularis and other AMF revealed many features indicative of sex. Surprisingly, comparative genomics of conspecific isolates of R. irregularis revealed an unexpected interstrain diversity, suggesting that AMF carry a high number of lineage-specific (LS) genes. Intriguingly, cryptic sex and LS genomic regions have previously been reported in a number of fungal pathogens of plants and humans. Here, we discuss these genomic similarities and highlight their potential relevance for AMF adaptation to the environment and for symbiotic functioning.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan 31326, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
25
|
Cook DE, Kramer HM, Torres DE, Seidl MF, Thomma BPHJ. A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen. eLife 2020; 9:e62208. [PMID: 33337321 PMCID: PMC7781603 DOI: 10.7554/elife.62208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Genomes store information at scales beyond the linear nucleotide sequence, which impacts genome function at the level of an individual, while influences on populations and long-term genome function remains unclear. Here, we addressed how physical and chemical DNA characteristics influence genome evolution in the plant pathogenic fungus Verticillium dahliae. We identified incomplete DNA methylation of repetitive elements, associated with specific genomic compartments originally defined as Lineage-Specific (LS) regions that contain genes involved in host adaptation. Further chromatin characterization revealed associations with features such as H3 Lys-27 methylated histones (H3K27me3) and accessible DNA. Machine learning trained on chromatin data identified twice as much LS DNA as previously recognized, which was validated through orthogonal analysis, and we propose to refer to this DNA as adaptive genomic regions. Our results provide evidence that specific chromatin profiles define adaptive genomic regions, and highlight how different epigenetic factors contribute to the organization of these regions.
Collapse
Affiliation(s)
- David E Cook
- Department of Plant Pathology, Kansas State UniversityManhattanUnited States
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
| | - David E Torres
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht UniversityUtrechtNetherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University & ResearchWageningenNetherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
26
|
St. Leger RJ, Wang JB. Metarhizium: jack of all trades, master of many. Open Biol 2020; 10:200307. [PMID: 33292103 PMCID: PMC7776561 DOI: 10.1098/rsob.200307] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The genus Metarhizium and Pochonia chlamydosporia comprise a monophyletic clade of highly abundant globally distributed fungi that can transition between long-term beneficial associations with plants to transitory pathogenic associations with frequently encountered protozoans, nematodes or insects. Some very common 'specialist generalist' species are adapted to particular soil and plant ecologies, but can overpower a wide spectrum of insects with numerous enzymes and toxins that result from extensive gene duplications made possible by loss of meiosis and associated genome defence mechanisms. These species use parasexuality instead of sex to combine beneficial mutations from separate clonal individuals into one genome (Vicar of Bray dynamics). More weakly endophytic species which kill a narrow range of insects retain sexuality to facilitate host-pathogen coevolution (Red Queen dynamics). Metarhizium species can fit into numerous environments because they are very flexible at the genetic, physiological and ecological levels, providing tractable models to address how new mechanisms for econutritional heterogeneity, host switching and virulence are acquired and relate to diverse sexual life histories and speciation. Many new molecules and functions have been discovered that underpin Metarhizium associations, and have furthered our understanding of the crucial ecology of these fungi in multiple habitats.
Collapse
|
27
|
Seidl MF, Kramer HM, Cook DE, Fiorin GL, van den Berg GCM, Faino L, Thomma BPHJ. Repetitive Elements Contribute to the Diversity and Evolution of Centromeres in the Fungal Genus Verticillium. mBio 2020; 11:e01714-20. [PMID: 32900804 PMCID: PMC7482064 DOI: 10.1128/mbio.01714-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (∼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus VerticilliumIMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | | | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Environmental Biology Department, Sapienza Università di Roma, Rome, Italy
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
28
|
Torres DE, Oggenfuss U, Croll D, Seidl MF. Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Chung H, Goh J, Han SS, Roh JH, Kim Y, Heu S, Shim HK, Jeong DG, Kang IJ, Yang JW. Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species. THE PLANT PATHOLOGY JOURNAL 2020; 36:305-313. [PMID: 32788889 PMCID: PMC7403518 DOI: 10.5423/ppj.ft.04.2020.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.
