1
|
Permann C, Holzinger A. Zygospore formation in Zygnematophyceae predates several land plant traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230356. [PMID: 39343014 PMCID: PMC11449217 DOI: 10.1098/rstb.2023.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 10/01/2024] Open
Abstract
Recent research on a special type of sexual reproduction and zygospore formation in Zygnematophyceae, the sister group of land plants, is summarized. Within this group, gamete fusion occurs by conjugation. Zygospore development in Mougeotia, Spirogyra and Zygnema is highlighted, which has recently been studied using Raman spectroscopy, allowing chemical imaging and detection of changes in starch and lipid accumulation. Three-dimensional reconstructions after serial block-face scanning electron microscopy (SBF-SEM) or focused ion beam SEM (FIB-SEM) made it possible to visualize and quantify cell wall and organelle changes during zygospore development. The zygospore walls undergo strong modifications starting from uniform thin cell walls to a multilayered structure. The mature cell wall is composed of a cellulosic endospore and exospore and a central mesospore built up by aromatic compounds. In Spirogyra, the exospore and endospore consist of thick layers of helicoidally arranged cellulose fibrils, which are otherwise only known from stone cells of land plants. While starch is degraded during maturation, providing building blocks for cell wall formation, lipid droplets accumulate and fill large parts of the ripe zygospores, similar to spores and seeds of land plants. Overall, data show similarities between streptophyte algae and embryophytes, suggesting that the genetic toolkit for many land plant traits already existed in their shared algal ancestor. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Charlotte Permann
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15,6020 Innsbruck, Austria
| |
Collapse
|
2
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
3
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
4
|
Meissner ST. Plant sexual reproduction: perhaps the current plant two-sex model should be replaced with three- and four-sex models? PLANT REPRODUCTION 2021; 34:175-189. [PMID: 34213647 PMCID: PMC8360875 DOI: 10.1007/s00497-021-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
The two-sex model makes the assumption that there are only two sexual reproductive states: male and female. However, in land plants (embryophytes) the application of this model to the alternation of generations life cycle requires the subtle redefinition of several common terms related to sexual reproduction, which seems to obscure aspects of one or the other plant generation: For instance, the homosporous sporophytic plant is treated as being asexual, and the gametophytes of angiosperms treated like mere gametes. In contrast, the proposal is made that the sporophytes of homosporous plants are indeed sexual reproductive organisms, as are the gametophytes of heterosporous plants. This view requires the expansion of the number of sexual reproductive states we accept for these plant species; therefore, a three-sex model for homosporous plants and a four-sex model for heterosporous plants are described and then contrasted with the current two-sex model. These new models allow the use of sexual reproductive terms in a manner largely similar to that seen in animals, and may better accommodate the plant alternation of generations life cycle than does the current plant two-sex model. These new models may also help stimulate new lines of research, and examples of how they might alter our view of events in the flower, and may lead to new questions about sexual determination and differentiation, are presented. Thus it is suggested that land plant species have more than merely two sexual reproductive states and that recognition of this may promote our study and understanding of them.
Collapse
Affiliation(s)
- Scott T Meissner
- Institute of Biology, University of the Philippines Diliman, 1101, Quezon City, NCR, Philippines.
| |
Collapse
|
5
|
Borg M, Papareddy RK, Dombey R, Axelsson E, Nodine MD, Twell D, Berger F. Epigenetic reprogramming rewires transcription during the alternation of generations in Arabidopsis. eLife 2021; 10:e61894. [PMID: 33491647 PMCID: PMC7920552 DOI: 10.7554/elife.61894] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Alternation between morphologically distinct haploid and diploid life forms is a defining feature of most plant and algal life cycles, yet the underlying molecular mechanisms that govern these transitions remain unclear. Here, we explore the dynamic relationship between chromatin accessibility and epigenetic modifications during life form transitions in Arabidopsis. The diploid-to-haploid life form transition is governed by the loss of H3K9me2 and DNA demethylation of transposon-associated cis-regulatory elements. This event is associated with dramatic changes in chromatin accessibility and transcriptional reprogramming. In contrast, the global loss of H3K27me3 in the haploid form shapes a chromatin accessibility landscape that is poised to re-initiate the transition back to diploid life after fertilisation. Hence, distinct epigenetic reprogramming events rewire transcription through major reorganisation of the regulatory epigenome to guide the alternation of generations in flowering plants.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | | | - Rodolphe Dombey
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - Michael D Nodine
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| | - David Twell
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
- Department of Genetics, University of LeicesterLeicesterUnited Kingdom
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of SciencesViennaAustria
| |
Collapse
|
6
|