Collapse
Affiliation(s)
- Hyunjung Chung
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jaeduk Goh
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Seong-Sook Han
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jae-Hwan Roh
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea
| | - Yangseon Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Hyeong-Kwon Shim
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Da Gyeong Jeong
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - In Jeong Kang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
30
|
Ramírez-Tejero JA, Cabanás CGL, Valverde-Corredor A, Mercado-Blanco J, Luque F. Epigenetic Regulation of Verticillium dahliae Virulence: Does DNA Methylation Level Play A Role? Int J Mol Sci 2020; 21:ijms21155197. [PMID: 32707958 PMCID: PMC7432615 DOI: 10.3390/ijms21155197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Verticillium dahliae is the etiological agent of Verticillium wilt of olive. The virulence of Defoliating V. dahliae isolates usually displays differences and high plasticity. This work studied whether an epigenetic mechanism was involved in this plasticity. An inverse correlation between virulence and DNA methylation of protein-coding genes was found. A set of 831 genes was selected for their highly consistent inverse methylation profile and virulence in the five studied isolates. Of these genes, ATP-synthesis was highly represented, which indicates that the more virulent D isolates are, the more energy requirements they may have. Furthermore, there were numerous genes in the protein biosynthesis process: genes coding for the chromatin structure, which suggests that epigenetic changes may also affect chromatin condensation; many transmembrane transporter genes, which is consistent with denser compounds, traffic through membranes in more virulent isolates; a fucose-specific lectin that may play a role in the attachment to plant cell walls during the host infection process; and pathogenic cutinases that facilitate plant invasion and sporulation genes for rapid spreading alongside plants. Our findings support the notion that differences in the virulence of the Defoliating V. dahliae isolates may be controlled, at least to some extent, by an epigenetic mechanism.
Collapse
Affiliation(s)
- Jorge A. Ramírez-Tejero
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, Univ. Jaén, 23071 Jaén, Spain;
| | - Carmen Gómez-Lama Cabanás
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’, Avenida Menéndez Pidal s/n, 14004 Apartado, Córdoba, Spain; (C.G.-L.C.); (A.V.-C.); (J.M.-B.)
| | - Antonio Valverde-Corredor
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’, Avenida Menéndez Pidal s/n, 14004 Apartado, Córdoba, Spain; (C.G.-L.C.); (A.V.-C.); (J.M.-B.)
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Campus ‘Alameda del Obispo’, Avenida Menéndez Pidal s/n, 14004 Apartado, Córdoba, Spain; (C.G.-L.C.); (A.V.-C.); (J.M.-B.)
| | - Francisco Luque
- Center for Advanced Studies in Olive Grove and Olive Oils, Department of Experimental Biology, Univ. Jaén, 23071 Jaén, Spain;
- Correspondence:
| |
Collapse
|
31
|
Yuzon JD, Travadon R, Malar C M, Tripathy S, Rank N, Mehl HK, Rizzo DM, Cobb R, Small C, Tang T, McCown HE, Garbelotto M, Kasuga T. Asexual Evolution and Forest Conditions Drive Genetic Parallelism in Phytophthora ramorum. Microorganisms 2020; 8:E940. [PMID: 32580470 PMCID: PMC7357085 DOI: 10.3390/microorganisms8060940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
It is commonly assumed that asexual lineages are short-lived evolutionarily, yet many asexual organisms can generate genetic and phenotypic variation, providing an avenue for further evolution. Previous work on the asexual plant pathogen Phytophthora ramorum NA1 revealed considerable genetic variation in the form of Structural Variants (SVs). To better understand how SVs arise and their significance to the California NA1 population, we studied the evolutionary histories of SVs and the forest conditions associated with their emergence. Ancestral state reconstruction suggests that SVs arose by somatic mutations among multiple independent lineages, rather than by recombination. We asked if this unusual phenomenon of parallel evolution between isolated populations is transmitted to extant lineages and found that SVs persist longer in a population if their genetic background had a lower mutation load. Genetic parallelism was also found in geographically distant demes where forest conditions such as host density, solar radiation, and temperature, were similar. Parallel SVs overlap with genes involved in pathogenicity such as RXLRs and have the potential to change the course of an epidemic. By combining genomics and environmental data, we identified an unexpected pattern of repeated evolution in an asexual population and identified environmental factors potentially driving this phenomenon.
Collapse
Affiliation(s)
- Jennifer David Yuzon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Mathu Malar C
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Sucheta Tripathy
- CSIR Indian Institute of Chemical Biology, Kolkata 700032, India; (M.M.C.); (S.T.)
| | - Nathan Rank
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA;
| | - Heather K. Mehl
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - David M. Rizzo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Richard Cobb
- Department of Natural Resources and Environmental Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Corinn Small
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Tiffany Tang
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Haley E. McCown
- Department of Plant Pathology, University of California, Davis, CA 95616, USA; (R.T.); (H.K.M.); (D.M.R.); (C.S.); (T.T.); (H.E.M.)
| | - Matteo Garbelotto
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA;
| | - Takao Kasuga
- Crops Pathology and Genetics Research Unit, USDA Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
32
|
Zhong Z, Lin L, Zheng H, Bao J, Chen M, Zhang L, Tang W, Ebbole DJ, Wang Z. Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2020; 22:2709-2723. [PMID: 32216010 DOI: 10.1111/1462-2920.14994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Secondary metabolites (SMs) are crucial for fungi and vary in function from beneficial antibiotics to pathogenicity factors. To generate diversified SMs that enable different functions, SM-coding regions rapidly evolve in fungal genomes. However, the driving force and genetic mechanism of fungal SM diversification in the context of host-pathogen interactions remain largely unknown. Previously, we grouped field populations of the rice blast fungus Magnaporthe oryzae (syn: Pyricularia oryzae) into three major globally distributed clades based on population genomic analyses. Here, we characterize a recent duplication of an avirulent gene-containing SM cluster, ACE1, in a clonal M. oryzae population (Clade 2). We demonstrate that the ACE1 cluster is specifically duplicated in Clade 2, a dominant clade in indica rice-growing areas. With long-read sequencing, we obtained chromosome-level genome sequences of four Clade 2 isolates, which displayed differences in genomic organization of the ACE1 duplication process. Comparative genomic analyses suggested that the original ACE1 cluster experienced frequent rearrangement in Clade 2 isolates and revealed that the new ACE1 cluster is located in a newly formed and transposable element-rich region. Taken together, these results highlight the frequent mutation and expansion of an avirulent gene-containing SM cluster through transposable element-mediated whole-cluster duplication in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiandong Bao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meilian Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Limei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
33
|
Ota S, Oshima K, Yamazaki T, Takeshita T, Bišová K, Zachleder V, Hattori M, Kawano S. The Parachlorella Genome and Transcriptome Endorse Active RWP-RK, Meiosis and Flagellar Genes in Trebouxiophycean Algae. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shuhei Ota
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
| | - Kenshiro Oshima
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo
| | - Tomokazu Yamazaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
| | - Tsuyoshi Takeshita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
- Future Center Initiative, The University of Tokyo
| | - Kateřina Bišová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae
| | - Vilém Zachleder
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Graduate School of Frontier Sciences, The University of Tokyo
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
- Japan Science and Technology Agency, CREST/START
- Future Center Initiative, The University of Tokyo
| |
Collapse
|
34
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
35
|
Seidl MF, Van den Ackerveken G. Activity and Phylogenetics of the Broadly Occurring Family of Microbial Nep1-Like Proteins. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:367-386. [PMID: 31283435 DOI: 10.1146/annurev-phyto-082718-100054] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of NLP genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., Arabidopsis thaliana detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands;
| |
Collapse
|
36
|
Depotter JRL, Shi‐Kunne X, Missonnier H, Liu T, Faino L, van den Berg GCM, Wood TA, Zhang B, Jacques A, Seidl MF, Thomma BPHJ. Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation. Mol Ecol 2019; 28:3482-3495. [PMID: 31282048 PMCID: PMC6771948 DOI: 10.1111/mec.15168] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Plant pathogens continuously evolve to evade host immune responses. During host colonization, many fungal pathogens secrete effectors to perturb such responses, but these in turn may become recognized by host immune receptors. To facilitate the evolution of effector repertoires, such as the elimination of recognized effectors, effector genes often reside in genomic regions that display increased plasticity, a phenomenon that is captured in the two-speed genome hypothesis. The genome of the vascular wilt fungus Verticillium dahliae displays regions with extensive presence/absence polymorphisms, so-called lineage-specific regions, that are enriched in in planta-induced putative effector genes. As expected, comparative genomics reveals differential degrees of sequence divergence between lineage-specific regions and the core genome. Unanticipated, lineage-specific regions display markedly higher sequence conservation in coding as well as noncoding regions than the core genome. We provide evidence that disqualifies horizontal transfer to explain the observed sequence conservation and conclude that sequence divergence occurs at a slower pace in lineage-specific regions of the V. dahliae genome. We hypothesize that differences in chromatin organisation may explain lower nucleotide substitution rates in the plastic, lineage-specific regions of V. dahliae.