Moi D, Kilchoer L, Aguilar PS, Dessimoz C. Scalable phylogenetic profiling using MinHash uncovers likely eukaryotic sexual reproduction genes. PLoS Comput Biol 2020; 16:e1007553. [PMID: 32697802 PMCID: PMC7423146 DOI: 10.1371/journal.pcbi.1007553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/12/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic profiling is a computational method to predict genes involved in the same biological process by identifying protein families which tend to be jointly lost or retained across the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes than eukaryotes, because the method is thought to require many diverse genomes. There are now many eukaryotic genomes available, but these are considerably larger, and typical phylogenetic profiling methods require at least quadratic time as a function of the number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient retrieval of similar profiles. We show that the approach outperforms Enhanced Phylogenetic Tree, a phylogeny-based method, and use the tool to reconstruct networks and query for interactors of the kinetochore complex as well as conserved proteins involved in sexual reproduction: Hap2, Spo11 and Gex1. HogProf enables large-scale phylogenetic profiling across the three domains of life, and will be useful to predict biological pathways among the hundreds of thousands of eukaryotic species that will become available in the coming few years. HogProf is available at https://github.com/DessimozLab/HogProf. Genes that are involved in the same biological process tend to co-evolve. This property is exploited by the technique of phylogenetic profiling, which identifies co-evolving (and therefore likely functionally related) genes through patterns of correlated gene retention and loss in evolution and across species. However, conventional methods to computing and clustering these correlated genes do not scale with increasing numbers of genomes. HogProf is a novel phylogenetic profiling tool built on probabilistic data structures. It allows the user to construct searchable databases containing the evolutionary history of hundreds of thousands of protein families. Such fast detection of coevolution takes advantage of the rapidly increasing amount of genomic data publicly available, and can uncover unknown biological networks and guide in-vivo research and experimentation. We have applied our tool to describe the biological networks underpinning sexual reproduction in eukaryotes.
Collapse
Affiliation(s)
- David Moi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (DM); (CD)
| | - Laurent Kilchoer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pablo S. Aguilar
- Instituto de Investigaciones Biotecnologicas (IIBIO), Universidad Nacional de San Martín, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
- Department of Computer Science, University College London, London, United Kingdom
- * E-mail: (DM); (CD)
| |
Collapse
|
7
|
Wang H, Xu W, Sun Y, Lian Q, Wang C, Yu C, He C, Wang J, Ma H, Copenhaver GP, Wang Y. The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants. PLoS Genet 2020; 16:e1008849. [PMID: 32516352 PMCID: PMC7304647 DOI: 10.1371/journal.pgen.1008849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/19/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility. Cytological analyses of Atscc2-5 reveal multiple meiotic phenotypes including defects in chromosomal axis formation, meiosis-specific cohesin loading, homolog pairing and synapsis, and AtSPO11-1-dependent double strand break repair. Surprisingly, even though AtSCC2 interacts with AtSCC4 in vitro and in vivo, meiosis-specific knockdown of AtSCC4 expression does not cause any meiotic defect, suggesting that the SCC2-SCC4 complex has divergent roles in mitosis and meiosis. SCC2 homologs from land plants have a unique plant homeodomain (PHD) motif not found in other species. We show that the AtSCC2 PHD domain can bind to the N terminus of histones and is required for meiosis but not mitosis. Taken together, our results provide evidence that unlike SCC2 in other organisms, SCC2 requires a functional PHD domain during meiosis in land plants.
Collapse
Affiliation(s)
- Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Center for Epigenetics, Van Andel Institute, Grand Rapids, Michigan, United States of America
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yujin Sun
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Qichao Lian
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chengpeng He
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Deodato CR, Barlow SB, Hovde BT, Cattolico RA. Naked Chrysochromulina (Haptophyta) isolates from lake and river ecosystems: An electron microscopic comparison including new observations on the type species of this taxon. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gyawali R, Zhao Y, Lin J, Fan Y, Xu X, Upadhyay S, Lin X. Pheromone independent unisexual development in Cryptococcus neoformans. PLoS Genet 2017; 13:e1006772. [PMID: 28467481 PMCID: PMC5435349 DOI: 10.1371/journal.pgen.1006772] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/17/2017] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
The fungus Cryptococcus neoformans can undergo a-α bisexual and unisexual reproduction. Completion of both sexual reproduction modes requires similar cellular differentiation processes and meiosis. Although bisexual reproduction generates equal number of a and α progeny and is far more efficient than unisexual reproduction under mating-inducing laboratory conditions, the α mating type dominates in nature. Population genetic studies suggest that unisexual reproduction by α isolates might have contributed to this sharply skewed distribution of the mating types. However, the predominance of the α mating type and the seemingly inefficient unisexual reproduction observed under laboratory conditions present a conundrum. Here, we discovered a previously unrecognized condition that promotes unisexual reproduction while suppressing bisexual reproduction. Pheromone is the principal stimulus for bisexual development in Cryptococcus. Interestingly, pheromone and other components of the pheromone pathway, including the key transcription factor Mat2, are not necessary but rather inhibitory for Cryptococcus to complete its unisexual cycle under this condition. The inactivation of the pheromone pathway promotes unisexual reproduction despite the essential role of this pathway in non-self-recognition during bisexual reproduction. Nonetheless, the requirement for the known filamentation regulator Znf2 and the expression of hyphal or basidium specific proteins remain the same for pheromone-dependent or independent sexual reproduction. Transcriptome analyses and an insertional mutagenesis screen in mat2Δ identified calcineurin being essential for this process. We further found that Znf2 and calcineurin work cooperatively in controlling unisexual development in this fungus. These findings indicate that Mat2 acts as a repressor of pheromone-independent unisexual development while serving as an activator for a-α bisexual development. The bi-functionality of Mat2 might have allowed it to act as a toggle switch for the mode of sexual development in this ubiquitous eukaryotic microbe.