Collapse
Affiliation(s)
- Jasper R. L. Depotter
- Laboratory of PhytopathologyWageningen University & ResearchWageningenThe Netherlands
- Department of Crops and AgronomyNational Institute of Agricultural BotanyCambridgeUK
- Present address:
Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS)University of CologneCologneGermany
| | - Xiaoqian Shi‐Kunne
- Laboratory of PhytopathologyWageningen University & ResearchWageningenThe Netherlands
| | - Hélène Missonnier
- Département des Sciences Agronomiques et Agroalimentaires, Equipe Agrophysiologie et Agromolécules, Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de PurpanUniversité de ToulouseToulouseFrance
| | - Tingli Liu
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Luigi Faino
- Laboratory of PhytopathologyWageningen University & ResearchWageningenThe Netherlands
- Present address:
Department of Environmental BiologyUniversity La SapienzaRomeItaly
| | | | - Thomas A. Wood
- Department of Crops and AgronomyNational Institute of Agricultural BotanyCambridgeUK
| | - Baolong Zhang
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Alban Jacques
- Département des Sciences Agronomiques et Agroalimentaires, Equipe Agrophysiologie et Agromolécules, Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de PurpanUniversité de ToulouseToulouseFrance
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University & ResearchWageningenThe Netherlands
- Present address:
Department of Biology, Theoretical Biology & BioinformaticsUtrecht UniversityCH UtrechtThe Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
37
|
Vuković R, Liber Z, Ježić M, Sotirovski K, Ćurković-Perica M. Link between epigenetic diversity and invasive status of south-eastern European populations of phytopathogenic fungus Cryphonectria parasitica. Environ Microbiol 2019; 21:4521-4536. [PMID: 31314941 DOI: 10.1111/1462-2920.14742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Epigenetic modifications may play an important role in invasion and adaptation of clonal and invasive populations to different environments. The aim of this study was to analyse epigenetic diversity and structure within and among populations of invasive pathogenic fungus Cryphonectria parasitica from south-eastern Europe, where one haplotype S12 dominates. The highest level of epigenetic diversity was found in haplotype S1, followed by S2, while the lowest level of epigenetic diversity was found in haplotype S12. Similar pattern of epigenetic diversity was detected in the control, genetically diverse Croatian population where S1 haplotype dominates. In four south-eastern European populations, the highest level of epigenetic diversity was observed in the Italian population, the oldest population in the studied area, while the lowest diversity was found in most recently established Bulgarian population. This relationship between epigenetic diversity and population age implies the important role of epigenetic modifications on the process of invasion. Our data suggest that epigenetic differences might affect the success of expansion of certain haplotype into new regions. Understanding the role of epigenetic processes in expansion and (pre)adaptation of fungal plant pathogens, besides fundamental knowledge, can contribute to development of strategies for control of fungal spread and pathogenesis.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Kiril Sotirovski
- Faculty of Forestry, Ss. Cyril and Methodius University of Skopje, Skopje, North Macedonia
| | | |
Collapse
|
38
|
Collemare J, Seidl MF. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev 2019; 43:591-607. [PMID: 31301226 PMCID: PMC8038932 DOI: 10.1093/femsre/fuz018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Michael F Seidl
- Corresponding author: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. E-mail: ; Present address: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
39
|
Grandaubert J, Dutheil JY, Stukenbrock EH. The genomic determinants of adaptive evolution in a fungal pathogen. Evol Lett 2019; 3:299-312. [PMID: 31171985 PMCID: PMC6546377 DOI: 10.1002/evl3.117] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022] Open
Abstract
Unravelling the strength, frequency, and distribution of selective variants along the genome as well as the underlying factors shaping this distribution are fundamental goals of evolutionary biology. Antagonistic host-pathogen coevolution is thought to be a major driver of genome evolution between interacting species. While rapid evolution of pathogens has been documented in several model organisms, the genetic mechanisms of their adaptation are still poorly understood and debated, particularly the role of sexual reproduction. Here, we apply a population genomic approach to infer genome-wide patterns of selection among 13 isolates of Zymoseptoria tritici, a fungal pathogen characterized by extremely high genetic diversity, gene density, and recombination rates. We report that the genome of Z. tritici undergoes a high rate of adaptive substitutions, with 44% of nonsynonymous substitutions being adaptive on average. This fraction reaches 68% in so-called effector genes encoding determinants of pathogenicity, and the distribution of fitness effects differs in this class of genes as they undergo adaptive mutations with stronger positive fitness effects, but also more slightly deleterious mutations. Besides the globally high rate of adaptive substitutions, we report a negative relationship between pN/pS and the fine-scale recombination rate and a strong positive correlation between the rate of adaptive nonsynonymous substitutions (ωa) and recombination rate. This result suggests a pervasive role of both background selection and Hill-Robertson interference even in a species with an exceptionally high recombination rate (60 cM/Mb on average). While transposable elements (TEs) have been suggested to contribute to adaptation by creating compartments of fast-evolving genomic regions, we do not find a significant effect of TEs on the rate of adaptive mutations. Overall our study suggests that sexual recombination is a significant driver of genome evolution, even in rapidly evolving organisms subject to recurrent mutations with large positive effects.
Collapse
Affiliation(s)
- Jonathan Grandaubert
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- Christian‐Albrechts University of KielAm Botanischen Garten 1–924118KielGermany
| | - Julien Y. Dutheil
- Research group Molecular Systems EvolutionMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- UMR 5554 Institut des Sciences de l'Evolution, CNRS, IRD, EPHEUniversité de MontpellierPlace E. Bataillon34095MontpellierFrance
| | - Eva H. Stukenbrock
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyAugust‐Thienemann‐Str. 224306PlönGermany
- Christian‐Albrechts University of KielAm Botanischen Garten 1–924118KielGermany
| |
Collapse
|
40
|
Tsushima A, Gan P, Kumakura N, Narusaka M, Takano Y, Narusaka Y, Shirasu K. Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum. Genome Biol Evol 2019; 11:1487-1500. [PMID: 31028389 PMCID: PMC6535813 DOI: 10.1093/gbe/evz087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Phytopathogen genomes are under constant pressure to change, as pathogens are locked in an evolutionary arms race with their hosts, where pathogens evolve effector genes to manipulate their hosts, whereas the hosts evolve immune components to recognize the products of these genes. Colletotrichum higginsianum (Ch), a fungal pathogen with no known sexual morph, infects Brassicaceae plants including Arabidopsis thaliana. Previous studies revealed that Ch differs in its virulence toward various Arabidopsis thaliana ecotypes, indicating the existence of coevolutionary selective pressures. However, between-strain genomic variations in Ch have not been studied. Here, we sequenced and assembled the genome of a Ch strain, resulting in a highly contiguous genome assembly, which was compared with the chromosome-level genome assembly of another strain to identify genomic variations between strains. We found that the two closely related strains vary in terms of large-scale rearrangements, the existence of strain-specific regions, and effector candidate gene sets and that these variations are frequently associated with transposable elements (TEs). Ch has a compartmentalized genome consisting of gene-sparse, TE-dense regions with more effector candidate genes and gene-dense, TE-sparse regions harboring conserved genes. Additionally, analysis of the conservation patterns and syntenic regions of effector candidate genes indicated that the two strains vary in their effector candidate gene sets because of de novo evolution, horizontal gene transfer, or gene loss after divergence. Our results reveal mechanisms for generating genomic diversity in this asexual pathogen, which are important for understanding its adaption to hosts.
Collapse
Affiliation(s)
- Ayako Tsushima
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Kaga-gun, Japan
| | | | | | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
41
|
Castagnone‐Sereno P, Mulet K, Danchin EGJ, Koutsovoulos GD, Karaulic M, Da Rocha M, Bailly‐Bechet M, Pratx L, Perfus‐Barbeoch L, Abad P. Gene copy number variations as signatures of adaptive evolution in the parthenogenetic, plant‐parasitic nematode
Meloidogyne incognita. Mol Ecol 2019; 28:2559-2572. [DOI: 10.1111/mec.15095] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023]
Affiliation(s)
| | - Karine Mulet
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | | | | | | | | | - Loris Pratx
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | - Pierre Abad
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| |
Collapse
|
42
|
Shi-Kunne X, van Kooten M, Depotter JRL, Thomma BPHJ, Seidl MF. The Genome of the Fungal Pathogen Verticillium dahliae Reveals Extensive Bacterial to Fungal Gene Transfer. Genome Biol Evol 2019; 11:855-868. [PMID: 30799497 PMCID: PMC6430987 DOI: 10.1093/gbe/evz040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Horizontal gene transfer (HGT) involves the transmission of genetic material between distinct evolutionary lineages and can be an important source of biological innovation. Reports of interkingdom HGT to eukaryotic microbial pathogens have accumulated over recent years. Verticillium dahliae is a notorious plant pathogen that causes vascular wilt disease on hundreds of plant species, resulting in high economic losses every year. Previously, the effector gene Ave1 and a glucosyltransferase-encoding gene were identified as virulence factor-encoding genes that were proposed to be horizontally acquired from a plant and a bacterial donor, respectively. However, to what extent HGT contributed to the overall genome composition of V. dahliae remained elusive. Here, we systematically searched for evidence of interkingdom HGT events in the genome of V. dahliae and provide evidence for extensive horizontal gene acquisition from bacterial origin.