Collapse
Affiliation(s)
- Rachana Gyawali
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Youbao Zhao
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Jianfeng Lin
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Yumeng Fan
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Xinping Xu
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Srijana Upadhyay
- Department of Biology, Texas A&M University, College Station, United States of America
| | - Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, United States of America
| |
Collapse
|
10
|
Niklas KJ, Kutschera U. From Goethe’s plant archetype via Haeckel’s biogenetic law to plant evo-devo 2016. Theory Biosci 2016; 136:49-57. [DOI: 10.1007/s12064-016-0237-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
|
11
|
|
12
|
Rensing SA. (Why) Does Evolution Favour Embryogenesis? TRENDS IN PLANT SCIENCE 2016; 21:562-573. [PMID: 26987708 DOI: 10.1016/j.tplants.2016.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 05/05/2023]
Abstract
Complex multicellular organisms typically possess life cycles in which zygotes (formed by gamete fusion) and meiosis occur. Canonical animal embryogenesis describes development from zygote to birth. It involves polarisation of the egg/zygote, asymmetric cell divisions, establishment of axes, symmetry breaking, formation of organs, and parental nutrition (at least in early stages). Similar developmental patterns have independently evolved in other eukaryotic lineages, including land plants and brown algae. The question arises whether embryo-like structures and associated developmental processes recurrently emerge because they are local optima of the evolutionary landscape. To understand which evolutionary principles govern complex multicellularity, we need to analyse why and how similar processes evolve convergently - von Baer's and Haeckel's phylotypic stage revisited in other phyla.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Kutschera U, Niklas KJ. The evolution of the plant genome-to-morphology auxin circuit. Theory Biosci 2016; 135:175-86. [PMID: 27333773 DOI: 10.1007/s12064-016-0231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022]
Abstract
In his Generelle Morphologie der Organismen (1866), 150 years ago, Ernst Haeckel (1834-1919) combined developmental patterns in animals with the concept of organismic evolution, and 50 years ago, a new era of plant research started when focus shifted from crop species (sunflower, maize etc.) to thale cress (Arabidopsis thaliana) as a model organism. In this contribution, we outline the general principles of developmental evolutionary biology sensu Haeckel and describe the evolutionary genome-to-morphology-plant hormone auxin (IAA, indole-3-acetic acid)-circuit with reference to other phytohormones and a focus on land plants (embryophytes) plus associated epiphytic microbes. Our primary conclusion is that a system-wide approach is required to truly understand the ontogeny of any organism, because development proceeds according to signal pathways that integrate and respond to external as well as internal stimuli. We also discuss IAA-regulated embryology in A. thaliana and epigenetic phenomena in the gametophyte development, and outline how these processes are connected to the seminal work of Ernst Haeckel.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, 34109, Kassel, Germany.
| | - Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 2016; 54:135-48. [PMID: 26927691 DOI: 10.1016/j.semcdb.2016.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Collapse
|
15
|
Lyons NA, Kolter R. On the evolution of bacterial multicellularity. Curr Opin Microbiol 2015; 24:21-8. [PMID: 25597443 DOI: 10.1016/j.mib.2014.12.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/30/2014] [Indexed: 01/17/2023]
Abstract
Multicellularity is one of the most prevalent evolutionary innovations and nowhere is this more apparent than in the bacterial world, which contains many examples of multicellular organisms in a surprising array of forms. Due to their experimental accessibility and the large and diverse genomic data available, bacteria enable us to probe fundamental aspects of the origins of multicellularity. Here we discuss examples of multicellular behaviors in bacteria, the selective pressures that may have led to their evolution, possible origins and intermediate stages, and whether the ubiquity of apparently convergent multicellular forms argues for its inevitability.
Collapse
Affiliation(s)
- Nicholas A Lyons
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| |
Collapse
|