Collapse
Affiliation(s)
- Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Mathijs van Kooten
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Cambridge, United Kingdom
- Present address: Botanical Institute, University of Cologne, BioCenter, Cologne, Germany
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Present address: Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
43
|
Chaves SC, Rodríguez MC, Mideros MF, Lucca F, Ñústez CE, Restrepo S. Determining Whether Geographic Origin and Potato Genotypes Shape the Population Structure of Phytophthora infestans in the Central Region of Colombia. PHYTOPATHOLOGY 2019; 109:145-154. [PMID: 30474515 DOI: 10.1094/phyto-05-18-0157-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pathogen variation plays an important role in the dynamics of infectious diseases. In this study, the genetic variation of 279 Phytophthora infestans isolates was assessed using a combination of 12 microsatellite simple-sequence repeat markers. Isolates were collected from 11 different potato cultivars in 11 different geographic localities of the central region of Colombia. The objective of this study was to determine whether populations were differentiated by host genotype or geographic origin. Within a single clonal lineage, EC-1, 76 genotypes were detected. An analysis of molecular variance attributed most of the variation to differences within host genotypes rather than among the host genotypes, suggesting that host cultivars do not structure the populations of the pathogen. Furthermore, the lack of a genetic population structure according to the host cultivar was confirmed by all of the analyses, including the Bayesian clustering analysis and the minimum spanning network that used the Bruvo genetic distance, which suggested that there are no significant barriers to gene flow for P. infestans among potato cultivars. According to the geographic origin, the populations of P. infestans were also not structured, and most of the variation among the isolates was attributed to differences within localities. Only some but not all localities in the north and west of the central region of Colombia showed some genetic differentiation from the other regions. The absence of sexual reproduction of this pathogen in Colombia was also demonstrated. Important insights are discussed regarding the genetic population dynamics of the P. infestans populations of the central region of Colombia that were provided by the results. In Colombia, there is a high genetic variation within the EC-1 clonal lineage with closely related genotypes, none dominant, that coexist in a wide geographic area and on several potato cultivars.
Collapse
Affiliation(s)
- Sandra Catalina Chaves
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Camila Rodríguez
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Fernanda Mideros
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Florencia Lucca
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Ñústez
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silvia Restrepo
- First, second, third, and sixth authors: Departmento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia; fourth author: Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, República Argentina; and fifth author: Departmento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
44
|
Ohkura M, Cotty PJ, Orbach MJ. Comparative Genomics of Aspergillus flavus S and L Morphotypes Yield Insights into Niche Adaptation. G3 (BETHESDA, MD.) 2018; 8:3915-3930. [PMID: 30361280 PMCID: PMC6288828 DOI: 10.1534/g3.118.200553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Aspergillus flavus, the primary causal agent for aflatoxin contamination on crops, consists of isolates with two distinct morphologies: isolates of the S morphotype produce numerous small sclerotia and lower numbers of conidia while isolates of the L morphotype produce fewer large sclerotia and abundant conidia. The morphotypes also differ in aflatoxin production with S isolates consistently producing high concentrations of aflatoxin, whereas L isolates range from atoxigenic to highly toxigenic. The production of abundant sclerotia by the S morphotype suggests adaptation for long-term survival in the soil, whereas the production of abundant conidia by the L morphotype suggests adaptation for aerial dispersal to the phyllosphere. To identify genomic changes that support differential niche adaption, the sequences of three S and three L morphotype isolates were compared. Differences in genome structure and gene content were identified between the morphotypes. A >530 kb inversion between the morphotypes affect a secondary metabolite gene cluster and a cutinase gene. The morphotypes also differed in proteins predicted to be involved in carbon/nitrogen metabolism, iron acquisition, antimicrobial defense, and evasion of host immunity. The S morphotype genomes contained more intact secondary metabolite clusters indicating there is higher selection pressure to maintain secondary metabolism in the soil and that it is not limited to aflatoxin production. The L morphotype genomes were enriched in amino acid transporters, suggesting efficient nitrogen transport may be critical in the nutrient limited phyllosphere. These findings indicate the genomes of the two morphotypes differ beyond developmental genes and have diverged as they adapted to their respective niches.
Collapse
Affiliation(s)
- Mana Ohkura
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Peter J Cotty
- USDA-ARS, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Marc J Orbach
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
45
|
Chen ECH, Mathieu S, Hoffrichter A, Sedzielewska-Toro K, Peart M, Pelin A, Ndikumana S, Ropars J, Dreissig S, Fuchs J, Brachmann A, Corradi N. Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi. eLife 2018; 7:e39813. [PMID: 30516133 PMCID: PMC6281316 DOI: 10.7554/elife.39813] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes thought to have evolved clonally for millions of years are referred to as ancient asexuals. The oldest group among these are the arbuscular mycorrhizal fungi (AMF), which are plant symbionts harboring hundreds of nuclei within one continuous cytoplasm. Some AMF strains (dikaryons) harbor two co-existing nucleotypes but there is no direct evidence that such nuclei recombine in this life-stage, as is expected for sexual fungi. Here, we show that AMF nuclei with distinct genotypes can undergo recombination. Inter-nuclear genetic exchange varies in frequency among strains, and despite recombination all nuclear genomes have an average similarity of at least 99.8%. The present study demonstrates that AMF can generate genetic diversity via meiotic-like processes in the absence of observable mating. The AMF dikaryotic life-stage is a primary source of nuclear variability in these organisms, highlighting its potential for strain enhancement of these symbionts.
Collapse
Affiliation(s)
- Eric CH Chen
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Anne Hoffrichter
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Kinga Sedzielewska-Toro
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - Max Peart
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Adrian Pelin
- Department of BiologyUniversity of OttawaOttawaCanada
| | | | - Jeanne Ropars
- Department of BiologyUniversity of OttawaOttawaCanada
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Jorg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Andreas Brachmann
- Institute of Genetics, Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | | |
Collapse
|
46
|
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M, Marton T, Ropars J, Grigoriev IV, Hainaut M, Henrissat B, Roux C, Martin F, Corradi N. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. THE NEW PHYTOLOGIST 2018; 220:1161-1171. [PMID: 29355972 DOI: 10.1111/nph.14989] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/03/2017] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.
Collapse
Affiliation(s)
- Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jessica Noel
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Philippe Charron
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Camille St-Onge
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - John Giorgi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Manuela Krüger
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Timea Marton
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Jeanne Ropars
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRA, USC 1408 AFMB, Marseille, F-13288, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Francis Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire D'excellence Recherches Avancées sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N9A7, Canada
| |
Collapse
|
47
|
Mathieu S, Cusant L, Roux C, Corradi N. Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. THE NEW PHYTOLOGIST 2018; 220:1129-1134. [PMID: 29949657 DOI: 10.1111/nph.15275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1129 I. Introduction 1129 II. Intraspecific phenotypic variation and the plant host 1130 III. High inter-isolate genetic diversity in model AMF 1130 IV. Genome diversity within the model AM fungus Rhizophagus irregularis 1131 V. Pangenomes and the future of AMF ecological genomics 1131 Acknowledgements 1133 References 1133 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant symbionts with an intriguing population biology. Conspecific AMF strains can vary substantially at the genetic and phenotypic levels, leading to direct and quantifiable variation in plant growth. Recent studies have shown that high intraspecific diversity is very common in AMF, and not only found in model species. Studies have also revealed how the phenotype of conspecific isolates varies depending on the plant host, highlighting the functional relevance of intraspecific phenotypic plasticity for the AMF ecology and mycorrhizal symbiosis. Recent work has also demonstrated that conspecific isolates of the model AMF Rhizophagus irregularis harbor large and highly variable pangenomes, highlighting the potential role of intraspecific genome diversity for the ecological adaptation of these symbionts.
Collapse
Affiliation(s)
- Stephanie Mathieu
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Loïc Cusant
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
48
|
Rao S, Sharda S, Oddi V, Nandineni MR. The Landscape of Repetitive Elements in the Refined Genome of Chilli Anthracnose Fungus Colletotrichum truncatum. Front Microbiol 2018; 9:2367. [PMID: 30337918 PMCID: PMC6180176 DOI: 10.3389/fmicb.2018.02367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled us to study its genome architecture by characterising the repetitive sequences like transposable elements (TEs) and simple sequence repeats (SSRs), which constituted 4.9 and 0.38% of the assembled genome, respectively. The comparative analysis among different Colletotrichum species revealed the extensive repeat rich regions, dominated by Gypsy superfamily of long terminal repeats (LTRs), and the differential composition of SSRs in their genomes. Our study revealed a recent burst of LTR amplification in C. truncatum, C. higginsianum, and C. scovillei. TEs in C. truncatum were significantly associated with secretome, effectors and genes in secondary metabolism clusters. Some of the TE families in C. truncatum showed cytosine to thymine transitions indicative of repeat-induced point mutation (RIP). C. orbiculare and C. graminicola showed strong signatures of RIP across their genomes and "two-speed" genomes with extensive AT-rich and gene-sparse regions. Comparative genomic analyses of Colletotrichum species provided an insight into the species-specific SSR profiles. The SSRs in the coding and non-coding regions of the genome revealed the composition of trinucleotide repeat motifs in exons with potential to alter the translated protein structure through amino acid repeats. This is the first genome-wide study of TEs and SSRs in C. truncatum and their comparative analysis with six other Colletotrichum species, which would serve as a useful resource for future research to get insights into the potential role of TEs in genome expansion and evolution of Colletotrichum fungi and for development of SSR-based molecular markers for population genomic studies.
Collapse
Affiliation(s)
- Soumya Rao
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Saphy Sharda
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Vineesha Oddi
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Madhusudan R. Nandineni
- Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
49
|
Feurtey A, Stukenbrock EH. Interspecific Gene Exchange as a Driver of Adaptive Evolution in Fungi. Annu Rev Microbiol 2018; 72:377-398. [DOI: 10.1146/annurev-micro-090817-062753] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Throughout evolutionary history in the kingdom Fungi, taxa have exchanged genetic information among species, as revealed in particular by analyses of genome sequences. In fungi, hybridization can occur by sexual mating or by fusion of vegetative structures giving rise to new species or leaving traces of introgression in the genome. Furthermore, gene exchange can occur by horizontal gene transfer between species and can even include organisms outside the kingdom Fungi. In several cases, interspecific gene exchange has been instrumental in rapid adaptive evolution of fungal species and has notably played a role in the emergence of new pathogens. Here we summarize mechanisms and examples of gene exchange in fungi with a particular focus on the genomic context. We emphasize the need for and potential of applying population genetic approaches to better understand the processes and the impact of interspecific gene exchange in rapid adaptive evolution and species diversification. The broad occurrence of gene exchange among fungal species challenges our species concepts in the kingdom Fungi.
Collapse
Affiliation(s)
- Alice Feurtey
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
| | - Eva H. Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;,
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
50
|
Dal Molin A, Minio A, Griggio F, Delledonne M, Infantino A, Aragona M. The genome assembly of the fungal pathogen Pyrenochaeta lycopersici from Single-Molecule Real-Time sequencing sheds new light on its biological complexity. PLoS One 2018; 13:e0200217. [PMID: 29979772 PMCID: PMC6034849 DOI: 10.1371/journal.pone.0200217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
The first draft genome sequencing of the non-model fungal pathogen Pyrenochaeta lycopersici showed an expansion of gene families associated with heterokaryon incompatibility and lacking of mating-type genes, providing insights into the genetic basis of this “imperfect” fungus which lost the ability to produce the sexual stage. However, due to the Illumina short-read technology, the draft genome was too fragmented to allow a comprehensive characterization of the genome, especially of the repetitive sequence fraction. In this work, the sequencing of another P. lycopersici isolate using long-read Single Molecule Real-Time sequencing technology was performed with the aim of obtaining a gapless genome. Indeed, a gapless genome assembly of 62.7 Mb was obtained, with a fraction of repetitive sequences representing 30% of the total bases. The gene content of the two P. lycopersici isolates was very similar, and the large difference in genome size (about 8 Mb) might be attributable to the high fraction of repetitive sequences detected for the new sequenced isolate. The role of repetitive elements, including transposable elements, in modulating virulence effectors is well established in fungal plant pathogens. Moreover, transposable elements are of fundamental importance in creating and re-modelling genes, especially in imperfect fungi. Their abundance in P. lycopersici, together with the large expansion of heterokaryon incompatibility genes in both sequenced isolates, suggest the presence of possible mechanisms alternative to gene re-assorting mediated by sexual recombination. A quite large fraction (~9%) of repetitive elements in P. lycopersici, has no homology with known classes, strengthening this hypothesis. The availability of a gapless genome of P. lycopersici allowed the in-depth analysis of its genome content, by annotating functional genes and TEs. This goal will be an important resource for shedding light on the evolution of the reproductive and pathogenic behaviour of this soilborne pathogen and the onset of a possible speciation within this species.
Collapse
Affiliation(s)
| | - Andrea Minio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Francesca Griggio
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Alessandro Infantino
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Research Centre for Plant Protection and Certification, Rome, Italy
| | - Maria Aragona
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Research Centre for Plant Protection and Certification, Rome, Italy
- * E-mail:
| |
Collapse
|